
UT Arlington

CSE 6392  Lecture 2  Graph Neural Network

Junzhou Huang, Ph.D.

Department of  Computer Science and Engineering

Advanced Topics in Scalable Learning 



UT Arlington CSE 6392 Advanced Topics in Scalable Learning 2

Administration

• Course CSE6392
– What:               Advanced Topics in Scalable Learning
– When:              Friday 1:00 ~ 3:50pm
– Where:             NH 109
– Who:                Junzhou Huang (Office ERB 650) jzhuang@uta.edu
– Office Hour:    FRIDAY 3:50 ~ 6:00pm and/or appointments
– Webpage:       http://ranger.uta.edu/~huang/teaching/CSE6392.htm

(Please check this page regularly)

• Lecturer
– PhD in CS from Rutgers, the State University of  New Jersey
– Research areas: machine learning , computer vision, medical image analysis 

and bioinformatics

• GTA
– Qifeng Zhou (Office ERB 105B), qxz8706@mavs.uta.edu
– Office hours: Friday 10:00am ~ 12:00pm and/or appointments
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Assignment

• Paper Selection
– Each group has two members at most. 
– Each group will select at least one paper from the following paper list and 

then be scheduled to present their selected papers in our class. 
– You can choose any papers from the paper lists
– Please talk to the lecturer if  you prefer to select a paper out of  the list
– The selected paper has to be confirmed by the second week (before the 

second class)
– GTA will set up the paper selection sheet
– Different groups will present different papers
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Grading 

• Distribution
– 30%              Paper Presentation

– 30%              Slide Preparation 

– 30%              Questions & Answering 

– 10%              Class Participation

– 100%

• Attention
– No midterm or final exam for this course. 

– Please read the selected paper and prepare the final presentation as early as 
possible

– This is research seminar course. Asking questions and discussion are highly 
encouraged

– When missing a class due to unavoidable circumstances,  PLEASE notify the 
instructor in advance with any notes/evidences
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Social Graph
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Graph is Everywhere
Knowledge Graph

Web Graph Device Graph

Gene Graph

Brain Graph
Molecular Graph

Control Flow Graph
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Graph is Important 

• Numerous real-world problems can be summarized as a set of  tasks on graphs. 

Temporal Action Localization

Li R, Yao J, Zhu X, et al. 2018

Survival Analysis Social Recommendation

Fan W, Ma Y, Li Q, et al. 2019

Molecular Property Prediction

Lu C, Liu Q, Wang C, et al.
Zeng et al. 2019
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The Power of  Deep Learning
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Deep Learning + Graphs = ?

Deep Learning Model



Applications
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Deep Graph Learning

Neural Network Graph/Node 
Representation

Node 
Classification

Link Prediction

Graph 
Generation

Community 
Detection

………

Make neural network model that 
can deal with graph data. 
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The Big Challenges

VS

• Grid-like and sequence-like 
structure. 

• Spital/sequential relations between 
pixels / units.

Irregular

1

3

2

2

1

3
Permutation

Permutation 
Invariant

Complex variants

Hierarchical GraphHyperGraph

Large-scale instance
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The Research Questions

How to train the deep graph neural networks? How to extend the graph neural networks to a 
large-scale graph? 

How to enhance the robustness of graph neural 
network ? 

How to conduce the self/un-supervised 
learning on graphs?

Graph Neural Network

GNN 𝑋, 𝐴

LOSS

Self-supervision

Big Graph

GNN

Node 
Representation
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Overview

• Preliminary

• The Brief  History of  Graph 
Neural Networks

Foundations

• Training Deep GNNs

• Scalability of  GNNs

• Robustness of  GNNs

• Self/Un-Supervised Learning 
of  GNNs 

• Other Advanced Topics 

Advances

• Social Networks

• Medical Imaging

Applications
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Preliminaries and Brief  History of  
Graph Neural Networks



Applications
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What is the Graph Neural Network?

Graph Neural Network Graph/Node 
Representation

Node 
Classification

Link Prediction

Graph 
Generation

Community 
Detection

………

Neural network model that can deal with graph data. 
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Graph Neural Network is not a New Thing 

Sperduti, Alessandro and Starita, Antonina. 1997

Sperduti, Alessandro, and Antonina Starita. "Supervised neural networks for the classification of structures."
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A Rapidly Growing Area 

https://github.com/shaohua0116/ICLR2020-OpenReviewData
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Preliminaries of Graph Learning
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The Model of  Graph Neural Networks

GNN 1.0

GNN 2.0

GNN 3.0
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The Model of  Graph Neural Networks

GNN 1.0
• Understanding GNN as RNN 

GNN 2.0

GNN 3.0
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GNN 1.0: Understanding GNN as RNN 

• The RNN on sequences can be generalized to trees and DAGs.

Sperduti, Alessandro, and Antonina Starita. 1997
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GNN 1.0: Understanding GNN as RNN 

Before 2000
Sperduti, Alessandro, and Antonina 
Starita. (TNN 97) propose the 
generalized recursive neuron for the 
graph classification problem on 
Trees/DAGs. 

This generalized recursive neuron can 
only generate the graph 
representations. 

From 2000 to 2010
Gori et.al (IJCNN 05) and Scarselli
et.al (TNN 08) add the output gate 
for each node to generate the node 
representation in graphs. This model
is called GraphRNN.

After 2010
Li, Yujia, et al. (ICLR 16)  add gated 
recurrent units and modern 
optimization techniques to improve 
the performance of Scarselli et.al 
(TNN 09).
Tai, Kai Sheng et.al. (ACL 2015) 
extend LSTM to a tree-structured 
network topologies. 

The output gate

Only generate graph 
representation

Sperduti, Alessandro, and Antonina Starita. 1997
Gori, Marco, Gabriele Monfardini, and Franco Scarselli. 2005
Scarselli, Franco, et al. 2008
Li, Yujia, et.al. 2015， Tai, Kai Sheng et.al, ,2015
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The Brief  History of  Graph Neural 
Networks

GNN 1.0
• Understanding GNN as RNN 

GNN 2.0
• Understanding GNN as Convolution 

GNN 3.0
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GNN 2.0: Understanding GNN as 
Convolution 

Graph Signal Processing Convolutional Neural Networks

• How to perform the convolutions on graphs?
• Irregular structures.
• Weighted edges.
• No orientation or ordering (in general).
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GNN 2.0: Understanding GNN as 
Convolution

Graph Convolutional Network (ICLR 2017)

𝑯(ାଵ) = 𝜎(𝑫෩ି
ଵ
ଶ𝑨෩𝑫෩ି

ଵ
ଶ𝑯  𝑾())

• Approximate 1-order Chebyshev polynomial the in spatial domain. 
• Layer-wise convolution to extend receptive field.
• The practical convolutional model for graphs.  

PATCHY-SAN (ICML 2016)

• Neighborhood sampling to construct receptive field. 

Deep Locally Connected Networks(ICLR 2014) [1]

• Discuss two constructions on both spatial and spectral domain. 
• Analog the convolution operation based on the Laplacian spectrum.
• Additional eigen decomposition is needed. 

ChebNet (NeurIPS 2016) [2]

• Build the connection between graph signal processing and 
graph convolution. 

• Use Chebyshev polynomial to fast approximate the graph 
filtering in the spectral domain.

[1] Bruna, Joan, et al. 2014
[2] Defferrard, Michaël, et.al. 2016 
[3] Niepert, Mathias, et.al. 2016
[4] Kipf, Thomas N., and Max 
Welling. 2017
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Graph Signal Processing

Eigen decomposition of graph Laplacian
𝑳 = 𝑼 𝜦 𝑼்

eigenvalues sorted non-decreasingly:
 0 = 𝜆  ≤ 𝜆ଵ ≤  … ≤ 𝜆ିଵ

The frequency of an eigenvector of 𝐿 is its
corresponding eigenvalue:

𝑢
்𝑳𝑢 = 𝑢

்𝜆𝑢 = 𝜆

Graph signal:

ℎ:   𝒱 →   𝑅

“Frequency” or “Smoothness” of  the signal ℎ

ℎ்𝑳ℎ =   𝐴 ℎ − ℎ
ଶ

ழ

Low frequency graph signal High frequency graph signal
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Graph Convolution: Spectral domain
Spatial domain

Graph Convolution: input signal 𝑥, filter 𝑔ො, graph Laplacian 𝑳

𝑦 = 𝑥 ∗𝒢 𝑔ො = 𝑼 
𝑔ො 𝜆ଵ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑔ො 𝜆

 𝑼் 𝑥 = 𝑼 𝑔ො 𝜦 𝑼் 𝑥 =: 𝑔ො(𝑳) 𝑥

Parameterization: replace 𝑔ො 𝜦 with 𝑔ොఏ = 𝑑𝑖𝑎𝑔(𝜃)

ChebNet (NeurIPS 2016): parameterize with Chebshev polynomials:

𝑦 =  𝑔ොఏ 𝑳 𝑥 =  ∑ 𝜃 𝑇 𝑳෨ 𝑥ିଵ
ୀ 𝑳෨ = భ

ഊೌೣ
 𝑳 ି𝑰 

GCN (ICLR 2017): simplified ChebNet 𝐾 = 1, suppose 𝜆௫ = 2, 𝜃 ≔ 𝜃 = −𝜃ଵ

𝑔ොఏ 𝑳 𝑥 =  𝑰 + 𝑫ି
ଵ
ଶ𝑨𝑫ି

ଵ
ଶ  𝑥𝜃

𝑔ොఏ 𝑳 𝑥 =  𝑫෩ି
ଵ
ଶ𝑨෩𝑫෩ି

ଵ
ଶ 𝑥𝜃Apply a renormalization trick: 𝑨෩ = 𝑨 + 𝑰 (add self-loop)

Spectral

Spatial
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The Brief  History of  Graph Neural 
Networks

GNN 1.0
• Understanding GNN as RNN 

GNN 2.0
• Understanding GNN as Convolution 

GNN 3.0

• Variants of  Convolutions
• GNN with Attention
• GNN with Graph Pooling
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GNN 3.0: Variants of  Convolutions

Graph Wavelet Neural Network [1] Hyperbolic GCN [2]Lanczos Network [3]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

𝑔ఏ ∗ 𝑥 = 𝑈𝑔ఏ𝑈x 𝑯(ାଵ) = 𝜎(𝑫෩ ି
ଵ
ଶ𝑨෩𝑫෩ି

ଵ
ଶ𝑯  𝑾())
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GNN 3.0: Variants of  Convolutions

Graph Wavelet Neural Network [1] Hyperbolic GCN [2]

• Employ Lanczos algorithm to obtain the low-
rank approximation of   the graph Laplacian 

I − 𝐷෩ି
భ

మ𝐴ሚ𝐷෩ି
భ

మ.  
• Easy to construct multi-scale Graph 

Convolution.

Lanczos Network [3]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

𝑔ఏ ∗ 𝑥 = 𝑈𝑔ఏ𝑈x 𝑯(ାଵ) = 𝜎(𝑫෩ ି
ଵ
ଶ𝑨෩𝑫෩ି

ଵ
ଶ𝑯  𝑾())
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GNN 3.0: Variants of  Convolutions

𝑯[:,]
ାଵ

= 𝜎 𝜓௦  𝑭.


𝜓௦
ିଵ



ୀଵ

𝐻[:,]
()

, 

𝑗 = 1, … , 𝑞

• Use wavelet transform to replace 
Fourier transform in the original GCN. 

• More localized convolution and flexible 
neighborhood. 

Graph Wavelet Neural Network [1] Hyperbolic GCN [2]

• Employ Lanczos algorithm to obtain the low-
rank approximation of   the graph Laplacian 

I − 𝐷෩ି
భ

మ𝐴ሚ𝐷෩ି
భ

మ.  
• Easy to construct multi-scale Graph 

Convolution.

Lanczos Network [3]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 
2019

𝑔ఏ ∗ 𝑥 = 𝑈𝑔ఏ𝑈x 𝑯(ାଵ) = 𝜎(𝑫෩ ି
ଵ
ଶ𝑨෩𝑫෩ି

ଵ
ଶ𝑯  𝑾())
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GNN 3.0: Variants of  Convolutions

𝑯[:,]
ାଵ

= 𝜎 𝜓௦  𝑭.


𝜓௦
ିଵ



ୀଵ

𝐻[:,]
()

, 

𝑗 = 1, … , 𝑞

• Use wavelet transform to replace 
Fourier transform in the original GCN. 

• More localized convolution and flexible 
neighborhood. 

Graph Wavelet Neural Network [1]

Construct the GCN in hyperbolic space.
• Smaller distortion.
• Suitable for scale-free and hierarchical structure. 

• Hyperbolic feature transform.
𝒉

ାଵ ,ு
= (𝑾 ାଵ ⨂ 𝒉𝒊

 ,ு
) ⨁𝒃(ାଵ)

• Attention-based hyperbolic aggregation.

𝒚
ାଵ ,ு

= AGG 𝒉  ,ு


Hyperbolic GCN [2]

• Employ Lanczos algorithm to obtain the low-
rank approximation of   the graph Laplacian 

I − 𝐷෩ି
భ

మ𝐴ሚ𝐷෩ି
భ

మ.  
• Easy to construct multi-scale Graph 

Convolution.

Lanczos Network [3]

[1] Xu, Bingbing, et al. 2018 [2] Chami, Ines, et al. 2019 [3] Liao, Renjie, et al. 2019

𝑔ఏ ∗ 𝑥 = 𝑈𝑔ఏ𝑈x 𝑯(ାଵ) = 𝜎(𝑫෩ ି
ଵ
ଶ𝑨෩𝑫෩ି

ଵ
ଶ𝑯  𝑾())
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GNN 3.0: GNN with Attention

Replace the fixed aggregation weight 𝑎 to 
the learnable self-attention.  

𝒉
(ାଵ)

= 𝜎(  𝑎

∈ே ௩

𝑊  𝒉
 )

𝑎 = exp(
𝜎 𝜶 𝑾𝒉 𝑾𝒉

∑ 𝜶 𝑾𝒉 𝑾𝒉∈ே(௩)

Graph Attention Network [1] Gated Attention Networks [2] Spectral Graph Attention Network [3]

𝒉
(ାଵ)

= 𝜎(∑ 𝑆,∈ே ௩
𝑾  𝒉


) 𝑺 = 𝑫෩ି

భ

మ𝑨෩𝑫෩ି
భ

మ

Fixed during training

[1] Veličković, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020
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GNN 3.0: GNN with Attention

Replace the fixed aggregation weight 𝑎 to 
the learnable self-attention.  

𝒉
(ାଵ)

= 𝜎(  𝑎

∈ே ௩

𝑊  𝒉
 )

𝑎 = exp(
𝜎 𝜶 𝑾𝒉 𝑾𝒉

∑ 𝜶 𝑾𝒉 𝑾𝒉∈ே(௩)

Graph Attention Network [1]

Add a learnable gate  𝑔
 to model the 

importance for each head.  

𝒉
(ାଵ)

= 𝜎( 𝑔
  𝑎

∈ே ௩

𝑊  𝒉




ୀଵ
)

K is the number of  heads. 

Gated Attention Networks [2] Spectral Graph Attention Network [3]

The original form: 

𝒉
(ାଵ)

= 𝜎(∑ 𝑆,∈ே ௩
𝑾  𝒉


) 𝑺 = 𝑫෩ ି

భ

మ𝑨෩𝑫෩ି
భ

మ

Fixed during training

[1] Veličković, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020
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GNN 3.0: GNN with Attention

Replace the fixed aggregation weight 𝑎 to 
the learnable self-attention.  

𝒉
(ାଵ)

= 𝜎(  𝑎

∈ே ௩

𝑊  𝒉
 )

𝑎 = exp(
𝜎 𝜶 𝑾𝒉 𝑾𝒉

∑ 𝜶 𝑾𝒉 𝑾𝒉∈ே(௩)

Graph Attention Network [1]

Add a learnable gate  𝑔
 to model the 

importance for each head.  

𝒉
(ାଵ)

= 𝜎( 𝑔
  𝑎

∈ே ௩

𝑊  𝒉




ୀଵ
)

K is the number of  heads. 

Gated Attention Networks [2]

Apply the attention on the high / low-
frequency components in spectral domain. 

𝑯(ାଵ) = 𝜎 AGG 𝑩𝑳𝑎𝑩𝑳𝑯  , 𝑩𝑯𝑎ு𝑩𝑯𝑯  𝑾 𝒍

𝑩 = [𝑩𝑳, 𝑩𝑯] is the spectral graph wavelet bases.

Spectral Graph Attention Network [3]

The original form: 

𝒉
(ାଵ)

= 𝜎(∑ 𝑆,∈ே ௩
𝑾  𝒉


) 𝑺 = 𝑫෩ ି

భ

మ𝑨෩𝑫෩ି
భ

మ

Fixed during training

[1] Veličković, Petar, et al. 2018 [2] Zhang, Jiani, et al. 2018 [3] Chang, Heng, et al. 2020
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Graph Attention Network in Detail

𝛼 = Softmax(𝑒)

𝑒 = LeakyReLU(𝒂் (𝑾𝒉 ||𝑾𝒉𝒋)

𝒉
(ାଵ)

= 𝜎(∑ 𝛼∈ே ௩
𝑾 𝒉


)Single head

attention

Multi-head
attention

Enrich the model capacity
and stabilize the learning
process

Each head has its own
parameters
and their outputs can be merged
in two ways:

 Concatenation
 Average Attention weights learnt for the Cora dataset
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Transformers as GNNs with Multi-head
Attention

Chaitanya Joshi. Transformers are graph neural networks, 2020.
https:// graphdeeplearning.github.io/post/transformers-are-gnns/

One layer
of the multi-head
QKV attention

Transformer takes input sequence
as a complete graph.

 Transformers can be viewed as GNNs with multi-head attention as
the neighborhood aggregation function

 Transformers for NLP tasks treat the entire sequence as
 the neighborhood
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GNN 3.0: GNN with Graph Pooling

Graph Pooling/Coarsening: Convert the node representation to graph representation.

• The most straightforward way: Max/Mean Pooling

• SAGE: Attentive Pooling

Graph  
Pooling

Introduce the self-attention mechanism to model the node 
importance during the pooling.  

Self-Attentive Graph Embedding（SAGE) 

Attn = softmax(𝑊௦ଶtanh(𝑊௦ଵ𝐻்))

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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GNN 3.0: GNN with Graph Pooling

Hierarchical Pooling

Learn the cluster assignment matrix to aggregate the node 
representations in a hierarchical way.  

Differentiable Graph Pooling (DIFFPOOL)[2]

Incorporate the node features and local structures to obtain a better 
assignment matrix.

EigenPooling [3]

The assignment matrix
𝑆 = softmax(GNN,୮୭୭୪(𝐴  , 𝑋()))

[1] Defferrard, Michaël, et.al. 2016 [2] Ying, Zhitao, et al. 2018 [3] Ma, Yao, et al. 2019

Graph  
Pooling

Graph Pooling with pre-defined subgraph by graph cut 
algorithm.

Graph Coarsening by Graph Cut [1]

Graclus with 
normalized cut
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GNN Implementation: Message Passing 
Framework

• Message Passing Framework:
• Step 1: Gather and transform the messages from neighbors:

𝒎
(ାଵ)

= AGG ( {𝑀 ାଵ (𝒉


, 𝒉


, 𝒆,)|  𝑗 ∈ 𝑁(𝑣)})

• Step 2: Update the state of the target node. 

𝒉
(ାଵ)

= 𝑈(ାଵ)(𝒉


, 𝒎
(ାଵ)

)

The message generation function. 
Input: the state of current node, the state of the 
neighbor node and the edge features.

The neighborhood set of node. E.g. 
1-hop neighbors.  

The aggregation function. 
E.g. SUM/MEAN/LSTM

The state update function. 

AGG

𝒉(𝒍)

𝒉(𝒍)

𝒉(𝒍)

M

M

M

Step 1

𝒉(𝒍ା𝟏)

Step 2

Gilmer, Justin, et al. "Neural Message Passing for Quantum Chemistry." ICML. 2017.
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Examples of Message Passing Realizations

GCN (ICLR 2017)

Most of  current GNNs can be formulated as a message passing process. 

Graph Attention Network (ICLR 2018) Gated GNNs (ICLR 2016)

Deep Locally Connected Networks
(ICLR 2014)

Interaction Networks (NeurIPS 2016) Deep Tensor Neural Networks (Nature
Communications 2017)

Wang, Minjie, et al. "Deep graph library: A graph-centric, highly-performant package for graph neural networks." arXiv preprint arXiv:1909.01315 (2019).

Fey, Matthias and Lenssen, Jan Eric Fast Graph Representation Learning with PyTorch Geometric. (2019). , cite arxiv:1903.02428.



UT Arlington CSE 6392 Advanced Topics in Scalable Learning 42

Summary

Advanced topics

Training Deep GNNs 

Scalability of  GNNs

Self/Un-Supervised 
Learning of GNNs 

Robustness of  GNNs

….

@change advanced topics
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Training Deep GNNs 
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Training Deep GNNs

Why do we need deep GNNs?

Can GNNs simply go deep?

What impedes GNNs to go deep?

How to make GNNs deep?
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The Power of  Deep DNNs

Unprecedented success of  deep DNNs in computer vision

Deep DNNs enable larger receptive fields

Deep DNNs enable more expressivity

Layer 1

Layer 2

Layer 3
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The Power of  Deep GNNs

Do GNNs need deep structures to enable larger receptive fields, too? 

What limits the expressive power of  GNNs?
The depth 𝑑

The width 𝑤

GNNs significantly lose their power when capacity, , is restricted

Shortest Path Cycle Detection Subgraph

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." International Conference on Learning Representations. 2020.



UT Arlington CSE 6392 Advanced Topics in Scalable Learning 47

The Power of  Deep GNNs

Do GNNs need deep structures to enable larger receptive fields, too? 

What limits the expressive power of  GNNs?
The depth 𝑑

The width 𝑤

GNNs significantly lose their power when capacity, , is restricted

Shortest Path Cycle Detection Subgraph

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." International Conference on Learning Representations. 2020.
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The Power of  Deep GNNs

The boundary of  capacity for different problems

Loukas, Andreas. "What graph neural networks cannot learn: depth vs width." International Conference on Learning Representations. 2020.

(Loukas, ICLR’20)
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Training Deep GNNs

Why do we need deep GNNs?

Can GNNs simply go deep?

GCN: Basic GCN

GraphSAGE: GCN with improved aggregation

ResGCN: leverage idea from ResNet

What impedes GNNs to go deep?

How to make GNNs deep?
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GNNs are Shallow

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

But can they really go deep? Not all

64 layers16 layers4 layersCiteseer

44.665.276.7GCN

16.972.977.3GraphSAGE

21.278.278.9ResGCN0

20

40

60

80

100

4 8 16 32 64

Accuracy

GCN GraphSAGE ResGCN
(Rong et al, ICLR’20)
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Training deep GNNs

Why do we need deep GNNs?

Can GNNs simply go deep?

What impedes GNNs to go deep?

Overfitting (Common)

Training dynamics (Common)

Over-smoothing (Graph Specific)

How to make GNNs deep?
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Training deep GNNs

Why do we need deep GNNs?

Can GNNs simply go deep?

What impedes GNNs to go deep?

Overfitting (Common)

Training dynamics (Common)

Over-smoothing (Graph Specific)

How to make GNNs deep?



GNNs suffer from Overfitting

Too many parameters are established but only few of  data points are provided
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Overfitting

Rong, Yu, et al. "Dropedge: Towards deep graph convolutional networks on node classification." ICLR 2020.

(Rong et al, ICLR’20)
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Training deep GNNs

Why do we need deep GNNs?

Can GNNs simply go deep?

What impedes GNNs to go deep?

Overfitting (Common)

Training dynamics (Common)

Over-smoothing (Graph Specific)

How to make GNNs deep?
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Training dynamics

𝑙-layers gradient

ାଵ





ିଵ




 ାଵ ିଵ ାଵ





The gradients vanish as the model go deep because ଵ… ାଵ

RGB as Features Layer 1 Layer 100 Layer 200 Layer 500
RGB=[0,0,0]
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Training deep GNNs

Why do we need deep GNNs?

Can GNNs simply go deep?

What impedes GNNs to go deep?

Overfitting (Common)

Training dynamics (Common)

Over-smoothing (Graph Specific)

How to make GNNs deep?
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Over-Smoothing

GNNs suffers from over-smoothing

Initial 99 layers(Huang et al. arXiv’20)

Over-smoothing: node representations become less distinguishable with each other 

when the depth increases 
(Li et al. AAAI’18; Chen et al. AAAI’20; Oono et al. ICLR’20; Rong et al. ICLR’20; Huang et al. arXiv’20)

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing

Over-smoothing also impedes training.

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing

Why GNN works?

By message passing, GNN is able to capture the local structure;

Several works (Xu et al., 2019, Murphy et al., 2019) show that GNN is 

equivalent to the Weisfeiler-Lehman (WL) test under a careful design

GNN
(GCN, GraphSAGE, MPNN) Isomorphic?
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Over-Smoothing

When GCNs fail?
With linear activation 

With ReLU activation

ith ReLU and bias

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing of  Linear GCN

When GCNs fail?

With linear activation

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

𝑙-step Random Walk


 

Tang, Jian, et al. "Line: Large-scale information network embedding." In WWW, 2015.

Probability of walking
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Over-Smoothing of  Linear GCN

When GCNs fail?

With linear activation

𝑙-layer GCNs



Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

𝑙-step Random Walk


 

Learnable Probability
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Over-Smoothing of  Linear GCN

When GCNs fail?

With linear activation

Eigen decomposition

  
ୃ 

ୀଵ

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

𝑙-step Random Walk

𝑙-layer GCNs
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Over-Smoothing of  Linear GCN

Rewrite eigen decomposition

Eigen decomposition

𝜆ଵ𝑢ଵ𝑢ଵ
ୃ 𝑋𝑊 + ⋯ 𝜆𝑢𝑢

ୃ 𝑋𝑊 + 𝜆ାଵ𝑢ାଵ𝑢ାଵ
ୃ 𝑋𝑊 + ⋯ 𝜆𝑢𝑢

ୃ 𝑋𝑊

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." AAAI 2018.
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Over-Smoothing of  Linear GCN

Rewrite eigen decomposition

Suppose graph has connected components. It indicates

Eigen decomposition

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

Eigenvalues
1 = 𝜆ଵ = ⋯ = 𝜆 > 𝜆ାଵ > ⋯ > 𝜆 > −1

𝜆ଵ𝑢ଵ𝑢ଵ
ୃ 𝑋𝑊 + ⋯ 𝜆𝑢𝑢

ୃ 𝑋𝑊 + 𝜆ାଵ𝑢ାଵ𝑢ାଵ
ୃ 𝑋𝑊 + ⋯ 𝜆𝑢𝑢

ୃ 𝑋𝑊
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Over-Smoothing of  Linear GCN

Rewrite eigen decomposition

Suppose graph has connected components. It indicates

When , 

Eigen decomposition

Eigenvalues
1 = 𝜆ଵ = ⋯ = 𝜆 > 𝜆ାଵ > ⋯ > 𝜆 > −1

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

Convergence

𝑌 = lim
→ஶ

𝜆ଵ
 𝑢ଵ𝑢ଵ

ୃ𝑋𝑊 + ⋯ 𝜆
 𝑢𝑢

ୃ 𝑋𝑊 + 𝜆ାଵ
 𝑢ାଵ𝑢ାଵ

ୃ 𝑋𝑊 + ⋯ 𝜆
 𝑢𝑢

ୃ𝑋𝑊 

𝜆ଵ𝑢ଵ𝑢ଵ
ୃ 𝑋𝑊 + ⋯ 𝜆𝑢𝑢

ୃ 𝑋𝑊 + 𝜆ାଵ𝑢ାଵ𝑢ାଵ
ୃ 𝑋𝑊 + ⋯ 𝜆𝑢𝑢

ୃ 𝑋𝑊
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Over-Smoothing of  Linear GCN

When , 

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "deep insights into graph convolutional networks for semi-supervised learning." AAAI 2018.

Convergence

𝑌 = 𝑢ଵ(𝑢ଵ
ୃ𝑋𝑊) + ⋯ 𝑢(𝑢

ୃ 𝑋𝑊), where 𝑢 𝑗 = 𝑑


ଵ
ଶ ⋅ 𝛿 node 𝑗 in component 𝑖

⋯𝑑ଵ

ଵ
ଶ𝑧ଷ𝑑ଵ

ଵ
ଶ𝑧ଶ𝑑ଵ

ଵ
ଶ𝑧ଵ

𝑑ଶ

ଵ
ଶ𝑧ଷ𝑑ଶ

ଵ
ଶ𝑧ଶ𝑑ଶ

ଵ
ଶ𝑧ଵ

Node 1

Node 2

1
2

Node 1 is indistinguishable with node 2

The nodes within the same connected component are distinguishable only by their 
degrees

degree

ଵ ଶ
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Over-Smoothing of  Non-Linear GCN

With ReLU activation

Similar to the linear case, but hard to derive the exact 

convergence point. Require the notion of  subspace (Oono et al., 

ICLR’20)：
ℳ subspcae

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.

ℳIt is proved that (Oono et al., ICLR’20):
an infinite-layer GCN will converge to a certain point 
within a subspace 
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Over-Smoothing of  Non-Linear GCN

Convergence of 𝐴ሚ

Convergence

ℳ ାଵ ℳ  ାଵ ℳ 

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.

ℳ ାଵ ℳ ାଵ
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Over-Smoothing of  Non-Linear GCN

Convergence of 𝐴ሚ

ℳ ାଵ ℳ ାଵ

Convergence of 𝑊

ℳ  ℳ

Convergence

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.

ℳ ାଵ ℳ  ାଵ ℳ 
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Over-Smoothing of  Non-Linear GCN

Convergence of 𝐴ሚ

Convergence of 𝑊

ℳ ℳ 

Convergence of 
ReLU

ℳ ℳ

Convergence

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.

ℳ ାଵ ℳ  ାଵ ℳ 

ℳ ାଵ ℳ ାଵ
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Over-Smoothing of  GCNs with bias

• With ReLU and bias

GCNs with bias

ାଵ   

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing of  GCNs with bias

converges to a certain sub-cube with ReLU and bias

GCNs with bias

ାଵ 

Convergence of bias

ℳ ାଵ ାଵ ℳ  ℳ

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Over-Smoothing of  GCNs with bias

With ReLU and bias

GCNs with bias

ାଵ 

Convergence of bias

ℳ ାଵ ାଵ ℳ  ℳ

 converges to a certain sub-cube:

 ℳ 
ௗℳ 

ଵିఒశభ௦

GCN with bias

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

(Huang et al. arXiv’20)
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Summary

Non-linear GCN

 converges to a certain point within a certain subspace

Linear GCN

 converges to a certain point that can be exactly derived

GCN with bias

 converges to a certain point within a certain sub-cube

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Other methods to measure over-smoothing

One can explicitly measure over-smoothing using distance between node 

pairs (Chen et al., 2020)

Chen, et al. “Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View.” AAAI 2020

Pair Distance


 

  The i-th row 
of the output

Mean Average Distance



௧௧

ୀ


௧௧

ୀ

1
2

𝒊𝒋

Other metrics see PairNorm (Zhao et al., 2020); GroupNorm (Zhou et al., 

2020)

Zhao, Lingxiao, and Leman Akoglu. "PairNorm: Tackling Oversmoothing in GNNs." ICLR. 2020.
Zhou et al. "Towards Deeper Graph Neural Networks with Differentiable Group Normalization Kaixiong Zhou Texas A&M University zkxiong@tamu.edu Xiao Huang The 
Hong." NIPS 2020.
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Training deep GNNs

Why do we need deep GNNs?

Can GNNs simply go deep?

What impedes GNNs to go deep?

Overfitting (Common)

Training dynamics (Common)

Over-smoothing (Graph Specific)

How to make GNNs deep?

Architecture refinement

Manipulating input (DropEdge) 

Layer normalizations
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Shortcuts in Structures

ResGCN

Input

GCL

GCL

GCL

Output

JKNet

Aggregation

Input

GCL

GCL

GCL

Output

IncepGCN

Aggregation

Input

GCL

GCL

GCL

GCL

GCL

GCL

Output

APPNP

Input

APPNP

GCL

Output

KK+1

Aggregation

𝐻ାଵ = 𝑓 𝐴, 𝐻 + 𝐻

𝐻ାଵ = 𝑓 𝐴, 𝐻

𝐻ାଵ = 𝑎𝑔𝑔(𝐻ଵ, … , 𝐻)
𝐻,ାଵ = 𝑓 𝐴, 𝐻,  𝑝 > 𝑙 + 1

𝐻ାଵ = 𝑎𝑔𝑔(𝐻ଵ,ଵ, … , 𝐻,)
𝑍ାଵ = 1 − 𝛽 𝐴𝑍

+𝛽𝐻

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

Other architectures including SGC (Wu et al., 2019), GCNII (Chen et al., 2020), etc.
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Shortcuts in Structures

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64

Accuracy

GCN GraphSAGE ResGCN

JKNet IncepGCN APPNP

APPNP

IncepGCN

JKNet
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Shortcuts in Structures

Indeed, general GCNs converge to a certain 
sub-cube with speed and radius .

Residual connections are helpful (akin to CNNs) 

Do residual connections alleviate over-smoothing?

Huang, Wenbing, et al. “Tackling Over-Smoothing for General Graph Convolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

GCN with bias

ℳ ାଵ ℳ 
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Shortcuts in Structures

General Case

onverging to sub−cube with speed ିଵ and radius 

Generic GCN

ାଵ

GCN with bias

ାଵ

ℳ

Basic GCN

ResGCN

ାଵ

APPNP

（ ） ାଵ

ℳ 

Different Structures

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Shortcuts in Structures

General Case

eneral models converge to with speed  , when 

Generic GCN

ାଵ

GCN with bias

ାଵ

𝓜

Basic GCN

ResGCN

ାଵ

APPNP

（ ） ାଵ

ℳ 

Different Structures

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

is nonzero



UT Arlington CSE 6392 Advanced Topics in Scalable Learning 83

Shortcuts in Structures

General Case

eneral models converge to with speed  , when 

Generic GCN

ାଵ

GCN with bias

ାଵ

ℳ

Basic GCN

ResGCN

𝒎ା𝟏

APPNP

（ ） ାଵ

ℳ 

Different Structures

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

is increased
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Shortcuts in Structures

General Case

eneral models converge to with speed  , when 

Generic GCN

ାଵ

GCN with bias

ାଵ

ℳ

Basic GCN

ResGCN

ାଵ

APPNP

（ ） 𝒎ା𝟏

𝓜 𝟎

Different Structures

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

is decreased
is nonzero
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Over-smoothing Layer

For all cases, the over-smoothing speed is controlled by 
(the second-biggest eigenvalue of  normalized adjacency 

matrix)

So how to increase ?



So how to increase ାଵ? Drop Edges!

In expectation:
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Alleviate Over-Smoothing by DropEdge

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

ାଵ

Dropping rate
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Upper Bound Lower Bound v

𝛾(𝑝)

𝜇(𝑝)

𝜆(𝑝)
𝑝

𝝀(𝒑)

Both 𝜇 and 𝛾 monotonically increase w.r.t. 𝑝;

The gap 𝛾 − 𝜇 monotonically decreases w.r.t. 𝑝;

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

Lower bound

Upper bound



Huang et al., 2020 has considered the re-normalization trick in our analyses, 

in contrast to Rong et al., 2020
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Alleviate Over-Smoothing by DropEdge

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020

(Rong et al., 2020) 



Besides, DropEdge can prevent over-fitting as well!
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Alleviate Over-Smoothing by DropEdge

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020



DropEdge results
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Alleviate Over-Smoothing by Adjacency 
Matrix

DropEdges64 layersDropEdges16 layersDropEdges4 layersCiteseer

45.6(+1.0)44.676.8(+11.6)65.279.2(+2.5)76.7GCN

75.3(+54.1)21.279.4(+1.2)78.278.8(-0.1)78.9ResGCN

80.0(+3.3)76.780.1(+1.3)78.880.2(+1.1)79.1JKNet

79.9(+0.9)79.080.2(+1.7)78.579.9(+0.4)79.5IncepGCN

25.1(+8.2)16.974.5(+1.6)72.979.2(+1.9)77.3GraphSAGE

81.3(+0.9)80.481.1(+0.9)80.280.8(+0.5)80.3APPNP

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.

Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020



DropEdge results
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Alleviate Over-Smoothing by Adjacency 
Matrix

Rong, Yu, et al. “Dropedge: Towards deep graph convolutional networks on node classification.” ICLR 2020.
Huang, Wenbing, et al. “Tackling Over-Smoothing for General GraphConvolutional Networks.” arXiv preprint arXiv: 2008.09864, 2020
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Alleviate Over-Smoothing by Weights

Convergence speed

ାଵ

Similarly, increasing will also increase . So how to increase ? Increase the 

initial s.

Weights

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.
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Alleviate Over-Smoothing by Weights

Try different as initial

Oono, Kenta, and Taiji Suzuki. "Graph Neural Networks Exponentially Lose Expressive Power for Node Classification." ICLR 2020.
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Training deep GNNs

Why do we need deep GNNs?

Can GNNs simply go deep?

What impedes GNNs to go deep?

Overfitting (Common)

Training dynamics (Common)

Over-smoothing (Graph Specific)

How to make GNNs deep?

Architecture refinement

Manipulating input (DropEdge) 

Layer normalizations
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Pair Norm: Center and Rescale

PairNorm: Center and rescale (normalize) GCN outputs to 

keep the total pairwise squared distance unchanged

Center




 



ୀଵ

Rescale






ி

ଶ

Zhao, Lingxiao, and Leman Akoglu. "PairNorm: Tackling Oversmoothing in GNNs." ICLR. 2020.

See also GroupNorm (Zhou et al., 2020)
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Self/Un-Supervised Learning of GNNs 
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What we discussed before are supervised

Graph Neural Network

GNN 𝑋, 𝐴 Preds

Training Loss

Labels

• Labels are scarce, e.g. molecular property

• Training/Testing tasks are Non I.I.D. 
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Existing Self-Supervised GNNs

Graph 
Reconstruction

Graph-
Classification

Link/Metapath
Prediction

Node-
Classification

N-gram Graph [4], 
PreGNN [5] , 
GROVER [7]

GCC [6]

ଶ [11]
SELAR[12]

EP-B [2], 
GraphSAGE [3],

GROVER [7]

Predictive 
Methods

VGAE [1]
VRVGA[13]
SIG-VAE[14]

InfoGraph [10]
DGI [8], 
GMI [9]

Information-
based Methods

[1] Kipf & Welling 2016; [2] Durán & Niepert 2017; [3] Hamilton et al. 2017; 
[4] Liu et al. 2019; [5] Hu et al. 2020; [6] Qiu et al. 2020; [7] Rong et al. 2020; 
[8] Veliˇckovi´c et al. 2019; [9] Peng et al. 2020; [10] Sun et al. 2020  
[11] Peng, Zhen, et al. 2020 [12] Hwang, Dasol, et al. 2020 
[13] Pan, Shirui, et al. 2018 [14] Hasanzadeh, Arman, et al. 2019 



“In self-supervised learning, the system learns to predict part of  its 
input from other parts of  its input.”  ---- by Yann Lecun

Graphs are highly structured!
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Node Classification

• Two typical ways to formulate training loss

ℎ௨ ℎ௩

I. Enforcing 
Adjacent Similarity

ℎ௩~ℎ௩
II. Reconstruction 
from Neighbors

GraphSAGE

EP-B ℎ௨ଵ

ℎ௨ଷ

ℎ௨ଶ
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I Enforcing Adjacent Similarity

• GraphSAGE (Hamilton et al. 2017)

min − 𝐸𝒖∼𝑵 𝒗 log 𝜎 ℎ்
௨ℎ௩ − 𝜆𝐸𝒗𝒏∼𝑷𝒏 𝒗 [log (𝜎 −ℎ்

௩
ℎ௩ )]

Enforcing nearby nodes to have similar representations, while enforcing 
disparate nodes to be distinct:

ℎ௨

ℎ௩

ℎ௨

ℎ௩

ℎ௩: representation of  target node;
ℎ௨: representation of  neighbor/positive node;
ℎ௩

: representation of  disparate/negative node;
𝑃(𝑣): negative sampling. 

Positive Samples Negative Samples
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II Reconstruction from neighbors

• EP-B (Durán & Niepert, 2017)

min  [𝛾 + 𝑑 𝒉෩𝒗, ℎ௩ − 𝑑 𝒉෩𝒗, ℎ௨ ]ା

௨∈\{௩}

ℎ௩: representation of  target node;
ℎ௨: representation of  nodes except 𝑣;
𝒉෩𝒗: AGG(ℎ|𝑙 ∈ 𝑁(𝑣))  is the reconstruction from neighbors;
𝛾: the bias

The objective is to minimize the reconstruction error (regulated by the 
error to other nodes): 

ℎ௩~ℎ௩

ℎ௨ଵ

ℎ௨ଷ

ℎ௨ଶ

Positive 
Samples

Negative 
Samples

Hinge loss

Durán & Niepert. Learning Graph Representations with Embedding Propagation.
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Link/Metapath Prediction 

• ଶ (Peng, Zhen, et al. 2020 )

ℎ௩ℎ௨ଵ

ℎ௨ଶ

ℎ௨ସ

ℎ௨ଷ

Predict hop counts (K-hop connectivity)

1-hop

2-hop

• SELAR(Hwang, Dasol, et al. 2020 )

Metapath 1

Metapath 2

Metapath 3

Predict the type of  meta path between two nodes

？
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How about graph classification/regression?

Toxicity?

Solubility?

…
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N-Gram Graph

• (Liu et al. 2019)

Stage I: Node Representation Stage II: Graph Representation

First learn node representations by CBoW-like 
pipeline

ℎ௩

𝑓 = ∏ ℎ∈ ;

ℎ௨ଵ

ℎ௨ଶ

ℎ௨ଷ
ℎ௨ସ

For all n-gram paths: 
𝑓() =  𝑓

∈୬ି୰ୟ

𝐹 = [𝑓 ଵ , … , 𝑓(்)]

ℎ௩ℎ௨ଵ

ℎ௨ଶ

ℎ௨ସ

ℎ௨ଷ

Graph Representation:

Equivalent to a GNN that needs no training

Liu et al. N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules. 
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PreGNN: Node- and Graph-level 
Pretraining

• (Hu et al. 2020)

ℎ௩ℎ௨ଵ

ℎ௨ଶ

ℎ௨ଷ
ℎ௨ସ

ℎ௩ℎ௨ଵ

ℎ௨ଶ

ℎ௨ସ

ℎ௨ଷ

First learn node representations by Context 
Prediction or Attribute Masking

Then perform graph-level multi-task Supervised 
Training

𝑚𝑖𝑛   CrossEntropy(ℎீ, 𝑦ீ)

ℎீ = Readout(ℎ௩|𝑣 ∈ 𝐺)

Both node- and graph- level training are crucial!

Stage I: Node Representation Stage II: Graph Representation

Hu et al. Strategies for Pre-training Graph Neural Networks.
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PreGNN

• (Hu et al. 2020)

Context Prediction
Attribute Masking

min − log 𝜎 (ℎ௩
)்𝐶௩

ீ − 𝐼(𝑣 ≠ 𝑣′)𝑙𝑜𝑔(1 − 𝜎((ℎ௩
)் 𝐶௩ᇱ

ீᇲ
))

ℎ௩
: K-hop information

𝐶௩
ீ : Structures between r1 

and r2 -hop

Positive Samples

Enforcing node representation to be similar to its contextual structures: 

Negative Samples Degenerates to EP-B, 
if  r1=0, r2=K=1

Stage I: Node Representation

Hu et al. Strategies for Pre-training Graph Neural Networks.
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PreGNN

• (Hu et al. 2020)

Context Prediction
Attribute Masking

Mask random node/edge attribute and predict it, just like Bert: 

𝑥௨ଵ

𝑥௨ଶ

𝑥௨ସ

𝑥௨ଷ

MASK GNN(𝐴, 𝑋)
𝑥௩

𝑣

Stage I: Node Representation

Hu et al. Strategies for Pre-training Graph Neural Networks.
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GCC: Contrastive learning

• (Qiu et al. 2020)

Both N-Gram Graph and PreGNN do not perform graph-level unsupervised
training:

min − log
exp (𝑞்𝑘ା/𝜏)

∑ exp (𝑞்𝑘/𝜏)
ୀ

𝑞: representation of  different graphs;
𝑘: key of  different graphs;
𝑘ା: positive key generated by random graph perturbation
𝜏: temperature

But, GCC only conducts graph-level pre-training, without node-level 
distinguishment  

Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. 

InfoNCE

r-ego network
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GROVER (Rong et al. 2020)

Graph-Level
Self-Supervised

Node-Level
Self-SupervisedMethods

N-Gram Graph

PreGNN

GCC

GROVER
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GROVER

• (Rong et al. 2020)

Predicting node/edge contexts instead of  node labels can better capture 
local structures  (multi-label)

Stage I: Node/Edge-level pretraining

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.
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GROVER

• (Rong et al. 2020)

Stage II: Graph-level pretraining

Predicting a graph if  contains pre-defined graph motifs.

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.



• MPNN: Extract local structural information of graphs.
• dyMPN: Randomize the message passing hops for the 

dynamic receptive field modeling. 
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GROVER

• One more thing: GTransformer

We build a more expressive and transformer-alike model: GTransformer

• Multi-Head Attention: model global interaction 
between nodes/edges. 

• Long-range Residual Connection:  alleviating  the 
vanishing gradient and over-smoothing.

• Output for both node embedding and edge 
embedding.

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.



We pre-train GROVER with 100 million parameters on 10 
million unlabeled molecules collected from ZINC15 and 
Chembl

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.
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GROVER

Molecular classification

Rong et al. GROVER: Self-supervised Message Passing Transformer on Large-scale Molecular Data.
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Existing Self-Supervised GNNs

Graph 
Reconstruction

Graph-
Classification

Link/Metapath
Prediction

Node-
Classification

N-gram Graph [4], 
PreGNN [5] , 
GROVER [7]

GCC [6]

ଶ [11]
SELAR[12]

EP-B [2], 
GraphSAGE [3],

GROVER [7]

Predictive 
Methods

VGAE [1]
VRVGA[13]
SIG-VAE[14]

InfoGraph [10]DGI [8], 
GMI [9]

Information-
based Methods

[1] Kipf & Welling 2016; [2] Durán & Niepert 2017; [3] Hamilton et al. 2017; 
[4] Liu et al. 2019; [5] Hu et al. 2020; [6] Qiu et al. 2020; [7] Rong et al. 2020; 
[8] Veliˇckovi´c et al. 2019; [9] Peng et al. 2020; [10] Sun et al. 2020  
[11] Hwang, Dasol, et al. 2020 [12] Peng, Zhen, et al. 
[13] Pan, Shirui, et al. 2018 [14] Hasanzadeh, Arman, et al. 2019 
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What makes a good representation?

“One natural criterion that we may expect any good representation to meet, at least to some degree, is to retain a 
significant amount of  information about the input.” by Vincent et al. 2010

𝑋 Encoder 𝑌

Input Representation

Decoder 𝑋′

Reconstruction

Auto-Encoder (AE)

Hinton & Salakhutdinov 2006; Vincent et al. 2010 
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Graph Auto-Encoders (VGAE)

Input Graph

A

X

Z 𝑨
sigmoid(𝒁𝒁)

Decoder

GCN

Encoder

Kipf, T. N., & Welling, M. (2016).

The overall loss：

(𝒁|𝑿,𝑨)

The reconstruction loss. 
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Variational Graph Auto-Encoders (VGAE)

Input Graph

A

X

Z 𝑨
sigmoid(𝒁𝒁)

Decoder

GC
N

Encoder

𝐺𝐶𝑁ఙ

𝐺𝐶𝑁ఓshared 
first layer

Kipf, T. N., & Welling, M. (2016).

The overall loss：

(𝒁|𝑿,𝑨)

The reconstruction loss. The KL divergence 
between q(.) and p(.)

𝑞 𝒛 𝑿, 𝑨 = 𝓝(𝒛|𝝁, diag(𝝈
𝟐))
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What makes a good representation?

• A more direct way, other than AE?
• Yes, Mutual Information (MI). 

𝐼 𝑋; 𝑌 = 𝐷(𝑝 𝑋 𝑝(𝑌)||𝑝(𝑋, 𝑌))
= 𝐻 𝑋 − 𝐻(𝑋|𝑌)

Entropy Conditional Entropy

 0 ≤ 𝐼 𝑋; 𝑌 ≤ 𝐻 𝑋  or H(Y);

 𝐼 𝑋; 𝑌 = 0 iff  𝑋 and 𝑌 are independent random variables;

 𝐼 𝑋; 𝑌 = 𝐻 𝑋 = 𝐻(𝑌), if  𝑋 and 𝑌 are determinately related, i.e. 𝐻 𝑋 𝑌 = 0
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AE is a lower bound of  MI

Mutual Information Reconstruction error

(Hjelm et al. 2019)

Computing MI is hard and not end-to-end, until recently (CPC, Oord et al., 2018; MINE, Belghazi
et al., 2018; Nowozin et al., 2016; Hjelm et al. 2019)
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Estimating/Maximizing MI (Hjelm et al. 
2019)

𝐼୍ 𝑋; 𝑌 ≜ 𝐸(,) 𝑇௪ 𝑥, 𝑦 − log 𝐸  ()[exp(𝑇௪ 𝑥, 𝑦 )]

MINE (Belghazi et al., 2018)：

𝐼ୗୈ 𝑋; 𝑌 ≜ 𝐸 , log 𝜎 𝑇௪ 𝑥, 𝑦 + 𝐸    [log(1 − 𝜎 𝑇௪ 𝑥, 𝑦 )]

JSD MI estimator (Nowozin et al., 2016)：

𝐼େ 𝑋; 𝑌 ≜ 𝐸 , [log
exp 𝑇௪ 𝑥, 𝑦

∑ exp 𝑇௪ 𝑥′, 𝑦௫ᇲ~()

]

InfoNCE MI estimator (Oord et al., 2018)：

𝑿, 𝒀 max
்ೢ

𝐼መ்
ೢ

𝑋; 𝑌 → max 𝐼(𝑋; 𝑌)  𝑇௪ 𝐼መ்
ೢ

𝑋; 𝑌

Maximize Lower 
bound of  MI
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Deep Graph Infomax (DGI)

• (Velickovic et al. 2019)

GNN𝑿, 𝑨 ℎ

MI maximization

max
ୋ

𝐼 𝑋, 𝐴; ℎ ≈ max log (𝐷 ℎ; 𝑿, 𝑨 ) + log (1 − 𝐷(ℎ෨; 𝑿, 𝑨))

ℎ = GNN(𝑋, 𝐴) ℎ෨ negative sample

The JSD MI estimator is applied：
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Deep Graph Infomax (DGI)

GNN

GNN

Clean Inputs

Corrupted Inputs

Readout

max
ୋ

𝐼 𝑋, 𝐴; ℎ = m𝑎𝑥
ୋ

log (𝐷 ℎ; 𝒔 ) + log (1 − 𝐷(ℎ෨; 𝒔))  

It is hard to directly compute 𝐷(ℎ෨; 𝑿, 𝑨), thus DGI resorts to readout 𝒔 = 𝑅(𝑿, 𝑨): 

max
ீேே

𝐼 𝑋, 𝐴; ℎ ≈ max log (𝐷 ℎ; 𝑿, 𝑨 ) + log (1 − 𝐷(ℎ෨; 𝑿, 𝑨))
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Deep Graph Infomax (DGI)

It can be proved that, if  the readout 𝑠 = 𝑅(𝑋, 𝐴) is injective,

log 𝐷 ℎ; 𝒔 + log 1 − 𝐷 ℎ෨; 𝒔 = log 𝐷 ℎ; 𝑿, 𝑨 + log 1 − 𝐷 ℎ෨; 𝑿, 𝑨  

It can be also proved that, if  𝑿 = |𝒔| is finite,

max log 𝐷 ℎ; 𝒔 + log 1 − 𝐷 ℎ෨; 𝒔 = max 𝐼(ℎ; 𝑋, 𝐴) 
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• Some issues in DGI

 Computing MI requires the injectivity of  readout function

 It resorts to graph corruption to generate negative samples

 Distinct encoders and corruption functions for different tasks
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GMI: Graphical Mutual Information

• (Peng et al. 2020)

The basic idea of  GMI is to compute the MI directly.

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.
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GMI: Graphical Mutual Information

The basic idea of  GMI is to compute the MI directly.

𝐼 𝑋, 𝐴; ℎ ≈ 𝐼 𝑋; ℎ +  𝐼(𝜎(ℎ
்ℎ); 𝐴)

∈ே()

Feature MI Topology MI

 It is both feature- and edge- aware;

 No need to readout or corruption;

 Feature MI can be further decomposed;

We define that,

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.
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GMI: Graphical Mutual Information

• (Peng et al. 2020)

It can be proved that, if  certain mild condition meets,

𝐼 𝑋; ℎ = ∑ 𝑤𝐼(𝑥;  ℎ)∈ே() ,  for 0 ≤ 𝑤 ≤ 1

The global MI is decomposed into a weighted sum of  local MIs.
It is not a bad idea to let 𝑤 = 𝜎(ℎ

்ℎ)

We then apply the JSD MI estimator to compute 𝐼(𝑥;  ℎ) and 

𝐼(𝜎(ℎ
்ℎ); 𝐴)

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.
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GMI: Graphical Mutual Information

• Node Classification

We use a universal backbone (GCN) for all tasks, different from DGI

Codes:  https://github.com/zpeng27/GMI

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.
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GMI: Graphical Mutual Information

• Link Prediction

We use an universal backbone (GCN) for all tasks

Codes:  https://github.com/zpeng27/GMI

Peng et al. Graph Representation Learning via Graphical Mutual Information Maximization.
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Summary

Graph 
Reconstruction

Graph-Classification
Link/Metapath

Prediction
Node-

Classification

N-gram Graph [4], 
PreGNN [5] , 
GROVER [7]

GCC [6]

ଶ [11]
SELAR[12]

EP-B [2], 
GraphSAGE [3],

GROVER [7]

Predictive 
Methods

VGAE [1]
VRVGA[13]
SIG-VAE[14]

InfoGraph [10]
DGI [8], 
GMI [9]

Information-
based Methods
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Applications

• GNN in Social Networks
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GNN in Social Networks

• "Semi-supervised graph classification: A hierarchical graph 
perspective." WWW 2019

• "Inverse Graph Identification: Can We Identify Node 
Labels Given Graph Labels?" arXiv 2020
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Hierarchical Graph Classification

• Hierarchical Graph: A set of  graph instances are interconnected via edges.
• Social network with group structure.

• Document (graph-of-words) collection with citation relation.

• The Problem:  predicts the class label of  graph instances in a hierarchical graph.

Label: Bad

Group 
A Label: Good

Group B

Label: ???

Group 
C

Label: ???

Group 
D

A B

C D

Connections between 
graph instances

: Group

: User 

Hierarchical Graph

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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Hierarchical Graph Classification

• The Problem:  predicts the class label of  graph instances in a hierarchical graph.

• Challenges: 
• How to represent the graphs with arbitrary size into a fixed-length vector?

• How to incorporate the information of  instance level and hierarchical level?

Label: Bad

Group 
A Label: Good

Group B

Label: ???

Group 
C

Label: ???

Group 
D

A B

C D

Connections between 
graph instances

: Group

: User 

Hierarchical Graph

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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Graph Instance Level：Self-Attentive Graph 
Embedding

• How to represent the graphs with arbitrary size into a fixed-length vector?

• Graph representation learning at different level:
• Node Level: 𝐺(𝑉, 𝐸) → 𝐻×௩ 

• Graph Level: 𝐺(𝑉, 𝐸) → 𝑒௩ 

• SAGE：Self-Attentive Graph Embedding
• Size invariance  ---- Self-attention 

• Permutation invariance ---- GCN Smoothing

• Node importance  ---- Self-attention

• Self-attention 𝑆 : 𝑟 opinions about node importance.

GCN GCN

𝑒 ∈ ℝ×௩

Embedding
Matrix

+ Softmax𝐻 ∈ ℝ×௩

𝑆 ∈ ℝ×

Self 
Attention

𝐻 ∈ ℝ×௩

GCN Smoothing

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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The Unified Model

• How to incorporate the information of  instance level and hierarchical level?
• Instance Level Model : Graph Level Learning (SEGA)

• Hierarchical Level Model: Node Level Learning (GCN)

• Feature Sharing: Concatenate the output of  SEGA to the input of  GCN.

• Disagreement Loss：The disagreement between instance classifier and hierarchical classifier should be minimized. 

𝑔ଵ 𝑔ଶ

𝑔ଷ 𝑔ସ

𝑔ଵ 𝑔ଶ

𝑔ଷ 𝑔ସ

Hierarchical Level

Instance Level

Hierarchica
l Classifier

Instance
Classifier 

𝛾ସ

𝜓ସ

𝐷 (𝜓ସ||𝜙ସ)

Disagreement Loss

ℒ(𝑦ସ, 𝛾ସ)
Node Classification Loss

ℒ(𝑦ସ, 𝜓ସ)
Graph Classification Loss

Feature 
Sharing

𝑒ସ

Hierarchical Graph

The overall loss: 

The supervised loss: 

The disagreement loss: 

Li, Jia, et al. "Semi-supervised graph classification: A hierarchical graph perspective."
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Applications

• GNN in Medical Imaging
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GNN in Medical Imaging

• "Graph CNN for Survival Analysis on Whole Slide Pathological 
Images", MICCAI 2018

• "Graph Convolutional Nets for Tool Presence Detection in Surgical 
Videos", IPMI 2019

• "Graph Attention Multi-instance Learning for Accurate Colorectal 
Cancer Staging", MICCAI 2020
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• Survival Prediction
• Predict the risk of  a certain event occurs.
• Event: part failure, drug adverse reaction or death.
• Application: provides suggestion for clinical interventions 

• Whole Slide Images
• Large: single WSI size >0.5 GB.
• Complicated: millions of  cells.
• Combine local and global features.

GNN in Medical Imaging
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• Cox proportional hazard function

• Partial likelihood for event happens on subject i :

where, Y is the observation time. 

• Join likelihood of  all subjects:

• Log likelihood as object function: 

GNN in Medical Imaging



UT Arlington CSE 6392 Advanced Topics in Scalable Learning 142

GNN in Medical Imaging
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• Pathological Images and Patient Survival Time and Label

• TCGA, The Cancer Genome Atlas 
• NLST, National Lung Screening Trials 

• Evaluation Metrics- C-index: the fraction of  all pairs of  patients whose predicted 
survival times are correctly ordered.

GNN in Medical Imaging
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• Yellow regions： high attention values

• High attention patches : values > 0.9 (attention values (0, 1))

GNN in Medical Imaging



* Use our graph features for the survival model.
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GNN in Medical Imaging
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Future Directions

Future Directions

More Powerful GNN Architecture

GNN on Hypergraph

Graph-Based Concept Learning

GNN + Meta Learning

GNN + Federated Learning

https://en.wikipedia.org/wiki/Hypergraph

Invariant and Equivariant GNN

GNN + Energy Model
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Bibliography
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