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Reviewing: Solving Recurrences

• Recurrence
– The analysis of  integer multiplication from last lecture required us to solve a 

recurrence
– Recurrences are a major tool for analysis of  algorithms 
– Divide and Conquer algorithms which are analyzable by recurrences.

• Three steps at each level of  the recursion:
– Divide the problem into a number of  subproblems that are smaller 

instances of  the same problem.
– Conquer the subproblems by solving them recursively. If  the subproblem 

sizes are small enough, however, just solve the subproblems in a 
straightforward manner.

– Combine the solutions to the subproblems into the solution for the original 
problem.
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Recall: Integer Multiplication

• Let X = A  B  and Y = C  D  where A,B,C and D are n/2 
bit integers

• Simple Method:  XY = (2n/2A+B)(2n/2C+D)

• Running Time Recurrence

T(n) < 4T(n/2) + Q(n)

How do we solve it?
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Reviewing: Substitution Method

1. Guess the form of  the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

Example: T(n) = 4T(n/2) + Q(n)

• [Assume that T(1) = Q(1).]
• Guess O(n3) .  (Prove O and W separately.)
• Assume that T(k)  ck3 for k < n .
• Prove T(n)  cn3 by induction.
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The Master Method

The master method applies to recurrences of  the form

T(n) = a T(n/b) + f (n) , 

where a  1, b > 1, and f is asymptotically positive.

1. f (n) = O(nlogba – e) for some constant e > 0. Then, T(n) = Q(nlogba)

2. f (n) = Q(nlogba ) for k  0. Then, T(n) = Q(nlogba lgn) .

3. f (n) = W(nlogba + e) for some constant e > 0 and f (n) satisfies 
the regularity condition that a f (n/b)  c f (n) for some 
constant c < 1. Then, T(n) = Q( f (n) )
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Application of Master Theorem

• T(n) = 9T(n/3)+n;   
– a=9,b=3, f(n) =n

– nlogb
a = nlog3

9 = Q (n2)

– f(n)=O(nlog3
9-e) for e=1

– By case 1, T(n) =Q (n2).

• T(n) = T(2n/3)+1
– a=1,b=3/2, f(n) =1

– nlogb
a = nlog3/2

1 = Q (n0) = Q (1)

– By case 2, T(n)= Q(lg n).
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Application of Master Theorem

• T(n) = 3T(n/4)+nlg n;   
– a=3,b=4, f(n) =nlg n

– nlogb
a = nlog4

3 = Q (n0.793)

– f(n)= W(nlog4
3+e) for e0.2

– Moreover, for large n, the “regularity” holds for c=3/4.

af(n/b) =3(n/4)lg (n/4)  (3/4)nlg n = cf(n)

– By case 3, T(n) =Q (f(n))=Q (nlg n).
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Exception to Master Theorem

• T(n) = 2T(n/2)+nlg n;
– a=2,b=2, f(n) =nlg n

– nlogb
a = nlog2

2 = Q (n)

– f(n) is asymptotically larger than nlogb
a , but not polynomially 

larger because

– f(n)/nlogb
a = lg n,  which is asymptotically less than ne for any 

e>0.

– Therefore, this is a gap between 2 and 3.
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Where Are the Gaps

nlogba f(n), case 2: within constant distances
c1

c2

ne

f(n), case 1, at least polynomially smaller

Gap between case 1 and 2

ne Gap between case 3 and 2

f(n), case 3, at least polynomially larger

Note: 1. for case 3, the regularity also must hold.
2. if f(n) is lg n smaller, then fall in gap in 1 and 2
3. if f(n) is lg n larger, then fall in gap in 3 and 2
4. if f(n)=Q(nlogbalgkn), then T(n)=Q(nlogbalgk+1n) (as exercise)
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Master Theorem

The master method applies to recurrences of  the form

T(n) = a T(n/b) + f (n) , 

where constants a  1, b > 1, and f is asymptotically positive function

1. f (n) = O(nlogba – e) for some constant e > 0, then T(n) = Q(nlogba)

2. f (n) = O(nlogba ) for some constant e > 0, then T(n) = Q(nlogba lgn)

3. f (n) = O(nlogba + e) for some constant e > 0, and if a f (n/b)  c f (n) 
for some constant c < 1, then T(n) = Q( f (n) ) .

How to theoretically prove it?
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Proof for Exact Powers

• Suppose n=bk for k1.
• Lemma 4.2

– for T(n) =  Q(1)  if n=1
– aT(n/b)+f(n)  if n=bk for k1
– where a  1, b>1, f(n) be a nonnegative function defined on 

exact powers of b, then

– T(n) = Q(nlogba) +     ajf(n/bj)

• Proof: 
– By iterating the recurrence
– By recursion tree (See figure 4.3)


j=0

logbn-1
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Recursion Tree for T(n)=aT(n/b)+f(n) 
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Proof for Exact Powers (cont.)

• Lemma 4.3:
– Let constants a  1, b>1, f(n) be a nonnegative function 

defined on exact power of b, then 

– g(n)=        ajf(n/bj) can be bounded asymptotically for exact

power of b as follows:

1. If f(n)=O(nlogb
a-e) for some e>0, then g(n)= O(nlogb

a).
2. If f(n)= Q(nlogb

a), then g(n)= Q(nlogb
a lg n).

3. If f(n)= W(nlogb
a+e) for some e>0 and if af(n/b) cf(n) for 

some c<1 and all sufficiently large n b, then g(n)= Q(f(n)).


j=0

logbn-1
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Proof of Lemma 4.3

• For case 1: f(n)=O(nlogb
a-e) implies f(n/bj)=O((n /bj)logb

a-e), so

• g(n)= ajf(n/bj) =O( aj(n /bj)logb
a-e )

• = O(nlogb
a-e aj/(blogb

a-e)j ) = O(nlogb
a-e aj/(aj(b-e)j))

• = O(nlogb
a-e (be)j ) = O(nlogb

a-e (((be ) logbn-1)/(be-1) ) 

• = O(nlogb
a-e (((blogbn)e -1)/(be-1)))

• = O(nlogb
a n-e (ne -1)/(be-1))

• = O(nlogb
a )


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1
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Proof of Lemma 4.3(cont.)

• For case 2: f(n)= Q(nlogb
a) implies f(n/bj)= Q((n /bj)logb

a), so

• g(n)= ajf(n/bj) = Q( aj(n /bj)logb
a)

• = Q(nlogb
a aj/(blogb

a)j ) = Q(nlogb
a 1)

• = Q(nlogb
a logb

n) = Q(nlogb
alg n) 


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1


j=0

logbn-1
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Proof of Lemma 4.3(cont.)

• For case 3:
– Since g(n) contains f(n), g(n) = W(f(n)) 

– Since a f(n/b)   c f(n), so f(n/b)   (c/a) f(n), 

– Iterating j times, f(n/bj)  (c/a)j f(n), thus aj f(n/bj)  cj f(n)

– g(n)=      aj f(n/bj)   cj f(n)   f(n) cj    =  f(n) (1/(1-c)) 

=O(f(n))

– Thus, g(n)=Q(f(n))


j=0

logbn-1


j=0

logbn-1


j=0


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Proof for Exact Powers (cont.)

• Lemma 4.4:
– for T(n) =  Q(1)  if n=1

aT(n/b)+f(n)  if n=bk for k1

– where a  1, b>1, f(n) be a nonnegative function,

1. If f(n)=O(nlogb
a-e) for some e>0, then T(n)= Q(nlogb

a).

2. If f(n)= Q(nlogb
a), then T(n)= Q(nlogb

a lg n).

3. If f(n)=W(nlogb
a+e) for some e>0, and if af(n/b) cf(n) for some 

c<1 and all sufficiently large n, then T(n)= Q(f(n)).
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Proof of Lemma 4.4 (cont.)
• Combine Lemma 4.2 and 4.3, 

– For case 1: 

 T(n)= Q(nlogb
a)+O(nlogb

a)=Q(nlogb
a).

– For case 2: 

 T(n)= Q(nlogb
a)+Q(nlogb

a lg n)=Q(nlogb
a lg n).

– For case 3:

 T(n)= Q(nlogb
a)+Q(f(n))=Q(f(n)) because f(n)= W(nlogb

a+e).
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Floors and Ceilings (n≠bk for k1)

• T(n)=a T( n/b )+f(n) and T(n)=a T( n/b )+f(n)
• Want to prove both equal to T(n)=a T(n/b)+f(n)
• Two results:

– Master theorem applied to all integers n. 
– Floors and ceilings do not change the result.

 (Note: we proved this by domain transformation too).

• Since n/bn/b, and n/b n/b, upper bound for 
floors and lower bound for ceiling is held.

• So prove upper bound for ceilings (similar for lower 
bound for floors).
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Upper bound of proof for T(n)=aT(n/b)+f(n)

• consider sequence n, n/b,  n/b/b,   n/b /b/b, …

• Let us define nj as follows:

• nj = n      if j = 0

• = nj-1/b if j > 0

• The sequence will be n0, n1, …, nlogbn

n0 <= n 

n1 <= n/b+1

n2 <= n/b2+n/b+1

...

nj <= n/bj +       1/bi

<    n/bj + b/(b-1)


i=0

j-1

Let j=logb n , then

nlogbn < n / b log
b

n + b/(b-1)

≤ n / b log
b

n  - 1 + b/(b-1)

= n/(n/b) + b/(b-1) = b + b/(b-1) = O(1)
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Recursion Tree

Recursion Tree of  T(n)=a T( n/b )+f(n)
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The Proof of Upper Bound for Ceiling

– T(n) = Q(nlogba)+     ajf(nj)

– Thus similar to Lemma 4.3 and 4.4, the upper bound is 
proven. 


j=0

logbn -1


j=0

logbn -1

aj f(nj)g(n)  = 
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The Simple Format of Master Theorem

• T(n)=aT(n/b)+cnk, with a, b, c, k are positive constants, 
and a1 and b2, 

O(nlogba),   if a>bk.

• T(n)  =   O(nklogn), if a=bk.

O(nk),        if a<bk.
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Exercise (1)
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Exercise (2)
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Exercise (3)
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Exercise (4)
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Exercise (5)

The easy way to do this is with a change of variables.

Let m = lg n and S(m) = T (2m )

T (2m ) = T (2m/2 )+ 1, So S(m)= S(m/2)+1, 

Using the master theorem, a=1, b=2. nlogb
a = 1 and f (n) = 1. 

Case 2 applies and S(m) = Q(lg m). 

Therefore, T (n) = Q (lg lg n).


