
CSE 5311 Homework 5 Solution

Problem 25.1-3

What does the matrix

L(0) =

0 ∞ ∞ . . . ∞
∞ 0 ∞ . . . ∞
∞ ∞ 0 . . . ∞
...

...
...

. . .
...

∞ ∞ ∞ . . . 0

used in the shortest-paths algorithms correspond to in regular matrix multipli-
cation?

Answer

The matrix L(0) corresponds to the identity matrix

I =

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

of regular matrix multiplication. Substitute 0 (the identity for +) for 1 (the
identity for min), and 1 (the identity for ·) for 0 (the identity for +).

Problem 25.1-5

Show how to express the single-source shortest-paths problem as a product of
ma- trices and a vector. Describe how evaluating this product corresponds to a
Bellman- Ford-like algorithm (see Section 24.1).

Answer

The all-pairs shortest-paths algorithm in Section 25.1 computes

L(n−1)=Wn−1=L(0)

= L(0) ·Wn−1

where ln−1ij = δ(i, j) and L(0) is the identity matrix. That is, the entry in the ith
row and jth column of the matrix “product” is the shortest-path distance from

1

vertex i to vertex j, and row i of the product is the solution to the single-source
shortest-paths problem for vertex i.

Notice that in a matrix “product” C = A ·B,the ith row of C is the ith row
of A “multiplied” by B. Since all we want is the ith row of C, we never need
more than the ith row of A.

Thus the solution to the single-source shortest-paths from vertex i is L
(0)
i ·

Wn−1, where L(0) is the ith row of L(0)|a vector whose ith entry is 0 and whose
other i entries are ∞.

Doing the above “multiplications” starting from the left is essentially the
same as the BELLMAN-FORD algorithm. The vector corresponds to the d
values in BELLMAN-FORD—the shortest-path estimates from the source to
each vertex.

• The vector is initially 0 for the source and 1 for all other vertices, the same
as the values set up for d by INITIALIZE-SINGLE-SOURCE.

• Each “multiplication” of the current vector by W relaxes all edges just as
BELLMAN-FORD does. That is, a distance estimate in the row, say the
distance to v, is updated to a smaller estimate, if any, formed by adding
some w(u, v) to the current estimate of the distance to u.

• The relaxation/multiplication is done n− 1 times.

Problem 25.2-6

How can we use the output of the Floyd-Warshall algorithm to detect the pres-
ence of a negative-weight cycle?

Answer

Here are two ways to detect negative-weight cycles:

1. Check the main-diagonal entries of the result matrix for a negative value.

There is a negative weight cycle if and only if d
(n)
ii < 0 for some vertex i:

• d(n)ii is a path weight from i to itself; so if it is negative, there is a
path from i to itself (i.e., a cycle), with negative weight.

• If there is a negative-weight cycle, consider the one with the fewest
vertices.

– If it has just one vertex, then some wii < 0, so dii starts out
negative, and since d values are never increased, it is also negative
when the algorithm terminates.

– If it has at least two vertices, let k be the highest-numbered
vertex in the cycle, and let i be some other vertex in the cycle.

d
(k−1)
ik and d

(k−1)
ki have correct shortest-path weights, because

they are not based on negative-weight cycles. (Neither d
(k−1)
ik nor

d
(k−1)
ki can include k as an intermediate vertex, and i and k are

on the negative-weight cycle with the fewest vertices.) Since i
k i is a negative-weight cycle, the sum of those two weights

2

is negative, so d
(k)
ii will be set to a negative value. Since d

(k)
ii

values are never increased, it is also negative when the algorithm
terminates.

In fact, it suffices to check whether d
(n−1)
ii < 0 for some vertex i. Here’s

why. A negative-weight cycle containing vertex i either contains vertex n

or it does not. If it does not, then clearly d
(n−1)
ii < 0. If the negative-

weight cycle contains vertex n, then consider d
(n−1)
nn . This value must be

negative, since the cycle, nn starting and ending at vertex n, does not
include vertex n as an intermediate vertex.

2. Alternatively, one could just run the normal FLOYD-WARSHALL algo-
rithm one extra iteration to see if any of the d values change. If there are
negative cycles, then some shortest-path cost will be cheaper. If there are
no such cycles, then no d values will change because the algorithm gives
the correct shortest paths.

Problem 25.3-4

Professor Greenstreet claims that there is a simpler way to reweight edges than
the method used in Johnson’s algorithm. Letting w∗ = min(u,v)∈E{w(u, v)}
just define ŵ = w(u, v) − w∗ for all edges (u, v) ∈ E. What is wrong with the
professor’s method of reweighting?

Answer

It changes shortest paths. Consider the following graph. V = {s, x, y, z} and
there are 4 edges: w(s, x) = 2, w(x, y) = 2, w(s, y) = 5 and w(s, z = −10). So
we’d add 10 to every weight to make ŵ. With w, the shortest path from s to y
is s → x → y, with weight 4. With ŵ, the shortest path from s to y is s → y,
with weight 15. (The path s → x → y has weight 24.) The problem is that
by just adding the same amount to every edge, you penalize paths with more
edges, even if their weights are low.

Problem 25.3-6

Professor Michener claims that there is no need to create a new source vertex
in line 1 of JOHNSON. He claims that instead we can just use G′ = G and let
s be any vertex. Give an example of a weighted, directed graph G for which in-
corporating the professor’s idea into JOHNSON causes incorrect answers. Then
show that if G is strongly connected (every vertex is reachable from every other
vertex), the results returned by JOHNSON with the professor’s modification
are correct.

Answer

In this solution, we assume that ∞ − ∞ is undefined; in particular, it’s not
0. Let G = (V,E), where V = {s, u}, E = {(u, s)} and w(u, s) = 0. There
is only one edge, and it enters s. When we run Bellman-Ford from s, we get

3

h(s) = δ(s, s) = 0 and h(u) = δ(s, u) =∞. When we reweight, we get ŵ(u, s) =

0 +∞− 0 =∞. We compute δ̂ =∞, and so we compute dus =∞+ 0−∞ 6= 0,
we get an incorrect answer.

If the graph G is strongly connected, then we get h(v) = δ(s, v) <∞ for all
vertices v ∈ V . Thus, the triangle inequality says that h(v) ≤ h(u) + w(u, v)
for all edges (u, v) ∈ E, and so ŵ(u, v) = w(u, v) + h(u)− h(v) ≥ 0. Moreover,
all edge weights ŵ(u, v) used in Lemma 25.1 are finite, and so the lemma holds.
Therefore, the conditions we need in order to use Johnson’s algorithm hold: that
reweighting does not change shortest paths, and that all edge weights ŵ(u, v)
are nonnegative. Again relying on G being strongly connected, we get that
δ̂(u, v) <∞ for all edges (u, v) ∈ E, which means that duv = δ̂(u, v)+h(v)−h(u)
is finite and correct.

Problem 26.1-6

Professor Adam has two children who, unfortunately, dislike each other. The
prob- lem is so severe that not only do they refuse to walk to school together,
but in fact each one refuses to walk on any block that the other child has
stepped on that day. The children have no problem with their paths crossing at
a corner. Fortunately both the professor’s house and the school are on corners,
but beyond that he is not sure if it is going to be possible to send both of his
children to the same school. The professor has a map of his town. Show how to
formulate the problem of determining whether both his children can go to the
same school as a maximum-flow problem.

Answer

Create a vertex for each corner, and if there is a street between corners u and
v, create directed edges (u, v) and v, u. Set the capacity of each edge to 1. Let
the source be corner on which the professor’s house sits, and let the sink be the
corner on which the school is located. We wish to find a flow of value 2 that
also has the property that f(u, v) is an integer for all vertices u and v. Such a
flow represents two edge-disjoint paths from the house to the school.

Problem 26.2-1

Prove that the summations in equation (26.6) equal the summations in equation
(26.7).

Answer

Lemma

1. If v /∈ V1, then f(s, v) = 0.

2. If v /∈ V2, then f(v, s) = 0.

3. If v /∈ V1 ∪ V2, then f ′(s, v) = 0.

4. If v /∈ V1 ∪ V2, then f ′(v, s) = 0.

4

Proof

1. Let v /∈ V1 be some vertex. From the definition of V1, there is no edge
from s to v. Thus f(s, v) = 0.

2. Let v /∈ V2 be some vertex. From the definition of V2, there is no edge
from v to s. Thus f(v, s) = 0.

3. Let v /∈ V1 ∪ V2 be some vertex. From the definition of V1 and V2, neither
(s, v) nor (v, s) exists. Therefore, the third condition of the definition
of residual capacity (equation (26.2)) applies, and cf (s, v) = 0. Thus,
f ′(s, v) = 0.

4. Let v /∈ V1∪V2 be some vertex. By equation (26.2), we have that cf (v, s) =
0 and thus f ′(v, s) = 0.

We conclude that the summations in equation (26.6) equal the summations
in equa- tion (26.7).

Problem 26.2-8

Suppose that we redefine the residual network to disallow edges into s. Argue
that the procedure FORD-FULKERSON still correctly computes a maximum
flow.

Answer

Let Gf be the residual network just before an iteration of the while loop of
FORD-FULKERSON, and let Es be the set of residual edges of Gf into s.
We’ll show that the augmenting path p chosen by FORD-FULKERSON does
not include an edge in Es. Thus, even if we redefine Gf to disallow edges in Es,
the path p still remains an augmenting path in the redefined network. Since
p remains unchanged, an iteration of the while loop of FORD-FULKERSON
updates the flow in the same way as before the redefinition. Furthermore, by
disallowing some edges, we do not introduce any new augmenting paths. Thus,
FORD-FULKERSON still correctly computes a maximum flow.

Now, we prove that FORD-FULKERSON never chooses an augmenting path
p that includes an edge (v, s) ∈ Es. Why? The path p always starts from s, and
if p included an edge (v, s), the vertex s would be repeated twice in the path.
Thus, p would no longer be a simple path. Since FORD-FULKERSON chooses
only simple paths, p cannot include (v, s).

Problem 26.2-9

Suppose that both f and f ′ are flows in a network G and we compute flow
f ↑ f ′. Does the augmented flow satisfy the flow conservation property? Does
it satisfy the capacity constraint?

5

Answer

The augmented flow f ↑ f ′ satisfies the flow conservation property but not the
capacity constraint property.

First, we prove that f ↑ f ′ satisfies the flow conservation property. We note
that if edge (u, v) ∈ E, then (v, u) /∈ E and f(v, u) = 0. Thus, we can rewrite
the definition of flow augmentation (equation (26.4)), when applied to two flows,
as

f ↑ f ′(u, v) =

{
f(u, v) + f ′(u, v), if(u, v) ∈ E
0, otherwise.

The definition implies that the new flow on each edge is simply the sum of the
two flows on that edge. We now prove that in f ↑ f ′, the net incoming flow for
each vertex equals the net outgoing flow. Let u /∈ {s, t} be any vertex of G. We
have∑

v∈V
f ↑ f ′(v, u)

=
∑
v∈V

f(v, u) + f ′(v, u)

=
∑
v∈V

f(v, u) +
∑
v∈V

f ′(v, u)

=
∑
v∈V

f(u, v) +
∑
v∈V

f ′(u, v) (because f , f ′ obey flow conservation)

=
∑
v∈V

(f(u, v) + f ′(u, v))

=
∑
v∈V

f ↑ f ′(u, v)

We conclude that f ↑ f ′ satisfies flow conservation.
We now show that f ↑ f ′ need not satisfy the capacity constraint by giving a

simple counterexample. Let the flow network G have just a source and a target
vertex, with a single edge (s, t) having c(s, t) = 1. Define the flows f and f ′

to have f(s, t) = f ′(s, t) = 1. Then, we have (f ↑ f ′)(s, t) = 2 > c(s, t). We
conclude that f ↑ f ′ need not satisfy the capacity constraint.

Problem 26.3-3

Prove that the generic push-relabel algorithm spends a total of only O(V E)
time in performing all the O(V 2) relabel operations.

Answer

By definition, an augmenting path is a simple path s t in the residual network
G′f . Since G has no edges between vertices in L and no edges between vertices
in R, neither does the flow network G′ and hence neither does G′f . Also, the
only edges involving s or t connect s to L and R to t. Note that although edges
in G′ can go only from L to R, edges in G′f can also go from R to L.

6

Thus any augmenting path must go

s→ L→ R→ · · · → L→ R→ t.

crossing back and forth between L and R at most as many times as it can do
so without using a vertex twice. It contains s, t, and equal numbers of distinct
vertices from L and R—at most 2 + 2 ·min(|L|, |R|) vertices in all. The length
of an augmenting path (i.e., its number of edges) is thus bounded above by
2 ·min(|L, |R|) + 1.

7

