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Administration

e Course CSE6392

— What: Advanced Topics in Scalable Learning

— When: Friday 1:00 ~ 3:50pm

— Where: NH 109

— Who: Junzhou Huang (Office ERB 650) jzhuang(@uta.edu

— Office Hour: FRIDAY 3:50 ~ 6:00pm and/or appointments
— Webpage:  http://ranger.uta.edu/~huang/teaching/CSE6392.htm
(Please check this page regularly)

* Lecturer
— PhD 1n CS from Rutgers, the State University of New Jersey

— Research areas: machine learning , computer vision, medical image analysis
and bioinformatics

« GTA

— Qifeng Zhou (Office ERB 105B), qxz8706(@mavs.uta.edu

— Office hours: Friday 10:00am ~ 12:00pm and/or appointments
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Assignment

* Paper Selection
— Each group has two members at most.

— Each group will select at least one paper from the following paper list and
then be scheduled to present their selected papers in our class.

— You can choose any papers from the paper lists
— Please talk to the lecturer if you prefer to select a paper out of the list

— 'The selected paper has to be confirmed by the second week (before the
second class)

— GTA will set up the paper selection sheet
— Different groups will present different papers
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Grading

e Distribution

— 30% Paper Presentation

— 30% Slide Preparation

— 30% Questions & Answering
— 10% Class Participation

— 100%

e Attention
— No midterm or final exam for this course.

— Please read the selected paper and prepare the final presentation as eatly as
possible

— 'This 1s research seminar course. Asking questions and discussion are highly
encouraged

— When missing a class due to unavoidable circumstances, PLEASE notify the
instructor in advance with any notes/evidences
UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Graph 1s Everywhere
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1= ()l
sum = (int)0;
goto cond;

cond:

if (i < n) goto loop; else goto after_loop;

loop:

sum +=1i* iy after_loop:
i+= (int)1; return sum;
goto cond;
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Graph 1s Important

* Numerous real-world problems can be summarized as a set of tasks on graphs.

/ Social Recommendation —|

| == social Relations

N

/ ’ Survival Analysis \

/ Temporal Action Localization

Action Instance
—

&eng etal. 2019
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The Power of Deep Learning

30
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Deep learning

Error %
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Deep Learning + Graphs = ?

Deep Learning Model
4 I
\ J
! ¢
D ® q
® Joonz @
0o s ®

UT Arlington CSE 6392 Advanced Topics in Scalable Learning



Deep Graph Learning

( ( Applications \
Neural Network Graph/ Node
Representation L 3
- Ny ; \
P e
® Make neural network model that
weacer @) can deal with graph data.

0o a o \ )
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The Big Challenges

Irregular
,/'_ o
i \ 4
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* Grid-like and sequence-like N e

HyperGraph Hierarchical Graph

Structure.

* Spital/sequential relations between Complex variants

pixels / units.
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The Research Questions

\
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How to train the deep graph neural networks?

o

GNN ‘

How to extend the graph neural networks to a
large-scale graph?

Node

Big Graph Representatio

n

Perturbed

@ Predicted .

as: as:
How to enhance the robustness of graph neural
network ?

@ Predicted .

Self-supervision

GNN(X, A)

|
v

Graph Neural Network

LOSS

How to conduce the self/un-supervised
learning on graphs?

UT Arlington
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Overview

Foundations

Advances

Preliminary

The Brief History of Graph
Neural Networks

Applications

* Training Deep GNNs
* Scalability of GNN5s
* Robustness of GNNs

* Self/Un-Supervised Learning
of GNNs

* Other Advanced Topics

UT Arlington

Social Networks

Medical Imaging

CSE 6392 Advanced Topics in Scalable Learning
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Preliminaries and Brief History of
Graph Neural Networks

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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What is the Graph Neural Network?

® KNOWLEDGE .
GRAPH
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Graph/Node

Graph Neural Network :
Representation

s Ny
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Neural network model that can deal with graph data.
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Graph Neural Network is not a New Thing

Sperduti, Alessandro and Starita, Antonina. 1997

714 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8 NO. 3, MAY 1997

Supervised Neural Networks for the
Classification of Structures

Alessandro Sperduti and Antonina Starita, Member, IEEE

Abstract—Until now neural networks have been used for clas-
sifying unstructured patterns and sequences. However, standard Conceplual Graph
neural networks and statistical methods are usually believed
to be inadequate when dealing with complex structures be- [ Linear
cause of their feature-based approach. In fact, feature-based Representation
approaches usually fail to give satisfactory solutions because of
the sensitivity of the approach to the a priori selection of the

features, and the incapacity to represent any specific information -
on the relationships among the components of the structures. > (AGENT) -> [ACTOR: physician]

|JHUMAN_PROCESS: statement]

Sperduti, Alessandro, and Antonina Starita. "Supervised neural networks for the classification of structures."
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A Rapidly Growing Area

ICLR 2020 submissions keyword statistics

deep learning
an

optimization
neural network
generative models
unsupervised learning
reinforcement learnin
convolutional neural networ!
recurrent neural network
machine learning
multitask learnin
neural architecture searc
representation learning
adversarial robustness
_ robustness
selfsupervised leamlrig
nip
transformer

DCI L
graph neural network

-3 =2 -1 0 1
A between 2020 and 2019 in %

https://github.com/shaohua0116/ICLR2020-OpenReviewData
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Preliminaries of Graph Learning

A topological graph
Adjacent matrix A: A;j = 1, existing edge between i and j
71 U3 Vg A;j = 0, not exist edge between i and j
Degree matrix D = diag(degree(v,), ..., degree(v;,))
Us
vz v Laplacian matrix L=D — A
4
G={¢&}
which has n nodes Degree matrix Adjacency matrix Laplacian matrix
and m edges
100000 010000 1 -1 0 0 0 O
V ={vq, ..., v} 030000 101010 -1 3 -1 0-10
€ =1{ey, .., ep} 004000 _ 010111 — 0 -1 4 -1-1-1
000100 001000 0O 0 -1 1 0 O
Node features: 000030 011001 0 -1-10 3 -1
X € pnxd 000002 001010 0 0 -1 0-12
UT Arlington CSE 6392 Advanced Topics in Scalable Learning 18



The Model of Graph Neural Networks

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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The Model of Graph Neural Networks

UT Arlington CSE 6392 Advanced Topics in Scalable Learning

* Understanding GNN as RNN J
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GNN 1.0: Understanding GNN as RNN

Standard Neuron Recurrent Neuron Generalized Recursive Neuron

Copy Made According
to Graph Topology

[ CPH 1]
Single Pattern Sequence of Patterns
Tree of Patterns
Unstructured Pattern Sequence Complex Structure (Tree, Graph)
[
Structured Pattern

* The RNN on sequences can be generalized to trees and DAGs.

Sperduti, Alessandro, and Antonina Starita. 1997

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 21



GNN 1.0: Understanding GNN as RNN

XH

vectorial
representation

Neural Representation for X
q H
c

input graph neural network

encoding

Only generate graph
representation

° Ve

Graph X

Encoding Network

Before 2000

Sperduti, Alessandro, and Antonina
Starita. (TNN 97) propose the
generalized recursive neuron for the

This generalized recursive neuron can
only generate the graph
representations.

From 2000 to 2010

Gori et.al IJCNN 05) and Scarselli
et.al (TNN 08) add the output gate
for each node to generate the node
representation in graphs. This model
is called GraphRNN.

@ ()

5o T,
Init }—2) 5 Init }.(2) ey
xm (1,1) (3)

()
\H=) X

H x®

Figure 2: Architecture of GGS-NN models.

After 2010

I

g : 1) i b e
graph classification problem on ) 21 f » by e
Trees/DAGs. OO s'\ flom 50
Tig s \H/ Ly - by Lo f gy o
0 43\

8w~ Iy

0y(1)

The output gate

030

,' ,"//‘
*4(0) \i« Lgg o x

.

Sperduti, Alessandro, and Antonina Starita. 1997
Gori, Marco, Gabriele Monfardini, and Franco Scarselli. 2005
Scarselli, Franco, et al. 2008

Li, Yujia, et.al. 2015, Tai, Kai Sheng et.al, ,2015

UT Arlington

Li, Yujia, et al. (ICLR 16) add gated
recurrent units and modern
optimization techniques to improve
the performance of Scarselli et.al
(TNN 09).

Tai, Kai Sheng et.al. (ACL 2015)
extend LSTM to a tree-structured
network topologies.

CSE 6392 Advanced Topics in Scalable Learning
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The Brief History of Graph Neural
Networks

* Understanding GNN as RNN

* Understanding GNN as Convolution

UT Arlington CSE 6392 Advanced Topics in Scalable Learning

23



GNN 2.0: Understanding GNN as

Convolution

Graph Signal Processing

| -

* How to perform the convolutions on graphs?
* Irregular structures.
* Weighted edges.

* No orientation or ordering (in general).

Convolutional Neural Networks

Jonotio:
N OB CET:
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GNN 2.0: Understanding GNN as
Convolution

[1] Bruna, Joan, et al. 2014

[2] Defferrard, Michaél, et.al. 2016
[3] Niepert, Mathias, et.al. 2016

[4] Kipf, Thomas N., and Max
Welling. 2017

Deep Locallv Connected Networks(ICLR 2014) [1]

ChebNet (NeurIPS 2010) [2]

Input graph signals
e.g. bags of words

Feature extraction
Convolutional layers

Classification
Fully connected layers

Output signals
e.g. labels

Graph signal filtering Graph coarsening
1. Convolution 3. Sub-sampling
4. Pooling

0= <A< Aw,

2. Non-linear activation

* Build the connection between graph signal processing and
graph convolution.

* Use Chebyshev polynomial to fast approximate the graph
filtering in the spectral domain.

Graph Convolutional Network (ICLR 2017)

ﬂ @- | -®

& B
& @%@

input layer output layer

>
l hidden

layers

HOHD = (D ZAD ZHOW®)

* Approximate 1-order Chebyshev polynomial the in spatial domain.

* Layer-wise convolution to extend receptive field.
¢ The practical convolutional model for graphs.

Q

Ty

T3

select

vl 2

" nei ighborhood

PATCHY-SAN (ICML 20106)

NS

normalize

»

subgraph

* Discuss two constructions on both spatial and spectral domain.
* Analog the convolution operation based on the Laplacian spectrum.
* Additional eigen decomposition is needed.

UT Arlington

¢ Neighborhood sampling to construct receptive field.

CSE 6392 Advanced Topics in Scalable Learning
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Graph Signal Processing

Graph signal:

h: V - R" J

“Frequency” or “Smoothness” of the signal h

hTLh = EAU(hl - hj)z

i<j

Low frequency graph signal High frequency graph signal

Eigen decomposition of graph Laplacian
L=UAUT

: | ] [ . ]
0 AN—1 — uny-1 —

eigenvalues sorted non-decreasingly:
Ozlo S/hS "'Sln—l

The frequency of an eigenvector of L is its
corresponding eigenvalue:

T ., T _
ui Lui = ui /L-ui = Ai

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 26



Graph Convolution: Spectral domain =
Spatial domain

Graph Convolution: input signal x, filter g, graph Laplacian L Spectral

g - 0

y=x*g= Ul : Lo
0 - gn)

Ul x=UgMDUT x =:g(L) x

Parameterization: replace §(A) with Jg = diag(0)

ChebNet (NeurIPS 2016): parameterize with Chebshev polynomials:

y = go(L)x = =g Ok Tie(L)x L=—"_1-

GCN (ICLR 2017): simplified ChebNet K =1, suppose g =2, 0 =0y = —0;

1 1
Jo(L)x = (I + D 2AD 2) x6
Spatial

N =

~ 1~~ ~
Apply a renormalization trick: go(L)x = D 2AD 2x8 A=A+ I(add self-loop)

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 27



The Brief History of Graph Neural
Networks

* Understanding GNN as RNN

* Understanding GNN as Convolution

e Variants of Convolutions
e GNN with Attention
* GNN with Graph Pooling

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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GNN 3.0: Variants of Convolutions

goxx =UgeU'x

1 1
> HOY = oAb HOWO)

Lanczos Network [3]

Graph Wavelet Neural Network [1]

Hyperbolic GCN |[2]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

UT Arlington CSE 6392 Advanced Topics in Scalable Learning




GNN 3.0: Variants of Convolutions

gdo *x = UYge

UT x

1 1
> HOY = oAb HOWO)

Lanczos Network [3]

Graph Wavelet Neural Network [1]

Hyperbolic GCN |[2]

Long Range Spectral Filtering
eg,1= (20,50, ..}

Long Range Spectral Filtering.
eg,|=(20,50,,..}

3

7 b /

L= Z,r,(r;( R }
=

T
L Nk i T
L= il ety J

(= a(tixw) vieqm)

(1= ottwy wieqm )

Short Range Spectral Filtering
eg.S={12.}

2 . [¥=oupuon
Short Range Spectral Filtering
eg,5={1,2,..)

[ Hi=o0ruam) viensn |

[ m=otiaxwd viensn )

Layer1

~_ 1 1

1 ~ o~
[ —D 24D =.

Convolution.

Employ Lanczos algorithm to obtain the low-
rank approximation of the graph Laplacian

Easy to construct multi-scale Graph

Layer 2

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renijie, et al. 2019

UT Arlington
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GNN 3.0: Variants of Convolutions

go * X =9UTX
.

1 1
HWD = (D 2ZAD 2HOW®)

Lanczos Network [3]

Graph Wavelet Neural Network [1]

Hyperbolic GCN |[2]

Long Range Spectral Filtering
eg, [ ={20,50,,..}

G
e,
L= fto, ..wmzj
&

(7= o(@xw) vieqn )

Long Range Spectral Filtering
eg., [ =(20,50,,..}

B
Eo= Y s, o e J
Z i

(H=oltaxw) wiequ]

> > - (o)

Short Range Spectral Filtering Short Range Spectral Filtering
eg.5={12.} eg.5={1,2.})
[ m=otsawy wepsy | [ H=owiuw) vieps) |
Layer 1 Layer2

Employ Lanczos algorithm to obtain the low-

rank approximation of the graph Laplacian
~_1__ 1

[ — D 24D =,

Easy to construct multi-scale Graph

Convolution.

Wavelet Basis, scaling = 3

Wavelet Basis, scaling = 5

(a) (b)

Figure 1: Wavelets on an example graph at (a) small scale and (b) large scale.

p
(1+1) _ M., -1 O
Hyjy =0 ’l’sti.j’l’slH[:,iJ '
i=1

] =1, ..,q

Use wavelet transform to replace
Fourier transform in the original GCN.
More localized convolution and flexible
neighborhood.

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renijie, et al.

2019

UT Arlington
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GNN 3.0: Variants of Convolutions

1 1
g4 x = UgsUTx |:> HYD = (B 24D ZHOW®)

I

Lanczos Network [3]

Graph Wavelet Neural Network [1]

Hyperbolic GCN [2]

Long Range Spectral Filtering
e.g, 1 ={20,50,,..}

Long Range Spectral Filtering
eg., [ =(20,50,,..}

G
L= fto, ..r;’)u.vEJ
&

3
L= fithrt ....,r“")v,vIJ
t ’; Nk Tk 3

[ H,=o(Lxw,) vie[) ]

(H=oltaxw) wiequ]

Short Range Spectral Filtering

=N

Short Range Spectral
0g.5=(12.)

eg,S=1{12.}
[ m=otsawy wepsy |

(-

swixw) vies)) |

Layer 1

Layer2

> .

* Employ Lanczos algorithm to obtain the low-
rank approximation of the graph Laplacian

1

~ 1 ~ o~
[ —D 24D =.

* Easy to construct multi-scale Graph

Convolution.

Wavelet Basis, scaling = 3

Wavelet Basis, scaling = 5

(@ (b)

Figure 1: Wavelets on an example graph at (a) small scale and (b) large scale.

=g (lpsi[y(ww—l H(D>

) i=1
j=1,..,q

(1+1) _
Hy ;)

Use wavelet transform to replace
Fourier transform in the original GCN.
More localized convolution and flexible
neighborhood.

3.0

2i5

2.0

15

10

05

0.0

Construct the GCN in hyperbolic space.

*  Smaller distortion.
* Suitable for scale-free and hierarchical structure.

Hyperbolic feature transform.
hl(l+1),H _ (W(z+1)®1q hgl)’H) @K1 pU+D)
Attention-based hyperbolic aggregation.

(l1+1),H _ D),
¥, = AGG*1 (R,

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

UT Arlington
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GNN 3.0: GNN with Attention

+1 l
B = 0 enwy S W) B =

Fixed during training

/'

Graph Attention Network [1]

Gated Attention Networks [2]

Spectral Graph Attention Network [3]

Replace the fixed aggregation weight a;; to

the learnable self-attention.

R = o z a;; WO RY)
JEN(v))
Yrenwy @ (Whi|[Why])

a;j = exp(

[1] Velickovi¢, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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GNN 3.0: GNN with Attention

The original form:

h(l+1)

Fixed during training

l
(Z]eN(v ) S LJj W(Dh( ))

B | =

/'

™

Graph Attention Network [1]

Gated Attention Networks [2]

Spectral Graph Attention Network [3]

concat/avg
hy

Replace the fixed aggregation weight a;; to
the learnable self-attention.

h§z+1) — o z
JEN(vy)

o (a"[Why||Why]))

Yrenwy @ (Whi|[Why])

l

a;j = exp(

3 attention

heads
p e
Z\ zx ﬂ\] 7; | /

O W2
Softmax

Q)W 6 @ learned

= m@ TQ o
T 2 X102y X2y,
X1 Xz —>ﬁ j

Add a learnable gate glk to model the

importance for each head.

K
[+1
it =0(Zk=195‘ z

JEN(v;)

OO
W hj )

K is the number of heads.

[1] VeliCkovic, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020

UT Arlington
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GNN 3.0: GNN with Attention

The original form:

h(l+1)

Fixed during training

l
(Z]eN(v ) S LJj W(Dh( ))

™

/'

|
SR

Graph Attention Network [1]

Gated Attention Networks [2]

Spectral Graph Attention Network [3]

concat/avg
hy

Replace the fixed aggregation weight a;; to
the learnable self-attention.

R+ o( z

l

aij W(l)h](l))
JEN(v;)

Yrenwy @ (Whi|[Why])

a;j = exp(

3 attention

990

o W,
Softmax

Q)W 6 @ learned

(Z) gates
Zy,,Zy, —»
X1 Xz ﬂﬁ j

Add a learnable gate glk to model the

importance for each head.

A 0)
:U(Zk—1gi z aijW(l)hf)

JEN(v;)

X102y X2y,

(1+1)
hi

K is the number of heads.

Ba@;)?X \ ]
LELBLAL @ | ]
[ |
[ |
|

Apply the attention on the high / low-
trequency components in spectral domain.

H(l+1) — O'(AGG(BLaLBLH(l)!BHaHBHH(l))W(D)

B = [Bj, By] is the spectral graph wavelet bases.

[1] VeliCkovic, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020

UT Arlington
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Graph Attention Network in Detail

l+1 l
Single head hE ' =02 jen(wy) Xij W h} )
attention
a;;j = Softmax(e;;)
el-j = LeakyReLU(aT (Whl ||Wh])
Multi-head by
attention Each head has its own i A

parameters o &

d thei tput b d
Enrich the model capacity an cit outputs cah be merge

and stabilize the learning 1IN two ways:

process
U Concatenation

d Average Attention weights learnt for the Cora dataset

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Transformers as GNNs with Multi-head
Attention

Z+1
hi

T

|

LayerNomn |
One layer
f th lti-h d FF-MLP
oI the multi-hea
) 4 ‘
QKYV attention LayerNomm |
Concaty
*
XK ]
Heads Sum;
.
A
Scaled Dot
Product
Qk.f Kke v ke
1 t 1
he {K Vj € S}

Chaitanya Joshi. Transformers are graph neural networks, 2020.
https:// graphdeeplearning.github.io/post/transformers-are-gnns/

UT Arlington

Transformer takes input sequence
as a complete graph.

Translation?

Sentiment?
' ‘ @> Next word?
“@ Part-of-speech tags?

U Transformers can be viewed as GNNs with multi-head attention as
the neighborhood aggregation function

O Transformers for NLP tasks treat the entire sequence as
O the neighborhood

CSE 6392 Advanced Topics in Scalable Learning 37



GNN 3.0: GNN with Graph Pooling

o Grap.h -
Graph Pooling/Coarsening: Convert the node representation to graph representation. I Pooling !
* The most straightforward way: Max/Mean Pooling % I

* SAGE: Attentive Pooling I OI

Self-Attentive Graph Embedding (SAGE)

e S € R™"
—| | GCN || GeN | |— HeRW}< H(H)
eeR™Y
Two Step Smoothing
Embedding
- He R
| Attn = softmax(Ws,tanh(Ws, H")) T/

Matrix
Introduce the self-attention mechanism to model the node

importance during the pooling.

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 38



GNN 3.0: GNN with Graph Pooling

Hierarchical Pooling = gra‘f.h [
I ooling
Graph Coarsening by Graph Cut [1] %

Go —» G —» G 12 I OI
(5) [o[1[2[3]a]5]6]7]8[ofoL] = € R
718 ® \\ //

@B @‘g @ 0‘0 o[1]2][3]4]5 y €RS
@20 | ™ 9 NV
2o NI

Graph Pooling with pre-defined subgraph by graph cut

algorithm.
Differentiable Graph Pooling (DIFFPOOL)|2] EigenPooling [3]

convz COnv,

network at level 1 atlevel 2 atlevel 3 classification

convg convg

The assignment matrix
S = softmax(GNN, 001 (A®, X D))

Learn the cluster assighment matrix to aggregate the node Incorporate the node features and local structures to obtain a better

representations in a hierarchical way. assignment matrix.

[1] Defferrard, Michaél, et.al. 2016 [2] Ying, Zhitao, et al. 2018 [3] Ma, Yao, et al. 2019

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 39



GNN Implementation: Message Passing
Framework

The message generation function.
Input: the state of current node, the state of the

¢ MGSSEIgC Passmg Framework: neighbor node and the edge features.
Gather and transform the messages from neighbors:

The neighborhood set of node. E.g.

mgl“) £ AGG|( {M“+U(h§”,h}”,eu)| j € N(w)}) 1-hop neighbors.

*  Step 2: Update the state of the target node. \ The aggregation function.

E.g. SUM/MEAN/LSTM

l l
h( +1) _ [+1 (hfl),mf +1))

l

\ The state update function.

Gilmer, Justin, et al. "Neural Message Passing for Quantum Chemistry." ICML. 2017.
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Examples of Message Passing Realizations

Most of current GNNs can be formulated as a message passing process.

GCN (ICLR 2017)

hidden
layers

input layer output layer

Graph Attention Network (ICLR 201 8)

Gated GNNs (ICLR 2016)

G{@
éiee/;

®

Deep Locally Connected Networks
(ICLR 2014)

Interaction Networks (NeutIPS 2016)

Relational reasoning Object reasoning

'S AR —D 0 DB

I:J..,.1 -4 A e = om0
: b = [ononnl| =\ [e S L
= Ty E> s & flwl@

= o 25: 0]

HEE|

3=

Deep Tensor Neural Networks (Nature

Comrnunicatiom 2017)

CsHs é -
,_‘_) CeO3He
( <
7R3 S~
CeHsCH3 - 4!":"

Wang, Minjie, et al. "Deep graph library: A graph-centric, highly-performant package for graph neural networks." arXiv preprint arXiv:1909.01315 (2019).

Fey, Matthias and Lenssen, Jan Eric Fast Graph Representation Learning with PyTorch Geometric. (2019).,

UT Arlington

cite arxiv:1903.02428.

CSE 6392 Advanced Topics in Scalable Learning

41



Summary

(@change advanced topics

Recursive (" Gated Graph Ad :
Recurrent ’ ) | ] vanced topics
Neuron on GraphRNN Sequence Neural
Neural Network Trees/DAGS P Netiorics
|

M -
:Passmm Training Deep GNNs

Network

h

Spatial Graph

; Attention
Domain Networks

Scalability of GNNs
)

Graph Pooling
. , Robustness of GNNs

E (" Graph ) Relational
GPraph Signal Convolutional —{ GCN ]
rocessing (Networks(GCN), (-GCN) Self/Un-Supervised

Spectral (— Spectral ] 4 Y Learning of GNNs
. Graph »Hyperbolic GCN
Domain _Convolution J | L J

)
Graph Wavelet
Neural Network

R —

A
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Training Deep GNN's

Why do we need deep GNNs?

UT Arlington

CSE 6392 Advanced Topics in Scalable Learning
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The Power of Deep DNNs5s

Unprecedented success of deep DNNs in computer vision
Deep DNNSs enable larger receptive fields
Deep DNNSs enable more expressivity

28.2
A
/
/
/
/
/
- ‘ 19 layers ‘ ‘ 22 Iayers r
ayers ayers
4 y 3.57
2010 2011 2012 2013 2014 2014 2015
AlexNet VGG  GoogleNet ResNet

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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The Power of Deep GNN5s

Do GNNs need deep structures to enable larger receptive fields, too?

What limits the expressive power of GNNs?
The depth d
The width w

GNNs significantly lose their power when capacity, dw, is restricted

Shortest Path Cycle Detection Subgraph

e ®
o
: &
x M) [8)" > 1
0 6 <Xy
S
1 s = n
\ .
2 o LA
3 £ 5 4 o
[ s He* | A
4.4 7 #7 P
= ; .‘
- £, 8 (g ._____i__f——-__‘
6 Y £ ey 3
- - \ pLd
/ - 5 __pgF—
o SR
8 —\

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." /nternational Conference on Learning Representations. 2020.
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The Power of Deep GNN5s

Do GNNs need deep structures to enable larger receptive fields, too?

What limits the expressive power of GNNs?

The depth d
The width w

GNNs significantly lose their power when capacity, dw, is restricted

Shortest Path Cycle Detection Subgraph

0N A b WN = O x
¥ e—te_
= _

Vi
»

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." /nternational Conference on Learning Representations. 2020.
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The Power of Deep GNN5s

The boundary of capacity for different problems

problem bound problem bound

cycle detection (odd)  dw = Q(n/logn) shortest path dv/w = Q(y/n/logn)

cycle detection (even) dw = Q(y/n/logn) max. indep. set dw = (n2 /log® n) for w = O(1)
subgraph verification®*  dy/w = Q(y/n/logn) min. vertex cover dw = Q(n?/log® n) for w = O(1)
min. spanning tree dyw = Q(y/n/logn) perfect coloring  dw = Q(n?/log® n) for w = O(1)
min. cut dy/w = Q(y/n/logn) girth 2-approx. dw = Q(y/n/logn)

diam. computation dw = Q(n/logn) diam. 3/2-approx. dw = Q(y/n/logn)

(Loukas, ICLR’20)

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." /nternational Conference on Learning Representations. 2020.

UT Arlington
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Training Deep GNN's

Can GNNSs simply go deep?
GCN: Basic GCN
GraphSAGE: GCN with improved aggregation
ResGCN: leverage idea from ResNet

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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GNNs are Shallow

But can they really go deep? Not all

Accuracy
100

60
40
GraphSAGE 77.3 72.9
20
0 o ResGCN 78.9 78.2
4 8 16 32 64
—e—GCN —e—GraphSAGE —e—ResGCN ,
(Rong et al, ICLLR’20)

Rong, Yu, et al. "“Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning

16.9

21.2

GCN 76.7 65.2 44.6
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Training deep GNNs

What impedes GNNs to go deep?
Opverfitting (Common)
Training dynamics (Common)

Over-smoothing (Graph Specific)
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Training deep GNNs

What impedes GNNs to go deep?

Overfitting (Common)

UT Arlington

CSE 6392 Advanced Topics in Scalable Learning
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Overfitting

GNNs suffer from Overfitting

Training Loss
) -—- GCN-4
1.75 1‘ m—
i
n
12518
11
)
1\
v\
0.751
\ \
\\ \\“
0.25 e R = oL s s
0 50 100 150 200 250 300 350 400
Epochs

UT Arlington
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100 150 200 250
(Rong et al, ICLR’20)
Too many parameters are established but only few of data points are provided

0(dh?)

Rong, Yu, et al. "Dropedge: Towards deep graph convolutional networks on node classification." ICLR 2020,

Validation Loss
\ - —- GCN-4
17514 T
:
I
1
12511
'\
i\
A
Nk
0751 % NN
A - e e
\__\’"'::‘__‘-
0.25
0 50 300 350 400
Epochs
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Training deep GNNs

What impedes GNNs to go deep?

Training dynamics (Common)

UT Arlington

CSE 6392 Advanced Topics in Scalable Learning
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Training dynamics

[-layers gradient

dH,,, dH, dH, ~ dHy

(Sl/lm+1) (Sl 1/1m+1)

dH, dH,_, dW, T dw,

The gradients vanish as the model go deep because S1_jAm+1 < 1

% % % D aee Y

RGB as Features Layer 1 Layer 100 Layer 200 Layer 500
RGB=[0,0,0]
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Training deep GNNs

What impedes GNNs to go deep?

Over-smoothing (Graph Specific)

UT Arlington

CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing

GNNis suffers from over-smoothing

Over-smoothing: node representations become less distinguishable with each other

when the depth increases
(Li et al. AAAT’18; Chen et al. AAAT’20; Oono et al. ICLR’20; Rong et al. ICLR’20; Huang et al. arXiv’20)

Dy=1.7285
0.20
@ Component-1
oo !
0.15 o el 020 Dy=1.7285, d=0
. @ Component-1
0.10 1 .. 0.15 .z" s Component-2 Bt Dny=0.0115, d=.99C 1
omponent-
0.05 4 ® ~' 0.10 3’.' 0.15 s Component-2
L)
0. 0° @ 0.10
< 0.05 ©
0.00 o0 ® ) & 005
-0.051 ®"° 4 0.00
~0.05 ® S
-0.10 - v : — -0.10 . . — -0.10 -
-0.1 0.0 0.1 0.2 0.3 0.4 i Y) 01 0.2 03 0.4 0.0 0.1 02 0.3 0.4
X1 X1 X1
. ..
(Huang et al. arXiv’20) Initial 99 layers

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing

Over-smoothing also impedes training.

Training Loss Validation Loss
i T 3
1754, ===_GCN-8 L75 {1 —
\ --- GCN-2 \
\ \
\ \
1254 125 |
\
\\\ \\
\
0.751 \ 0.75 X
\\ \\“'-..
0.251 0.25
0 50 100 150E200h250 300 350 400 B T B o @ a5 Ak
pochs Epochs

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
UT Arlington
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Over-Smoothing

Why GNN works?
By message passing, GNN i1s able to capture the local structure;

Several works (Xu et al., 2019, Murphy et al., 2019) show that GNN 1s
equivalent to the Weisfeiler-Lehman (WL) test under a careful design

I GNN
; (GCN, GraphSAGE, MPNN)

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 59
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Over-Smoothing

When GCNs fail?
With linear activation
With RelLU activation
With ReLU and bias

~ Network Depth

® H,
Hy
Hy
H,
Distance —o—a—
Hl Hl *
=N M i
O(M,r)
(a) Linear Case (b) Non-Linear Case (c) General Case

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks." arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Linear GCN

When GCNs fail?

With linear activation

[-step Random Walk

Probability of walking

y = /Tlpo where po(i) = 1/d(i)

’ W Random Walks on Graph
:n ¥, .o : e ‘ V26 . V25 - V32 = V3 = V10
*“ 4 v V5 = V7 = V17 — V6 = V11

V31 _ V33 _ V21 _ V33 _ V15

Tang, Jian, et al. "Line: Large-scale information network embedding." In WWW, 2015.

Li, Qimali, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." A44/2018.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Linear GCN

When GCNs fail?

With linear activation

[-step Random Walk

y = Alp, where po(i) = 1/d (i)

[-layer GCNs

Y = A'XW

Learnable Probability

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." A4A4/ 201 8.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Linear GCN

When GCNs fail?

With linear activation

[-step Random Walk

y = Alp, where po(i) = 1/d (i)

[-layer GCNs

Y = A'XW

Eigen decomposition

n l
Y = 2 ()liuiuiT) XW
=1

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." A4A4/201 8.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Linear GCN

Rewrite eigen decomposition

Eigen decomposition

(Aluluir)lXW + - (Amumu;%)lXW + (Am+1um+1u1:|r_1+1)lXW + - (Anunu;lr)lXW

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." A44/2018.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Linear GCN

Rewrite eigen decomposition

Eigen decomposition
(AluluI)lXW + - (Amumu;t)lXW + (Am+1um+1u1-7r1+1)lXW + - (Anunu;)lXW

Suppose graph g has m connected components. It indicates

Eigenvalues

T=A == Ay > g > o > Ay > —1

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." A44/201 8.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Linear GCN

Rewrite eigen decomposition

Eigen decomposition
(Aluluir)lXW + - (Amumu;%)lXW + (Am+1um+1u1:lr_1+1)lXW + - (Anunu;lr)lXW

Suppose graph ¢ has m connected components. It indicates

Eigenvalues

L= A== A, > A > >4, > —1 ‘

When [ - +0, 1,11, .., A, = 0

Convergence

Y = Jim A ul XW + - A, XW +:££n+_1um+1u;+1xw + ---:/'lf:l.[unuTTlXW

ol

3 :
1 1 0 0

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." A44/2018.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Linear GCN

When |l = 400, A41, .., 4y = 0

Convergence

1
Y =uy (ui XW) + - up, (up, XW), where u; (j) = d? - §(node j in component i)

Node 1 is indistinguishable with node 2 degree Y
1 1 1
Node 1 dgzl dfzz dgz3
1 1 1
Node 2 dgzl dgzz dgz3

The nodes within the same connected component are distinguishable only by their
degrees

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." A44/201 8.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Non-Linear GCN

With Rel.U activation

Similar to the linear case, but hard to detive the exact

convergence point. Require the notion of subspace (Oono et al.,
ICLR20):

M subspcae

Definition 1 (subspace). Let M = {EC|C € RM*Y} be an M-dimensional subspace in RN *¢,

where E € RVN*M js orthogonal, i.e. EYE = I, and M < N.

E

It is proved that (Oono et al., ICLLR’20): dae (+) \@
an infinite-layer GCN will converge to a certain point ‘\@%g;
within a subspace M M

(b) Non-Linear Case
Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." /CLR 2020.
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Over-Smoothing of Non-Linear GCN

dae(AX) < Apyrdae(X), Apsq < 1

Convergence -
“ dac(Hps1) = dac(o( HHW)) < sda (Hp)

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." /CLR 2020.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Non-Linear GCN

dae(AX) < Am1dac(X), Ay < 1

A 4

Convergence

Convergence of W
d]v[(XWl) < Sd]v[(X),S <1

dpe(Hyq) = dpe(0(AHI)) < Apyp15dae (Hy)

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." /CLR 2020.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of Non-Linear GCN

dae(AX) < Am1dac(X), Ay < 1

Convergence of W

1

dM(XW) < SdM(X), S < 1

ONVETgeNnce o
‘ - dre(0(X)) < dac(X)

4

Convergence

dpe(Hyy1) = dpc(c(AHW)) < AppyqSdac(Hp)

1

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." /CLR 2020.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Over-Smoothing of GCNs with bias

e With Rel.U and bias

GCNs with bias

Hl+1 - U(AHZWI + bl)

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks." arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning



Over-Smoothing of GCNs with bias

H; converges to a certain sub-cube O (M, 1) with RelLU and bias

Hl+1 = U(AHZW + b)

dac(Hp1) < Apyasdac(Hy) + dac(b)

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks." arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing of GCNs with bias

With Rel.U and bias

GCNs with bias

Hl+1 — U(AHZW + b)

dac(Hp1) < Apyasdac(Hy) + dac(b)

O H,
GCN with bias
H, converges to a certain sub-cube: lo o
dyr(b
O, 7) = {H)|dac (H) < 22223 ;
1-Am+1S i
0(M,r)
(Huang et al. arXiv’20) (c) General Case

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks." arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning



Summary

H; converges to a certain point that can be exactly derived

Non-linear GCN

H,; converges to a certain point within a certain subspace

GCN with bias

H; converges to a certain point within a certain sub-cube

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Other methods to measure over-smoothing

One can explicitly measure over-smoothing using distance between node

pairs (Chen et al., 2020)

Pair Distance

D 1 Hi . H] Dij
J T T . o
7=~ The i-th row

of the output

Mean Average Distance

MADl —

i=
—tgt
Other metrics see PairNorm (Zhao et al., 2020); GroupNorm (Zhou et al.,
2020)

Chen, et al. "Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View." AAAI 2020
Zhao, Lingxiao, and Leman Akoglu. "PairNorm: Tackling Oversmoothing in GNNs." /CLR. 2020.
Zhou et al. "Towards Deeper Graph Neural Networks with Differentiable Group Normalization Kaixiong Zhou Texas A&M University zkxiong@tamu.edu Xiao Huang The
Hong." MIFS 2020.
UT Arlington CSE 6392 Advanced Topics in Scalable Learning




Training deep GNNs

How to make GNNs deep?

Architecture refinement

Manipulating input (DropEdge)

UT Arlington
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Shortcuts in Structures

Aggregation

Hyi1=f(AHy,y)p>1+1
Hp,q =agg(Hyy, ..., Hpp)

Hl+1 = f(A, Hl)

Hyv = f(A H) + H, H; .1 =agg(Hy, ...

) HL)

Other architectures including SGC (Wu et al., 2019), GCNII (Chen et al., 2020), etc.

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning

................................
o

o€ Aggregation
]

Ktl|==_ K i
-~

Ziy1 =1 - pAzZ,
+fH,
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Shortcuts in Structures

90

80

70

60

50

40

30

20

10

Accuracy
 ——————— —— — |
4 8 16 32 64

——GCN ——GraphSAGE ResGCN
—e—]KNet IncepGCN  ——=APPNP

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020,

UT Arlington
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APPNP
IncepGCN
JKNet

79



Shortcuts in Structures

Residual connections are helpful (akin to CNNs)

Do residual connections alleviate over-smoothing?

dyr(Hyy1) —7 S v(dpy(H) — 1)

Indeed, general GCNs converge to a certain —-

sub-cube O (M, 1) with speed v~ and radius 7. *

oM, )
(c) General Case

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks." arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Shortcuts in Structures

Converging to sub—cube with speed v~ and radius r

Basic GCN Different Structures

ResGCN

V = SAni1 V=SAps +a
r=20 r=20
V= SAm+1 v= (1-8) A
de(b) Bdy(Hp)
Y — —— r =
1—v 1—v

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Shortcuts in Structures

General models converge to O(M, r)with speed v, when [ —» o

Basic GCN Different Structures

GCN with bias

V = SAm+1
~ da(b)
C1-v

7 IS nonzero

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Shortcuts in Structures

General models converge to O(M,r) with speed v, when [ — oo

Basic GCN Different Structures

ResGCN —
VIS Increased

V=SA,1t«a
r=20

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Shortcuts in Structures

General models converge to O(M, r)with speed v, when [ —» o

Basic GCN Different Structures

V= (1 - ﬁ) Am+1
. Pda(Hy)  visdecreaskd
= 1—1v r is nonzerq

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-smoothing Layer

1

For all cases, the over-smoothing speed v~ is controlled by

An+1 (the second-biggest eigenvalue of normalized adjacency
matrix)

So how to increase Ay, 417

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Alleviate Over-Smoothing by DropEdge

So how to increase A;,4+1? Drop Edges!

In expectation:

Upper bound 0:6
y v (p)
u®) < A1 (@) '< v (p) 2 p
Lower bound Dropping rate N
Upper Bound Lower Bound — A(p)

Both g and y monotonically increase w.r.t. p;

The gap y — u monotonically decreases w.r.t. p;

Rong, Yu, et al. "Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020,
Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning



Alleviate Over-Smoothing by DropEdge

Huang et al., 2020 has considered the re-normalization trick in our analyses,

in contrast to Rong et al., 2020

Theorem 1. We denote the original graph as G and the one after dropping certain edges out as G'.

Given a small value of €, we assume G and G’ will encounter the e-smoothing issue with regard to

subspaces M and M, respectively. Then, either of the following inequalities holds after sufficient
edges removed.

e The relaxed smoothing layer only increases: (M, €) < [(M',€);

y

o The information loss is decreased: N — dim(M) > N — dim(M’).

(Rong et al., 2020)

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020,

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Alleviate Over-Smoothing by DropEdge

Besides, DropEdge can prevent over-fitting as well!

o - Epoch 1
i "~ DropEdge . @_ ~~
p X 7 \
p \ / \
I \ l 1
. ! 5 I
. /! % /x
\ S Bigs 0N
Voo T o Epoch 2
/,»’—\_\
/7 A
I \
]
E !
\ ;f /
S /
\Q__“/
Epoch 3

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020,

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks." arXiv preprint arXiv: 2008.09864, 2020

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Alleviate Over-Smoothing by Adjacency
Matrix

DropEdge results

DropEdges 16 layers DropEdges 64 layers DropEdges

79.2(+2.5) 76.8(+11.6) 45.6(+1.0)
ResGCN 78.9 78.8(-0.1) 78.2 79.4(+1.2) 21.2 75.3(+54.1)
JKNet 79.1 80.2(+1.1) 78.8 80.1(+1.3) 76.7 80.0(+3.3)
IncepGCN 79.5 79.9(+0.4) 78.5 80.2(+1.7) 79.0 79.9(+0.9)
GraphSAGE 77.3 79.2(+1.9) 72.9 74.5(+1.6) 16.9 25.1(+8.2)
APPNP 80.3 80.8(+0.5) 80.2 81.1(+0.9) 80.4 81.3(+0.9)

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Alleviate Over-Smoothing by Adjacency
Matrix

DropEdge results
Distance to subspace M Dy=0.0019, d=400
———— GCN . ® ® @® Component-1
0.8 0.05 - . % Component-2
' - GCN+DropEdge (p=0.5) ‘ R
. ——— GCN+DropEdge (p=0.7) 0.00+ --'.".:ho‘o‘.. 90 .
. —0.051
Q X
0.4 ~0.10-
0.2 —0.15-
—0.201
0.0 ®
50 100 150 200 250 300 350 400 0.05 0.10 0.15 020
Depth X1

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020,
Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Alleviate Over-Smoothing by Weights

Convergence speed
V= Amt1S

Weights

Similarly, increasing S will also increase V. So how to increase S? Increase the

initial W;s.

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." /CLR 2020.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Alleviate Over-Smoothing by Weights

Try different S as initial

—€9- s=05
-4- s=1.05
—4- s=3.0
M s=10.0

—— Unnormalized

Layer Size

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." /CLR 2020.
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Training deep GNNs

How to make GNNs deep?

Layer normalizations

UT Arlington

CSE 6392 Advanced Topics in Scalable Learning
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Pair Norm: Center and Rescale

PairNorm: Center and rescale (normalize) GCN outputs X := GCN(4, X) to

keep the total pairwise squared distance #nchanged

y X
n
2. xi
1=1 >
graph cony
------------------ PAITNQIT) »ooe mmminsne sesmmem
¢ 2 o -
i ‘g X A X— A X
I 1 center rescale
~ 2 : [}
<) - R
F (]

See also GroupNorm (Zhou et al., 2020) C T m s ‘

Zhao, Lingxiao, and Leman Akoglu. "PairNorm: Tackling Oversmoothing in GNNs." /CL~<. 2020.
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Self/Un-Supervised Learning of GNNs

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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What we discussed before are supervised

Training Loss

GNN(X, A) Preds
> ® - &
Graph Neural Network ® —
==

S
© & * Labels are scarce, c.g. molecular property

¢ Training/Testing tasks are Non I.I.D.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Existing Self-Supervised GNNs

Node- Link/Metapath Graph- Graph
Classification Prediction Classification Reconstruction

N-gram Graph [4],

Predictive EPD 2], S2GRL[11] PreGNN [5],
Methods GraphSAGE Pl | by \R GROVER
[12] [7]
GROVER [7] GCC [6]
, VGAE [1]
Information- DGI [§],
based Methods GMI [9] InfoGraph [10] SIV?}\—]\%?E[E?}]

[1] Kipf & Welling 2016; [2] Duran & Niepert 2017; [3] Hamilton et al. 2017;
[4] Liu et al. 2019; [5] Hu et al. 2020; [6] Qiu et al. 2020; [7] Rong et al. 2020;
[8] Veli“ckovi'c et al. 2019; [9] Peng et al. 2020; [10] Sun et al. 2020

[11] Peng, Zhen, et al. 2020 [12] Hwang, Dasol, et al. 2020

[13] Pan, Shirui, et al. 2018 [14] Hasanzadeh, Arman, et al. 2019

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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“In self-supervised learning, the system learns to predict part of its
input from other parts of its input.” ---- by Yann Lecun

Graphs are highly structured!

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Node Classification

* Two typical ways to formulate training loss

I. Enforcing

Adjacent Similarity hy, h,
[
GraphSAGE ® O
II. Reconstruction oo
from Neighbors =
EP-B s fu
hus

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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I Enforcing Adjacent Similarity

* GraphSAGE (Hamilton et al. 2017)

UT Arlington

Enforcing nearby nodes to have similar representations, while enforcing

disparate nodes to be distinct:

min — [E og(o(hTyh,)) — AE

[log(a(—thnhv))]

-

Positive Samples

UNT"‘ P,(v

Negative Samples

h,: representation of target node;

P, (v): negative sampling,

hy: representation of neighbor/positive node;
hy, : representation of disparate/negative node;

CSE 6392 Advanced Topics in Scalable Learning
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II Reconstruction from neighbots

» EP-B (Durin & Niepert, 2017)

The objective is to minimize the reconstruction error (regulated by the
error to other nodes):

min 2 [y +|d(hy, hy,) —{d(Ry, hy)]s | Hinge loss
uev\{v} ‘

Positive Negative
Samples Samples

h,: representation of target node;
hy: representation of nodes except v;

h,: AGG(h;|l € N(v)) is the reconstruction from neighbors;
y: the bias

Duran & Niepert. Learning Graph Representations with Embedding Propagation.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Link/Metapath Prediction

* S2GRL(Peng, Zhen, et al. 2020 ) * SELAR(Hwang, Dasol, et al. 2020 )

Metapath 1 @ --O

%/O\O $ Metapath 2

Metapath 3

@—e O

Predict the type of meta path between two nodes

Predict hop counts (K-hop connectivity)

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 102



How about graph classification/regression?

0.01
() ‘
ﬁf@ (; Toxicity?
P
W » Solubility:

0.49

W
0.49
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N-Gram Graph

* (Liuetal. 2019)

Stage I: Node Representation : Stage II: Graph Representation

h
fiy ~ hoa

hu3

= [T;c, h: ;
For all n-gram paths: o HlEp l
First learn node representations by CBoW-like Jy = zpen_gra o

pipeline ,
Graph Representation:  F = [f(1), ..., f()]

Equivalent to a GNN that needs no training

Liu et al. N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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PreGNN: Node- and Graph-level
Pretraining

* (Hu et al. 2020)

Stage I: Node Representation ! Stage 1I: Graph Representation
i hys
hu3 ! h hv hu4
hul hv hu4 i ul
huz
huz
Then perform graph-level multi-task Supervised
' Training
First learn node representations by Context he = Readout(hy|v € G)
Prediction or Attribute Masking i min CrossEntropy(hG, yG)

Both node- and graph- level training are cruciall

Hu et al. Strategies for Pre-training Graph Neural Networks.
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PreGNN

* (Hu et al. 2020)

Stage I: Node Representation

Enforcing node representation to be similar to its contextual structures:

min — log(

A

) I(v # v’)log(l —
!

)

Positive Samples

Negative Samples

Context Prediction
Attribute Masking

9 = Center nodc
@ = Context anchor nodes

K-hop neighborhood

Hu et al. Strategies for Pre-training Graph Neural Networks.

UT Arlington

CSE 6392 Advanced Topics in Scalable Learning

Degenerates to EP-B,
it r1=0, r2=K=1

: K-hop information

: Structures between rl
and 12 -hop
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PreGNN

+ (Hu et al. 2020)

Stage I: Node Representation

Mask random node/edge attribute and predict it, just like Bert:

Xu3

xul v /C>\6u4
%MASK GNN(A4, X) - .
= v
g Xu2

Context Prediction
Attribute Masking

Hu et al. Strategies for Pre-training Graph Neural Networks.
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GCC: Contrastive learning

* (Q1u et al. 2020)

Both N-Gram Graph and PreGNN do not perform graph-level unsupervised

training:
q
Graph x4 Eﬁ;ﬁ:r - ex ( Tk /T)
I ‘ min — log Plq K4 InfoNCE
K T
' Contrastive ZI,:O eXp (q kl/T)
%p‘ Similarity— oo
Graph x*o
Graph . ki
\ Graph x* % | Encoder q: representation of different graphs;
i ! k: key of different graphs;
1 0.1, 12 . . .
' k. : positive key generated by random graph perturbation
— p Yy g y grapn p
- T: temperature

r-ego network

But, GCC only conducts graph-level pre-training, without node-level

distinguishment
Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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GROVER (Rong et al. 2020)

Node-Level Graph-Level
Self-Supervised Self-Supervised

Methods

N-Gram Graph

PreGNN

GCC

GROVER

0000
EIX X

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 109



GROVER

* (Rong et al. 2020)

Stage I: Node/Edge-level pretraining

Unlabeled Molecules Contextual subgraph extraction Subgraph masking  prediction
inode-based dictionary | i Exists? s 45
i O/O\O i r i (W] i :>
L‘/i‘@/Z\@ ______________________ i node/edge
ledge based dictionary o | Exists? ?i) "E”
—— g aninii masked part

k = k=1

Key: C_N-DOUBLE1_O-SINGLE1
Key: DOUBLE_C-SINGLE1_N-SINGLE1

Predicting node/edge contexts instead of node labels can better capture
local structures (multi-label)

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.
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GROVER

* (Rong et al. 2020)

Stage II: Graph-level pretraining

Graph motifs from domain
Unlabeled Molecules knowledge

Yy O
i T

[

Graph-level Prediction

ZUN R—CHs

R OH

R—CHB 0.

-

R” ¢

| i _ :
i ' -
‘?"‘b‘ = | Sy I|:> | ' R—C=N
“‘*% 98 g : )
i Lol & I I A
I I
| 1

R—C=N graph

.

R OH

representation

Predicting a graph if contains pre-defined graph motifs.

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.
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GROVER

* One more thing: GTransformer

We build a more expressive and transformer-alike model: GTransformer

, ~
‘ ’ . ; ) 5
. i M adeiE e ‘ 1 Edge Embed ! Sample a random-hop MPNN at each iteration %
* Output for both node embedding and edge ! 1
. “ i
embeddlng. ( LayerNorm m [ LayerNorm I 1
. : = 1
[ 1
[ﬁFeed Forward J | Feed Forward J 1
-\A — \ T — Y K - ( ) :
' ' . ) _.{L Concat m ’L Concat j(— B :
* Multi-Head Attention: model global interaction b = > - 2 Sample K from a !
between nodes/edges. t Aggregate2Node | J\ Aggregate2Edge J distribution during i
* Long-range Residual Connection: alleviating the 4 I 4 training. I:
vanishing gradient and over-smoothing. ( e W A
ayerNorm | f M ——————————————————— -
|
ur Multi-Head Attention | o Yedation Loss
. \ - :E:::::\\u DyMPN
* MPNN: Extract local structural information of graphs. ,f—Q-—— _— __,__J){ , Trunsformer +GNN Better
* dyMPN: Randomize the message passing hops for the i DyMPN J \ DyMPN l DVMPNT / generalization
dynamic receptive field modeling. 7y [y 7 n ability
— 3
L Linear J Y
|
[ 1
- Input Graph =

0 0 100 150 200 250

Epoch

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.
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We pre-train GROVER with 100 million parameters on 10

million unlabeled molecules collected from ZINC15 and
Chembl

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.
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GROVER

Molecular classification

Classification (Higher is better)

Dataset
# Molecules

BBBP
2039

SIDER
1427

ClinTox
1478

BACE
1513

Tox21
7831

ToxCast
8575

TF_Robust [39]
GraphConv [23]
Weave [22]
SchNet [44]
MPNN [13]
DMPNN [61]
MGCN [29]
AttentiveFP [59]

0.860(0.087)
0.877(0.036)
0.837(0.065)
0.847(0.024)
0.913(0.041)
0.919(0.030)
0.850(0.064
0.9080.050

0.607 (0.033)
0.593(0.035)
0.543(0.034)
().545(0.038)
0.595(0.030)
0.632(0.023)
0.552(0.018)
01505([]1)60)

0.765(0.085)
0.845(0.051)
0.823(0.023)
0.717(0.042)
0.879(0.054)
0.897(0.040)
0.634(0.042)
0.933(0.020)

0.824((]‘022)
0.854(0.011)
0791(0003)
0.750(0.033)
0.815(0_044)
0.852(0.053)
0.734(0.030)
0.863(0.015)

0.698(0.012)
0.772(0.041)
0.741(0_044)
0.767 0.025)
0.808(0.024)
0.826(0.023)
0.7070.016)
0.807(0‘02())

0.585(0.031)
0.650(0.025)
0:678(0.024)
0.679(0.021)
0.691(0.013)
0.718(0.011)
0.663(0.009)

N-GRAM [28]
HU. et.al[18]

0.915(0_040

0.632(0.005)
0.6140.006)

0.855(0.037)
0.7(52(0,058)

0.876(0.035)
0.851(0.027)

0.769(0.027)
0.811(9.015)

0.5790.001)

0.714(0.019)

GROVER e
GROVER g

)
)
0.912(¢.013)
)
)

0.9360.005
0.940¢.019)

0.656,0.06)
0.658.023)

0.925(0.013)
0.944(0_02!)

0.894 4 028)

0.8199.020)
0.831¢.025)

0.723(0.010)
0.737 0.010)

Rong et al.

GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.

UT Arlington
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Existing Self-Supervised GNNs

Node- Link/Metapath Graph- Graph
Classification Prediction Classification Reconstruction
N-gram Graph [4],
predicye EP-B [2], S2GRL{11] PreGNN [5]
GraphSAGE [3],
Methods GROVER [7] SELAR[12] GROVER [7]
GCC[6]
, VGAE [1]
Information- DGI [8],
InfoGraph [10] VRVGA[13]
based Methods GMI [9] SIG-VAE[14]

[
[
8
[1
[1

UT Arlington

1] Kipf & Welling 2016; [2] Duran & Niepert 2017; [3] Hamilton et al. 2017,

4] Liu et al. 2019; [5] Hu et al. 2020; [6] Qiu et al. 2020; [7] Rong et al. 2020;
| Veli"ckovi'c et al. 2019; [9] Peng et al. 2020; [10] Sun et al. 2020

1] Hwang, Dasol, et al. 2020 [12] Peng, Zhen, et al.

3] Pan, Shirui, et al. 2018 [14] Hasanzadeh, Arman, et al. 2019
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What makes a good representation?

Auto-Encoder (AE)
Representation Reconstruction

H».»»i»ﬂ

“One natural criterion that we may expect any good representation to meet, at least to some degree, is to retain a
significant amount of information about the input.” by Vincent et al. 2010

Hinton & Salakhutdinov 2006; Vincent et al. 2010
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Graph Auto-Encoders (VGAE)

Input Graph Fncoder
sSm T T =\
I 1
I I
: .W N I e
i i : ."IIIIII\‘, 4 Decoder ) TTTTTTTT B
] A 1 : | HNEEENE 1 !
et f | BREEEE | N IR
R i N GCN i T T T 11 E sigmoid(ZZ") i 2 E
l l .
: 11l 1 ‘tsssssssmssanss c
‘\_____)(____/,I

The overall loss:

L = Eyzix.allogp(A|Z)]

]

The reconstruction loss.

Kipf, T. N., & Welling, M. (2016).
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Variational Graph Auto-Encoders (VGAE)

Input Graph

——————————

o
T e 4

o ————
N - ——

Encoder

------------

-----------

-----------

shared -
first layer :

*
-----------

q(z;1X,A) = N (z;|p;, diag(a?))

»

»

o ——

N - ——

( Decoder )

sigmoid(ZZT)

. J

-

o e

——————————

The overall loss:

Eqzix.allogp(A|Z)]

KL[q(Z|X, A)||p(Z)]

\

Kipf, T. N., & Welling, M. (2016).

UT Arlington

]

The reconstruction loss.

A |

The KL divergence
between q(.) and p(.)

CSE 6392 Advanced Topics in Scalable Learning
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What makes a good representation?

* A more direct way, other than AE?
* Yes, Mutual Information (MI).

H(X) H(Y)

[(X;Y) = D (p(X)p(M)|Ip(X,Y))
= H(X) — H(X|Y)

v v
Entropy Conditional Entropy

H(X,Y)

® 0<I(X;Y)<H(X)orH(Y);
® /(X;Y) = 0iff X and Y are independent random variables;

® /(X;Y)=H(X)=H(),if X and Y are determinately related, i.e. H(X|Y) = 0
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AE is a lower bound of MI

(Hjelm et al. 2019)

I(X;Y) = H(X) — H(X|Y) = H(X) < R(X|Y)

! !

Mutual Information Reconstruction error

Computing MI 1s hard and not end-to-end, until recently (CPC, Oord et al., 2018; MINE, Belghazi
et al., 2018; Nowozin et al., 2016; Hjelm et al. 2019)

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 120



Estimating /Maximizing MI (Hjelm et al.
2019)

XY —» T, fr (X;Y) rr%axfTw(X; Y) - maxI(X;Y)

Maximize Lower
bound of MI

MINE (Belghazi et al., 2018):

IMINE(X; Y) £ Ep(X,Y) [T, (x,y)] — log Ep(X)p(Y) [exp(T,, (x, ¥))]

JSD MI estimator (Nowozin et al., 2016):

ISP Y) £ Epxny|logo(Tw (x, )] + Epcopmlog(L — o(Tow (x,3)))]

InfoNCE MI estimator (Oord et al., 2018):

exp Ty (%, y)

C . &
INCE(X;Y) 2 Epxy) [logz I p(x) EXP T, (X', y)
x'~p '

]
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Deep Graph Infomax (DGI)

* (Velickovic et al. 2019)

MI maximization

P = N

X, A

h;

The JSD MI estimator is applied:

max (X, A; h;) ~ max log(D(h;; X, A)) + log(1 — D(fli;x, A))
A
| |

~

h; = GNN(X, A) h; negative sample

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 122



Deep Graph Infomax (DGI)

It is hard to directly compute D(h;; X, A), thus DGI resorts to readout s = R(X, A):

UT Arlington

max I(X, 4; h;) = max log(D(h;; X, A)) + log(1 — D(h;; X, A))

GNN
b

réll%z](I(X,A; h;) = max log(D(h;; s)) + log(1 — D(h;; 5))

(X, A) (H,A)
O : O
et | : '
SO WA
@, : :

ol ' -
O~ G
____________
(X.A) (H,A)

CSE 6392 Advanced Topics in Scalable Learning
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Deep Graph Infomax (DGI)

It can be proved that, if the readout s = R(X, A) is injective,

log(D(h;; 5)) + log (1 - D(hi;rf)) = log(D(h;: X, A) + log (1 - D(h;; X, 4))

~_ - =

It can be also proved that, if |X| = |s| is finite,

UT Arlington

max log(D(hi; S)) + log (1 — D(ﬁi; s)) = max /I (h;; X, A)

CSE 6392 Advanced Topics in Scalable Learning
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* Some issues in DGI

\@@i\«@@“’

» Computing MI requires the injectivity of readout function
» It resorts to graph corruption to generate negative samples %@@%@@
\ne

» Distinct encoders and corruption functions for different tasks
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GMI: Graphical Mutual Information

* (Peng et al. 2020)

Deep Graph InfoMax Graphical Mutual Information (ours)

Real Fake

Summary
vector {  Output graph

X E : i Inputgraph

Input graph Corrupted graph

Readout

*B»

JIN
/1IN
/[ ‘ 18

M
between features
i R
Mi
between edges Y8R
| R R
lam] Xi | i
/ g
¥ Y -
o

The basic idea of GMI is to compute the MI directly.

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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GMI: Graphical Mutual Information

We define that,

A JEN (i) A

Feature MI Topology MI

» It is both feature- and edge- aware;
» No need to readout or corruption;

» Feature MI can be further decomposed;

LA
between features
M |\
between edges \
A&/ Xi |-
| v '.

The basic idea of GMI is to compute the MI directly.

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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GMI: Graphical Mutual Information

* (Peng et al. 2020)

It can be proved that, if certain mild condition meets,

I(X; hl) = ZjEN(i) Wijl(x]'; hi), for 0 < Wij <1

The global MI is decomposed into a weighted sum of local MIs.

It is not a bad idea to let w;; = J(hiThj)

We then apply the JSD MI estimator to compute I(x;j; h;) and
[(o(hi" hy); Aip)

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.

UT Arlington
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GMI: Graphical Mutual Information

* Node Classification

We use a universal backbone (GCN) for all tasks, different from DGI

Algorithm Transductive Inductive
Cora Citeseer PubMed Reddit PPI
EP-B loss 794 £ 0.1 69.3 £ 0.2 78.6 £ 0.2 93.8 + 0.03 61.8 + 0.04
DGI loss 82.2+0.2 72.2 £ 0.2 78.9 + 0.3 94.3 + 0.02 62.3 + 0.02
FMI (ours) 783+ 0.1 72.0 £ 0.2 79.1 £ 0.3 94.7 + 0.03 64.8 + 0.03
GMI-mean (ours) 82.7 + 0.1 73.0 £ 0.3 80.1 +0.2 95.0 + 0.02 65.0 = 0.02
GMI-adaptive (ours) 83.0 + 0.3 72.4 + 0.1 79.9 + 0.2 94.9 + 0.02 64.6 + 0.03

Codes: https://github.com/zpeng27/GMI

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.

UT Arlington
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GMI: Graphical Mutual Information

e Link Prediction

We use an universal backbone (GCN) for all tasks

Alvossthion Cora BlogCatalog Flickr PPI
& 20.0% 50.0% 70.0% 20.0% 50.0% 70.0% 20.0% 50.0% 70.0% 22.7%
DGI 95.6+0.3 94.6+04 94.4+0.2 77.2+04 76.4+04

75.5+0.3 90.3+0.3 89.0+0.4 74.1+0.7 77.4+0.1
79.5£0.4 75.1+0.2 92.7+0.3 92.2+0.3 90.6+0.4 79.8+0.2
83.6+0.2 82.5+0.1 92.0+0.2 90.1+0.3 88.5+0.2 80.0+0.2

FMI (ours) 97.2+0.2 95.2+0.1 95.0+0.1 81.2+0.2
GMI (ours) 97.9+0.3 96.4+0.2 96.3+0.1 84.1+0.3

Codes: https://github.com/zpeng27/GMI

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.
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Summary

Node- Link/Metapath : . Graph
Classification Prediction Graph-Classification Reconstruction
N-gram Graph [4],
Predictive EPB 12 S2GRLJ11] PreGNN [5],
GraphSAGE [3],
Methods GROVER SELAR[12] GROVER [7]
7] GCC [0]
: VGAE [1]

bIanrﬁattl}? o ?};II [89]’ InfoGraph [10] VRVGA[13]
ased Aethods Pl SIG-VAE[14]

UT Arlington
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Applications

e GNN in Social Networks
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GNN i1n Social Networks

* "Semi-supervised graph classification: A hierarchical graph
perspective." WWW 2019
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Hierarchical Graph Classification

* Hierarchical Graph: A set of graph instances are interconnected via edges.
* Social network with group structure.

e Document (eraph-of-words) collection with citation relation.
grap
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Connections between
graph instances

Hierarchical Graph

* The Problem: predicts the class label of graph instances in a hierarchical graph.

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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Hierarchical Graph Classification

* The Problem: predicts the class label of graph instances in a hierarchical graph.

* Challenges:
* How to represent the graphs with arbitrary size into a fixed-length vector?

* How to incorporate the information of instance level and hierarchical level?

4

’— ’ Group 4
/ \ ’ \ Pabel: Bad !
i AM—— B \
\ 4 J \
t[:/i[,

N
7N AR
1 C "_| D,l Group
\\_/ N C

Label: ???

Connections between
graph instances

Hierarchical Graph

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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Graph Instance Level. Self-Attentive Graph
Embedding

* How to represent the graphs with arbitrary size into a fixed-length vector?

* Graph representation learning at different level:
*  Node Level: G(V,E) » H™"
*  Graph Level: G(V,E) - e¥

* SAGE: Self-Attentive Graph Embedding

* Size invariance ---- Self-attention
*  Permutation invariance ---- GCN Smoothing
* Node importance ---- Self-attention

* Self-attention S : 7 opinions about node importance. S = softmax(Ws Jtanh (Wi, HT))

A ReLUAXWOW! Vad —h,c\& //\ S e R™™

\ 4

H=
j - ,:'_,':; _______ . e =SH
A
— GCN GCN =P | H e R"XV —ﬁgj/ L Q

e : e € R™Y
GCN Smoothing \A _>i - a’i‘/\i:
\__ I\ R Embedding
Matrix
Self
Attention

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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The Unified Model

* How to incorporate the information of instance level and hierarchical level?
* Instance Level Model : Graph Level Learning (SEGA)
* Hierarchical Level Model: Node Level Learning (GCN)

* Feature Sharing: Concatenate the output of SEGA to the input of GCN.

* Disagreement Loss: The disagreement between instance classifier and hierarchical classifier should be minimized.

Ya
Hierarchica > > L(V4,Vs)

Node Classification Loss

| Classifier

A

a Feature

- Sharing Dy, (Yallpa)

n & Disagreement Loss

1%

4
> > L4, )4)

Graph Classification Loss

Instance
Classifier

Hierarchical Graph

Instance Level

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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The overall loss:  min{(Gy) + £(Gy),
The supervised loss:

{(Gy) = Z (L i) + Lyi, vi))

gi €G)

The disagreement loss:

EGu) = ) Dxr(illy),

gi€Gu
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Applications

* GNN in Medical Imaging
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GNN in Medical Imaging

* "Graph CNN for Survival Analysis on Whole Slide Pathological
Images", MICCAI 2018

* "Graph Convolutional Nets for Tool Presence Detection in Surgical
Videos", IPMI 2019

* "Graph Attention Multi-instance Learning for Accurate Colorectal
Cancer Staging", MICCAI 2020
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GNN in Medical Imaging

* Survival Prediction
* Predict the risk of a certain event occurs.
* Event: part failure, drug adverse reaction or death.

* Application: provides suggestion for clinical interventions

* Whole Slide Images
* Large: single WSI size >0.5 GB.
* Complicated: millions of cells.

* Combine local and global features.
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GNN in Medical Imaging

Cox proportional hazard function

)\(t|XZ) — )\0 (t) exp(ﬁlXﬂ 4+ e+ )BpXip) = )\0 (t) exXp [Xz . ,6:

Partial likelihood for event happens on subject 7:

L;(B)

A(Yi|X;) >t¥5)0;

> oy AiIX))

where, Y is the observation time.

Join likelihood of all subjects:

Log likelihood as object function:

b

£(B) =

UT Arlington

3:C;

1

Xz’ * ﬁ — log 9_7'
3Y;>Y;
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0;

0, = exp(X; - f)
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GNN in Medical Imaging

DeepGraphSurv
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GNN in Medical Imaging

* Pathological Images and Patient Survival Time and Label

* TCGA, The Cancer Genome Atlas
* NLST, National Lung Screening Trials

Database | Cancer Subtype | No. Patient No. WSI Quality | Avg. Size
TCGA LUSC 463 535 medium | 0.72 GB
TCGA GBM 365 491 low 0.50 GB
NLST ADC & SCC 263 425 high 0.74 GB

* Evaluation Metrics- C-index: the fraction of all pairs of patients whose predicted
survival times are correctly ordered.

UT Arlington
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GNN in Medical Imaging

* Yellow regions: high attention values

* High attention patches : values > 0.9 (attention values (0, 1))

Epoch-10 Epoch-15 Epoch-40
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GNN in Medical Imaging

Model LUSC GBM NLST
LASSO-Cox [19] 0.5280 0.5574 0.4738
LASSO-Cox* 0.5663 0.5165 0.5663
BoostCI [17] 0.5633 0.5543 0.5705
BoostCIx 0.5800 0.5130 0.5716
EnCox [20] 0.5216 0.5597 0.4883
EnCoxx 0.5740 0.5231 0.5742
RSF [12] 0.5066 0.5570 0.5964
RSFx 0.5492 0.5193 0.5491
MTLSA [16] 0.5386 0.5787 0.6042
MTLSAx 0.5247 0.5630 0.5573
WSISA [21] 0.6380 0.5760 0.6539
GCN-Cox [8] 0.6280 0.5901 0.6845
DeepGraphSurv 0.6606 0.6215 0.7066

* Use our graph features for the survival model.
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Future Directions

More Powerful GNN Architecture

Graph-Based Concept Learning

GNN + Energy Model

GNN + Federated Learning

GNN on Hypergraph
oy

https://en.wikipedia.org/wiki/Hypergraph

GNN + Meta Learning

Invariant and Equivariant GNN

Future Directions
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