
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 4 Master Theorem

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Reviewing: Solving Recurrences

• Recurrence
– The analysis of integer multiplication from last lecture required us to solve a

recurrence
– Recurrences are a major tool for analysis of algorithms
– Divide and Conquer algorithms which are analyzable by recurrences.

• Three steps at each level of the recursion:
– Divide the problem into a number of subproblems that are smaller

instances of the same problem.
– Conquer the subproblems by solving them recursively. If the subproblem

sizes are small enough, however, just solve the subproblems in a
straightforward manner.

– Combine the solutions to the subproblems into the solution for the original
problem.

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Recall: Integer Multiplication

• Let X = A B and Y = C D where A,B,C and D are n/2
bit integers

• Simple Method: XY = (2n/2A+B)(2n/2C+D)

• Running Time Recurrence

T(n) < 4T(n/2) + Q(n)

How do we solve it?

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Reviewing: Substitution Method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

Example: T(n) = 4T(n/2) + Q(n)

• [Assume that T(1) = Q(1).]
• Guess O(n3) . (Prove O and W separately.)
• Assume that T(k)  ck3 for k < n .
• Prove T(n)  cn3 by induction.

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

The Master Method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f (n) ,

where a  1, b > 1, and f is asymptotically positive.

1. f (n) = O(nlogba – e) for some constant e > 0. Then, T(n) = Q(nlogba)

2. f (n) = Q(nlogba) for k  0. Then, T(n) = Q(nlogba lgn) .

3. f (n) = W(nlogba + e) for some constant e > 0 and f (n) satisfies
the regularity condition that a f (n/b)  c f (n) for some
constant c < 1. Then, T(n) = Q(f (n))

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

6

Application of Master Theorem

• T(n) = 9T(n/3)+n;
– a=9,b=3, f(n) =n

– nlogb
a = nlog3

9 = Q (n2)

– f(n)=O(nlog3
9-e) for e=1

– By case 1, T(n) =Q (n2).

• T(n) = T(2n/3)+1
– a=1,b=3/2, f(n) =1

– nlogb
a = nlog3/2

1 = Q (n0) = Q (1)

– By case 2, T(n)= Q(lg n).

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

7

Application of Master Theorem

• T(n) = 3T(n/4)+nlg n;
– a=3,b=4, f(n) =nlg n

– nlogb
a = nlog4

3 = Q (n0.793)

– f(n)= W(nlog4
3+e) for e0.2

– Moreover, for large n, the “regularity” holds for c=3/4.

af(n/b) =3(n/4)lg (n/4)  (3/4)nlg n = cf(n)

– By case 3, T(n) =Q (f(n))=Q (nlg n).

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

8

Exception to Master Theorem

• T(n) = 2T(n/2)+nlg n;
– a=2,b=2, f(n) =nlg n

– nlogb
a = nlog2

2 = Q (n)

– f(n) is asymptotically larger than nlogb
a , but not polynomially

larger because

– f(n)/nlogb
a = lg n, which is asymptotically less than ne for any

e>0.

– Therefore, this is a gap between 2 and 3.

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

9

Where Are the Gaps

nlogba f(n), case 2: within constant distances
c1

c2

ne

f(n), case 1, at least polynomially smaller

Gap between case 1 and 2

ne Gap between case 3 and 2

f(n), case 3, at least polynomially larger

Note: 1. for case 3, the regularity also must hold.
2. if f(n) is lg n smaller, then fall in gap in 1 and 2
3. if f(n) is lg n larger, then fall in gap in 3 and 2
4. if f(n)=Q(nlogbalgkn), then T(n)=Q(nlogbalgk+1n) (as exercise)

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Master Theorem

The master method applies to recurrences of the form

T(n) = a T(n/b) + f (n) ,

where constants a  1, b > 1, and f is asymptotically positive function

1. f (n) = O(nlogba – e) for some constant e > 0, then T(n) = Q(nlogba)

2. f (n) = O(nlogba) for some constant e > 0, then T(n) = Q(nlogba lgn)

3. f (n) = O(nlogba + e) for some constant e > 0, and if a f (n/b)  c f (n)
for some constant c < 1, then T(n) = Q(f (n)) .

How to theoretically prove it?

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Proof for Exact Powers

• Suppose n=bk for k1.
• Lemma 4.2

– for T(n) = Q(1) if n=1
– aT(n/b)+f(n) if n=bk for k1
– where a  1, b>1, f(n) be a nonnegative function defined on

exact powers of b, then

– T(n) = Q(nlogba) + ajf(n/bj)

• Proof:
– By iterating the recurrence
– By recursion tree (See figure 4.3)


j=0

logbn-1

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Recursion Tree for T(n)=aT(n/b)+f(n)

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

13

Proof for Exact Powers (cont.)

• Lemma 4.3:
– Let constants a  1, b>1, f(n) be a nonnegative function

defined on exact power of b, then

– g(n)= ajf(n/bj) can be bounded asymptotically for exact

power of b as follows:

1. If f(n)=O(nlogb
a-e) for some e>0, then g(n)= O(nlogb

a).
2. If f(n)= Q(nlogb

a), then g(n)= Q(nlogb
a lg n).

3. If f(n)= W(nlogb
a+e) for some e>0 and if af(n/b) cf(n) for

some c<1 and all sufficiently large n b, then g(n)= Q(f(n)).


j=0

logbn-1

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

14

Proof of Lemma 4.3

• For case 1: f(n)=O(nlogb
a-e) implies f(n/bj)=O((n /bj)logb

a-e), so

• g(n)= ajf(n/bj) =O(aj(n /bj)logb
a-e)

• = O(nlogb
a-e aj/(blogb

a-e)j) = O(nlogb
a-e aj/(aj(b-e)j))

• = O(nlogb
a-e (be)j) = O(nlogb

a-e (((be) logbn-1)/(be-1))

• = O(nlogb
a-e (((blogbn)e -1)/(be-1)))

• = O(nlogb
a n-e (ne -1)/(be-1))

• = O(nlogb
a)


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Proof of Lemma 4.3(cont.)

• For case 2: f(n)= Q(nlogb
a) implies f(n/bj)= Q((n /bj)logb

a), so

• g(n)= ajf(n/bj) = Q(aj(n /bj)logb
a)

• = Q(nlogb
a aj/(blogb

a)j) = Q(nlogb
a 1)

• = Q(nlogb
a logb

n) = Q(nlogb
alg n)


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Proof of Lemma 4.3(cont.)

• For case 3:
– Since g(n) contains f(n), g(n) = W(f(n))

– Since a f(n/b)  c f(n), so f(n/b)  (c/a) f(n),

– Iterating j times, f(n/bj)  (c/a)j f(n), thus aj f(n/bj)  cj f(n)

– g(n)= aj f(n/bj)  cj f(n)  f(n) cj = f(n) (1/(1-c))

=O(f(n))

– Thus, g(n)=Q(f(n))


j=0

logbn-1


j=0

logbn-1


j=0



CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

Proof for Exact Powers (cont.)

• Lemma 4.4:
– for T(n) = Q(1) if n=1

aT(n/b)+f(n) if n=bk for k1

– where a  1, b>1, f(n) be a nonnegative function,

1. If f(n)=O(nlogb
a-e) for some e>0, then T(n)= Q(nlogb

a).

2. If f(n)= Q(nlogb
a), then T(n)= Q(nlogb

a lg n).

3. If f(n)=W(nlogb
a+e) for some e>0, and if af(n/b) cf(n) for some

c<1 and all sufficiently large n, then T(n)= Q(f(n)).

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Proof of Lemma 4.4 (cont.)
• Combine Lemma 4.2 and 4.3,

– For case 1:

 T(n)= Q(nlogb
a)+O(nlogb

a)=Q(nlogb
a).

– For case 2:

 T(n)= Q(nlogb
a)+Q(nlogb

a lg n)=Q(nlogb
a lg n).

– For case 3:

 T(n)= Q(nlogb
a)+Q(f(n))=Q(f(n)) because f(n)= W(nlogb

a+e).

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Floors and Ceilings (n≠bk for k1)

• T(n)=a T(n/b)+f(n) and T(n)=a T(n/b)+f(n)
• Want to prove both equal to T(n)=a T(n/b)+f(n)
• Two results:

– Master theorem applied to all integers n.
– Floors and ceilings do not change the result.

 (Note: we proved this by domain transformation too).

• Since n/bn/b, and n/b n/b, upper bound for
floors and lower bound for ceiling is held.

• So prove upper bound for ceilings (similar for lower
bound for floors).

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

Upper bound of proof for T(n)=aT(n/b)+f(n)

• consider sequence n, n/b,  n/b/b,   n/b /b/b, …

• Let us define nj as follows:

• nj = n if j = 0

• = nj-1/b if j > 0

• The sequence will be n0, n1, …, nlogbn

n0 <= n

n1 <= n/b+1

n2 <= n/b2+n/b+1

...

nj <= n/bj + 1/bi

< n/bj + b/(b-1)


i=0

j-1

Let j=logb n , then

nlogbn < n / b log
b

n + b/(b-1)

≤ n / b log
b

n - 1 + b/(b-1)

= n/(n/b) + b/(b-1) = b + b/(b-1) = O(1)

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

Recursion Tree

Recursion Tree of T(n)=a T(n/b)+f(n)

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

The Proof of Upper Bound for Ceiling

– T(n) = Q(nlogba)+ ajf(nj)

– Thus similar to Lemma 4.3 and 4.4, the upper bound is
proven.


j=0

logbn -1


j=0

logbn -1

aj f(nj)g(n) =

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

The Simple Format of Master Theorem

• T(n)=aT(n/b)+cnk, with a, b, c, k are positive constants,
and a1 and b2,

O(nlogba), if a>bk.

• T(n) = O(nklogn), if a=bk.

O(nk), if a<bk.

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Exercise (1)

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

Exercise (2)

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Exercise (3)

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Exercise (4)

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

Exercise (5)

The easy way to do this is with a change of variables.

Let m = lg n and S(m) = T (2m)

T (2m) = T (2m/2)+ 1, So S(m)= S(m/2)+1,

Using the master theorem, a=1, b=2. nlogb
a = 1 and f (n) = 1.

Case 2 applies and S(m) = Q(lg m).

Therefore, T (n) = Q (lg lg n).

