Design and Analysis of Algorithms

CSE 5311
Lecture 8 Sorting in Linear Time

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering
Sorting So Far

• Insertion sort:
 – Easy to code
 – Fast on small inputs (less than ~50 elements)
 – Fast on nearly-sorted inputs
 – $O(n^2)$ worst case
 – $O(n^2)$ average (equally-likely inputs) case
 – $O(n^2)$ reverse-sorted case

• Merge sort:
 – Divide-and-conquer:
 ➢ Split array in half
 ➢ Recursively sort subarrays
 ➢ Linear-time merge step
 – $O(n \log n)$ worst case
Sorting So Far

• **Heap sort:**
 – Uses the very useful heap data structure
 ➢ Complete binary tree
 ➢ Heap property: parent key > children’s keys
 – $O(n \log n)$ worst case
 – Sorts in place
 – Fair amount of shuffling memory around

• **Quick sort:**
 – Divide-and-conquer:
 ➢ Partition array into two subarrays, recursively sort
 ➢ All of first subarray < all of second subarray
 ➢ No merge step needed!
 – $O(n \log n)$ average case
 – Fast in practice
 – $O(n^2)$ worst case
 ➢ Naïve implementation: worst case on sorted input
 ➢ Address this with randomized quicksort
How Fast Can We Sort?

• **Lower bound**
 – Prove a Lower Bound for *any comparison based algorithm* for the Sorting Problem
 – *How?* Decision trees help us.

• **Observation:** sorting algorithms so far are *comparison sorts*
 – The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
 – Theorem: all comparison sorts are \(\Omega(n \lg n) \)
 - A comparison sort must do \(O(n) \) comparisons (*why?*)
 - What about the gap between \(O(n) \) and \(O(n \lg n) \)
Decision-tree Example

Sort $\langle a_1, a_2, \ldots, a_n \rangle$

Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.
- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.
Decision-tree Example

Sort $\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle$:

Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.
- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.
Decision-tree Example

Sort \(\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle \):

Each internal node is labeled \(i:j \) for \(i, j \in \{1, 2, \ldots, n\} \).

- The left subtree shows subsequent comparisons if \(a_i \leq a_j \).
- The right subtree shows subsequent comparisons if \(a_i \geq a_j \).
Decision-tree Example

Sort \(\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle \):

Each internal node is labeled \(i:j \) for \(i, j \in \{1, 2, \ldots, n\} \).
- The left subtree shows subsequent comparisons if \(a_i \leq a_j \).
- The right subtree shows subsequent comparisons if \(a_i \geq a_j \).
Each leaf contains a permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$ has been established.
A decision tree can model the execution of any comparison sort:

- One tree for each input size n.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm $= \text{the length of the path taken}$.
- Worst-case running time $= \text{height of tree}$.
How?

Any comparison sort can be turned into a Decision tree

class InsertionSortAlgorithm {
 for (int i = 1; i < a.length; i++) {
 int j = i;
 while ((j > 0) && (a[j-1] > a[i])) {
 a[j] = a[j-1];
 j--; }
 a[j] = B; }
}
Lower Bound for Decision-tree Sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \ lg \ n)$.

Proof. The tree must contain $\geq n!$ leaves, since there are $n!$ possible permutations. A height-h binary tree has $\leq 2^h$ leaves. Thus, $n! \leq 2^h$.

\[
\therefore \quad h \geq \lg(n!) \\
\geq \lg((n/e)^n) \\
= n \lg n - n \lg e \\
= \Omega(n \ lg \ n) .
\]

(lg is mono. increasing)
(Stirling’s formula)

\[
n \log n - n < \log(n!) < n \log n
\]
Decision Tree

• **Decision trees** provide an abstraction of comparison sorts
 – A decision tree represents the comparisons made by a comparison sort.
 Every thing else ignored
 – What do the leaves represent?
 – How many leaves must there be?
• Decision trees can model comparison sorts. For a given algorithm:
 – One tree for each \(n \)
 – Tree paths are all possible execution traces
 – *What’s the longest path in a decision tree for insertion sort? For merge sort?*

• *What is the asymptotic height of any decision tree for sorting \(n \) elements?*
• Answer: \(\Omega(n \lg n) \) (now let’s prove it…)
Lower Bound For Comparison Sorting

- **Theorem:** Any decision tree that sorts \(n \) elements has height \(\Omega(n \lg n) \)
- What’s the minimum # of leaves?
- What’s the maximum # of leaves of a binary tree of height \(h \)?
- Clearly the minimum # of leaves is less than or equal to the maximum # of leaves
- So we have \(n! \leq 2^h \); Taking logarithms: \(\lg (n!) \leq h \)
- Stirling’s approximation tells us: \(n! > \left(\frac{n}{e}\right)^n \)
- Thus \(h \geq \lg \left(\frac{n}{e}\right)^n = n \lg n - n \lg e = \Omega(n \lg n) \)

The minimum height of a decision tree is \(\Omega(n \lg n) \)
Lower Bound For Comparison Sorting

• Thus the time to comparison sort n elements is $\Omega(n \lg n)$

• **Corollary**: Heapsort and Mergesort are asymptotically optimal comparison sorts

• But the name of this lecture is “**Sorting in linear time**”!

 – *How can we do better than $\Omega(n \lg n)$?*
Sorting In Linear Time

• Counting sort
 – No comparisons between elements!
 – But...depends on assumption about the numbers being sorted
 ➢We assume numbers are in the range 1...k
 – The algorithm:
 ➢Input: A[1..n], where A[j] ∈ {1, 2, 3, ..., k}
 ➢Output: B[1..n], sorted (notice: not sorting in place)
 ➢Also: Array C[1..k] for auxiliary storage
Counting Sort

1 CountingSort(A, B, k)
2 for i=1 to k
3 C[i] = 0;
4 for j=1 to n
5 C[A[j]] += 1;
6 for i=2 to k
7 C[i] = C[i] + C[i-1];
8 for j=n downto 1
9 B[C[A[j]]] = A[j];
10 C[A[j]] -= 1;

Work through example: A={4 1 3 4 3}, k = 4
Counting Sort

1. `CountingSort(A, B, k)`
2. \[\text{for } i = 1 \text{ to } k \]
3. \[C[i] = 0; \]
4. \[\text{for } j = 1 \text{ to } n \]
5. \[C[A[j]] += 1; \]
6. \[\text{for } i = 2 \text{ to } k \]
7. \[C[i] = C[i] + C[i-1]; \]
8. \[\text{for } j = n \text{ downto } 1 \]
9. \[B[C[A[j]]] = A[j]; \]
10. \[C[A[j]] -= 1; \]

What will be the running time?

Takes time $O(k)$
Takes time $O(n)$
Counting-sort Example

A: 4 1 3 4 3

B:

C:

1 2 3 4
Loop 1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{for } i \leftarrow 1 \text{ to } k \]
\[\text{do } C[i] \leftarrow 0\]
Loop 2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

for \(j \leftarrow 1 \) to \(n \)

\[
\text{do } C[A[j]] \leftarrow C[A[j]] + 1
\]

\(C[i] = |\{\text{key} = i\}| \)
Loop 2

for $j \leftarrow 1$ to n
 $C[A[j]] \leftarrow C[A[j]] + 1$
 $\triangleright C[i] = |\{\text{key} = i\}|$
Loop 2

\[
\begin{array}{c|ccccc}
A: & 1 & 2 & 3 & 4 & 5 \\
 & 4 & 1 & 3 & 4 & 3 \\
\end{array}
\quad
\begin{array}{c|ccccc}
C: & 1 & 2 & 3 & 4 \\
 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c}
B: & \\
 & \\
\end{array}
\]

\textbf{for } j \leftarrow 1 \textbf{ to } n \\
\textbf{do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright\ C[i] = |\{\text{key } = i\}|
Loop 2

\[
\begin{align*}
A: & \quad \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3
\end{array} \quad C: \quad \begin{array}{ccccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2
\end{array} \\
B: & \quad \begin{array}{cccc}
\end{array}
\end{align*}
\]

\[
\text{for } j \leftarrow 1 \text{ to } n \\
\text{do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright \quad C[i] = |\{\text{key = } i\}|
\]
Loop 2

\[\text{for } j \leftarrow 1 \text{ to } n \]
\[\text{do } C[A[j]] \leftarrow C[A[j]] + 1 \]
\[C[i] = |\{\text{key} = i}\}| \]
Loop 3

\[
\begin{array}{cccccc}
\text{A:} & 4 & 1 & 3 & 4 & 3 \\
\hline
\text{B:} & & & & & \\
\hline
\text{C:} & 1 & 0 & 2 & 2 & \\
\hline
\text{C':} & 1 & 1 & 2 & 2 & \\
\end{array}
\]

\[
\text{for } i \leftarrow 2 \text{ to } k \\
\text{do } C[i] \leftarrow C[i] + C[i-1] \quad \blacktriangleright \quad C[i] = |\{\text{key } \leq i\}|
\]
Loop 3

\[
A: \begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3 \\
\end{bmatrix}
\]

\[
B: \begin{bmatrix}
\end{bmatrix}
\]

\[
C: \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & 2 & 2 \\
\end{bmatrix}
\]

\[
C': \begin{bmatrix}
1 & 1 & 3 & 2 \\
\end{bmatrix}
\]

\[
\text{for } i \leftarrow 2 \text{ to } k \\
\text{do } C[i] \leftarrow C[i] + C[i-1] \quad \triangleright C[i] = |\{\text{key} \leq i\}|
\]
Loop 3

\[
\begin{align*}
A: & \quad \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3
\end{array} \\
B: & \quad \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \\
C: & \quad \begin{array}{cccc}
1 & 0 & 2 & 2
\end{array} \\
C': & \quad \begin{array}{cccc}
1 & 1 & 3 & 5
\end{array}
\end{align*}
\]

for \(i \leftarrow 2 \) to \(k \)

\(\text{do } C[i] \leftarrow C[i] + C[i-1] \quad \Rightarrow \quad C[i] = |\{\text{key} \leq i\}| \)
Loop 4

for $j \leftarrow n \text{ downto } 1$

\begin{align*}
\text{do} \\
C[A[j]] & \leftarrow C[A[j]] - 1
\end{align*}
Loop 4

\[\text{for } j \leftarrow n \text{ downto } 1 \]

\[\text{do } B[C[A[j]]] \leftarrow A[j] \]

\[C[A[j]] \leftarrow C[A[j]] - 1 \]
Loop 4

\[
\text{for } j \leftarrow n \text{ downto } 1 \\
\text{do } B[C[A[j]]] \leftarrow A[j] \\
C[A[j]] \leftarrow C[A[j]] - 1
\]
Loop 4

\[\textbf{for } j \leftarrow n \textbf{ downto } 1 \]
\[\textbf{do } B[C[A[j]]] \leftarrow A[j] \]
\[C[A[j]] \leftarrow C[A[j]] - 1\]
Loop 4

\[
\text{for } j \gets n \text{ downto } 1 \\
\text{do } B[C[A[j]]] \gets A[j] \\
C[A[j]] \gets C[A[j]] - 1
\]
Analysis

\(\Theta(k) \)
\[
\text{for } i \leftarrow 1 \text{ to } k \\
\text{do } C[i] \leftarrow 0
\]

\(\Theta(n) \)
\[
\text{for } j \leftarrow 1 \text{ to } n \\
\text{do } C[A[j]] \leftarrow C[A[j]] + 1
\]

\(\Theta(k) \)
\[
\text{for } i \leftarrow 2 \text{ to } k \\
\text{do } C[i] \leftarrow C[i] + C[i-1]
\]

\(\Theta(n) \)
\[
\text{for } j \leftarrow n \text{ downto } 1 \\
\text{do } B[C[A[j]]] \leftarrow A[j] \\
C[A[j]] \leftarrow C[A[j]] - 1
\]

(\(n + k \))
Counting Sort

- **Total time:** $O(n + k)$
 - Usually, $k = O(n)$
 - Thus counting sort runs in $O(n)$ time
- **But sorting is $\Omega(n \lg n)!$**
 - No contradiction--this is not a comparison sort (in fact, there are no comparisons at all!)
 - Notice that this algorithm is *stable*

- Cool! Why don’t we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large ($2^{32} = 4,294,967,296$)
Stable Sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

\[
\begin{align*}
A & : & 4 & 1 & 3 & 4 & 3 \\
B & : & 1 & 3 & 3 & 4 & 4
\end{align*}
\]

Exercise: What other sorts have this property?
Radix Sort

• Intuitively, you might sort on the most significant digit, then the second msd, etc.

• **Problem:** lots of intermediate piles of cards (read: scratch arrays) to keep track of

• **Key idea:** sort the least significant digit first

 RadixSort(A, d)

 for i=1 to d

 StableSort(A) on digit i

 – Example: Fig 9.3
Radix Sort

• Can we prove it will work?
• Sketch of an inductive argument (induction on the number of passes):
 – Assume lower-order digits \{j: j<i\} are sorted
 – Show that sorting next digit \(i\) leaves array correctly sorted
 - If two digits at position \(i\) are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order
Radix Sort

• *What sort will we use to sort on digits?*

• Counting sort is obvious choice:
 – Sort *n* numbers on digits that range from 1..*k*
 – Time: O(*n + k*)

• Each pass over *n* numbers with *d* digits takes time O(*n+k*), so total time O(*dn+dk*)
 – When *d* is constant and *k*=O(*n*), takes O(*n*) time

• *How many bits in a computer word?*
Radix Sort

- **Problem:** sort 1 million 64-bit numbers
 - Treat as four-digit radix 2^{16} numbers
 - Can sort in just four passes with radix sort!

- **Compares well with typical $O(n \log n)$ comparison sort**
 - Requires approximate $\log n = 20$ operations per number being sorted

- *So why would we ever use anything but radix sort?*

- **In general, radix sort based on counting sort is**
 - Fast, Asymptotically fast (i.e., $O(n)$)
 - Simple to code
 - A good choice

- **To think about:** *Can radix sort be used on floating-point numbers?*
Operation of Radix Sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5
7 2 0
3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5
8 3 9
Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.

- Sort on digit t
Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.

- Sort on digit t
 - Two numbers that differ in digit t are correctly sorted.

\[
\begin{array}{cccc}
7 & 2 & 0 & 3 \\
3 & 2 & 9 & 3 \\
4 & 3 & 6 & 4 \\
8 & 3 & 9 & 4 \\
3 & 5 & 5 & 6 \\
4 & 5 & 7 & 7 \\
6 & 5 & 7 & 8 \\
\end{array}
\]

\[
\begin{array}{cccc}
3 & 2 & 9 & 3 \\
3 & 5 & 5 & 4 \\
4 & 3 & 6 & 4 \\
4 & 5 & 7 & 5 \\
6 & 5 & 7 & 6 \\
7 & 2 & 0 & 7 \\
8 & 3 & 9 & 8 \\
\end{array}
\]
Correctness of Radix Sort

Induction on digit position

• Assume that the numbers are sorted by their low-order $t-1$ digits.

• Sort on digit t
 ▪ Two numbers that differ in digit t are correctly sorted.
 ▪ Two numbers equal in digit t are put in the same order as the input correct order.
Analysis of Radix Sort

- Assume counting sort is the auxiliary stable sort.
- Sort n computer words of b bits each.
- Each word can be viewed as having b/r base-2^r digits.

Example: 32-bit word

```
   8  8  8  8
```

$r = 8, b/r = 4$ passes of counting sort on base-2^8 digits; or $r = 16, b/r = 2$ passes of counting sort on base-2^{16} digits.

How many passes should we make?
Recall: Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to $k - 1$.

If each b-bit word is broken into r-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are $\frac{b}{r}$ passes, we have

$$\Theta\left(\frac{b}{r}n + 2^r\right)$$

Choose r to minimize $T(n, b)$:
- Increasing r means fewer passes, but as $r >> \lg n$, the time grows exponentially.
Choosing \(r \)

Minimize \(T(n, b) \) by differentiating and setting to 0.

Or, just observe that we don’t want \(2^r > n \), and there’s no harm asymptotically in choosing \(r \) as large as possible subject to this constraint.

Choosing \(r = \lg n \) implies \(T(n, b) = \Theta(b n/\lg n) \).

- For numbers in the range from 0 to \(n^d - 1 \), we have \(b = d \lg n \Rightarrow \) radix sort runs in \(\Theta(d n) \) time.
Bucket Sort

- **Assumption: uniform distribution**
 - Input numbers are uniformly distributed in [0,1).
 - Suppose input size is n.

- **Idea:**
 - Divide [0,1) into n equal-sized subintervals (buckets).
 - Distribute n numbers into buckets
 - Expect that each bucket contains few numbers.
 - Sort numbers in each bucket (insertion sort as default).
 - Then go through buckets in order, listing elements,
BUCKET-SORT(A)

1. \(n \leftarrow \text{length}[A] \)
2. for \(i \leftarrow 1 \) to \(n \)
3. \hspace{0.5cm} do insert \(A[i] \) into bucket \(B[\lfloor nA[i] \rfloor] \)
4. for \(i \leftarrow 0 \) to \(n-1 \)
5. \hspace{0.5cm} do sort bucket \(B[i] \) using insertion sort
6. Concatenate bucket \(B[0], B[1], \ldots, B[n-1] \)
Example of BUCKET-SORT

Figure 8.4 The operation of BUCKET-SORT. (a) The input array $A[1..10]$. (b) The array $B[0..9]$ of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open interval $[i/10, (i + 1)/10)$. The sorted output consists of a concatenation in order of the lists $B[0]$, $B[1]$, ..., $B[9]$.
Analysis of BUCKET-SORT(A)

1. \(n \leftarrow \text{length}[A] \) \(\Omega(1) \)
2. for \(i \leftarrow 1 \) to \(n \) \(O(n) \)
3. do insert \(A[i] \) into bucket \(B\lfloor nA[i] \rfloor \) \(\Omega(1) \) (i.e. total \(O(n) \))
4. for \(i \leftarrow 0 \) to \(n-1 \) \(O(n) \)
5. do sort bucket \(B[i] \) with insertion sort \(O(n_i^2) \) \(\sum_{i=0}^{n-1} O(n_i^2) \)
6. Concatenate bucket \(B[0], B[1], \ldots, B[n-1] \) \(O(n) \)

Where \(n_i \) is the size of bucket \(B[i] \).

Thus \(T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \)
\[= \Theta(n) + n \cdot O(2-1/n) = \Theta(n) \]
Analysis of BUCKET-SORT(A)

Time: \(T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \)

\[E[T(n)] = \mathbb{E} \left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \right] \]

\[= \Theta(n) + \sum_{i=0}^{n-1} \mathbb{E}[O(n_i^2)] \quad \text{(linearity of expectation)} \]

\[= \Theta(n) + \sum_{i=0}^{n-1} O(\mathbb{E}[n_i^2]) \]

\[E[n_i^2] = 2 - (1/n) \quad \implies \quad E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(2 - 1/n) \]

\[= \Theta(n) \]