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Trustworthy Graph Learning

Deep graph learning are wildly How to deploy these algorithms in
applied to various risk/privacy- a trustworthy manner?
sensitive scenarios!
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Privacy inference attack
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Reliability of GNNs
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Reliability of GNNs

® Qverview
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Overview
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Reliability of GNNs

® GNNs against inherent noise
O Threat Overview

o Enhancing Techniques
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Threat Overview: Inherent Noise

Label noise Structure noise Attribute noise
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Defending Against Inherent Noise

Enhancing techniques on graph data can be categorized as:

* Graph Denoising

* Regularization Tricks
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Graph Denoising: UnionNET

* Label aggregation
* Sample reweighting

e J.abel correction

— —————————————————————————— ——————————————————————— ————

Unified Robust Training for Graph Neural Networks against Label Noise. PAKDD 2021
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Graph Denoising: UnionNET

l/\,,_,.gg.
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Step 4: KL-divergence loss

= »; log —29 Bl —
Jp—;m T, (hx); =

Step 5: Total training loss

-

Unified Robust Training for Graph Neural Networks against L.abel Noise. PAKDD 2021
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Graph Denoising: NRGNN

NRGNN 1s composed of an edge predictor, an accurate pseudo label miner, and a GININ

classifier.
Initial G Accurate Pseudo Label Miner f, * Edge predictor:
e & ) * Link unlabeled nodes with similar nodes
7T sods .
i N E Predictor having noisy/pseudo labels
R ——— -  Accurate pseudo label miner:
Qdf’ed Edge — * Obtain accurate pseudo labels
oisy =
Clean + * GNN classifier:
Qiﬁ‘ﬁe * Link unlabeled nodes with edge predictor
Predicion. * Produce robust predictions
Unlabeled

NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021
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Graph Denoising: NRGNN

Edge Predictor

Initial G

Edge
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I
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| Predictor
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* GCN is the backbone of Edge predictor

7 = GCN(A, X).

e Predict the score of node pairs to determine whether adding edges

Sij = o(ziz;)

* Obijective function (reconstruction loss with negative sampling)

NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021
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Graph Denoising: NRGNN

Accurate Pseudo Label Miner

Initial G Accurate Pseudo Label Miner fp
(PP Edge

: : Predictor

_® e

Link unlabeled nodes with similar labeled nodes: Reduce effects of label noise
Obtain Accurate pseudo labels: Predictions with large confidence scores

—_ (P 7P, AP
Yp = {y,- € MU,yl-c > Tp}
Objective function of fp: Prediction of pseudo label miner

r%in.!:p: yl l(gf ;)
P

v;eEVL

NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021
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Graph Denoising: NRGNN

GNN Classifier

Initial G Accurate Pseudo Label Miner f;
s, Add label
7T 1 I
BN g T Accurate pseudo label are added to the label set
\ > E i

Added Edge. Assign edges

- Edge predictor will link the unlabeled nodes with
Accurate (CaTaa \ similar extended labeled nodes: v, 4 v{ 4V,
Pseudo &, "" i A

|
Prediction &% | AR i
Unlabeled \ T ) labeled unlabeled

nodes nodes

« Accurate pseudo labels and provided noisy labels are covered in the loss function

L= l( s, ) Overall objective function
G b argmin Lg +aLg+fLp
0; €V |—> Extended labeled nodes On,0p. 05

NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021
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Graph Denoising: PTDNet

Motivating Example
e positive edges = high quality node representation

* negative edges = low predictive accuracy

Ratio of positive edges removed
02 | 03 | 04|05 06| 07 | 08 | 09 1

0.2 69.6 682 665 664 661 654 63.6 638 626 621 612
03 728 723 715 705 702 690 683 677 689 67.6 66.8
04 793 769 745 735 735 729 726 718 712 703 695
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73.7
76.8
78.1
79.6
8 813
0 82.1

Ratio of negative edges removed

73.6
75.0
iy
79.9
81.1
82.1

72.3
74.1
76.5
79.4
81.0
81.1

Learning to Drop: Robust Graph Neural Network via Topological Denoising, WSDM 2021
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Graph Denoising: PTDNet

* Model Agnostic

Motivating Example * Task Agnostic
* positive edges = high quality node representation

* negative edges—> low predictive accuracy

Ratio of positive edges removed
01 (02 03 /04|05 |06 |07 | 08 [ 09 1

Ratio of negative edges removed

-~
-
o

~ {Downslream task Loss, }

Regularizers ) )
——» Forward pass Rirs Re

<~ — - Backpropagation
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Graph Denoising: PTDNet

e The denoising network

In each denoising network, parameterized neural networks are adopted ﬁ*—fz'g')
. Input graph T
to learn a weight for each edge. Then we adopt hard concrete C

distribution to ensure that an edge weight can be exactly 0

GNN
layer
€ ~ Uniform(0,1), s}, = a((loge — log(1 — €) + aly)/7)
e The low-rank constraint N ot 000  — :
o [ SR 2]
4 ! Denoised graph !
Singular e * """""""""" -

Values . il {Downstream task Loss, }

~ === Regularizers Ry Re
——» Forward pass !

-— — — Backpropagation

s eee =T N AL
JdRy, ()72],- [t i
3 B3 Iz JZ
| ‘K — Forward pass
A= ——- Backpropagation
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Graph Denoising: Feature Propagation

* Most GNNs expect as input a graph with a full feature vector for each node (left). In real-world

scenario, only some of the features are available (right).

_ |II:|:I] ; E D Unknown Feature
Graph with all features observed Graph with partially missing features

On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features. ICLR 2021

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Graph Denoising: Feature Propagation

* Feature Propagation is a simple and surprisingly powerful approach for learning on graphs with

missing features.

OO OITrmE OO OO Algorithm 1 Feature Propagation

Feature 1: Input: feature vector x, diffusion matrix A
Propagation N 2: y X
Prediction .
3: while x has not converged do
D Unknown Feature 4: X <_ AX D Propagate featureS
I1T1T11 TTTT] B oown Feature 5z X ¢ Yk > Reset known features
O] 6

-] D Reconstructed Feature ) end While

On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features. ICLR 2021
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Graph Denoising: Feature Propagation

* The reconstruction of missing features by FP at different steps (left).

* Graph Fourier transform magnitudes of the original Cora features (red) and those reconstructed

by FP for varying rates of missing rates (right).

Step O

0/

ctral Coefficient

=
LO""-'—-...__
Spe
o o
o o
o R
ot o

Q -
/ 0.000 -

0.040-
0.035-
0.030-
0.025-

—— Original Feature

—— Reconstructed Feature (30% missing)
——— Reconstructed Feature (60% missing)

W‘g\' —— Reconstructed Feature (99% missing)

0.020-
0.015-

500 1000 1500 2000 2500
Eigenvalue Index

On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features. ICLR 2021
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Graph Denoising: Feature Propagation

* Node classification accuracy for varying rates of missing features on the Cora dataset.

Cora
0.8 - K==
i —
0.7- \
>
§ ——— Label Propagation
306- —+— Random
<‘:-’ —+— Zero
= —4— Global Mean
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On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features.
ICLR 2021
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Regularization: DropEdge & DropNode
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> DropEdge: Towards deep graph convolutional networks on node classification. ICLR 2020
> Graph Contrastive Learning with Augmentations, NeurIPS 2020
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Reliability of GNNs

® GNNs against distribution shift

O Threat Overview

o Enhancing Techniques

UT Arlington
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Threat Overview: Distribution Shift

Distribution shift appears when training and test joint distributions
are different. That is, when P;,.4in (G, Y) # Prost (G, Y)

Training

lll o _ i
“ close-set
‘ “ shift

Class 1

Class -1

Source

N ,‘Q

Target
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open-set
shift
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Threat Overview: Distribution Shift

e Why does the distribution shift occur?

Robust Graph Neural Networks. Google Al Blog
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Defending Against Distribution Shift

Enhancing techniques on graph data can be categorized as:

* Invariant Learning

* Graph Augmentation Technique

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Invariant Learning: Shift-Robust GNN's

* Distribution shift (CMD) between training and testing data could be a good indicator of

performance (F1)

* As the distribution shift increases, the model’s accuracy falls.

oo

1 1
CMD = o——[|E(p) ~E(g)l2 + > ———llew (p) — ek (@)]2,
b — v |0—4a
S o
el R g
0.08 0.10 méMD 014 0.16 0.8 T o 0.04 og;lD 006 0.07 020 025 030 CM?;S 040 045
(a) Cora (b) Citeseer (¢) Pubmed

Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data. NeurlPS 2021
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning. ICLR 2017
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Invariant Learning: Shift-Robust GNN's

* Distribution shift is also a problem in deeper GNNs

7 — GCN — GCN 14 —— GCN
SR-GCN - SR-GCN - SR-GCN
6 4 12
5 10 -
3.
o o 8
s s =
(&) 3 O 2 O 6
2 4
1
1 24
0 0 0 —
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Layer Layer Layer
(a) Cora (b) Citeseer (¢) Pubmed

Shift gets bigger as models get deeper!

Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data. NeurlPS 2021
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Invariant Learning: Shift-Robust GNN's
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* Solution: Regularizations to make GNNs

robust against domain shift.

* Normal GNN - Fully differentiable deep
models allow applying domain shift

regularization at any layer

Backpropagation

We can regularize a layer in this network to force the features to

be representative for both a biased and unbiased samples:

1)
L = ﬁ Zi(l/z .’.‘1) + - (](eruin-Z]lD)-

Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data. NeurlPS 2021

UT Arlington
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Invariant Learning: FATE (FeATure
Extrapolation Networks)

Challenges and Limitations of Neural Networks

New features dynamically appear (unseen features in test set)
Pirain(X,Y) # Prese (X, Y)
Scenarios: heterogeneous data sources, multi-modal data
How can neural networks deal with new features?
Retraining from scratch: time-consuming

Incremental learning on new features: over-fitting & catastrophic forgetting

features label Training Inference
I o] O 0] O
// O -O O 1| OO0
Q |training data 1 g o] O -0 O O
/ >0 00 O -6 0 0
2 Al o] OO O e
k= Y // new feature's embs
test data 1 O z 8 are n;‘r learned

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach. NeurlPS 2021
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Invariant Learning: FATE (FeATure
Extrapolation Networks)

Overall Framework: FATE

* Low-level backbone: take each instance as input and output prediction

e High-level GNN: take feature-data matrix as input and update feat. embeddings

Observed Data Matrix

01/]0 1 (0 1 0]
02{1 1[1 0 0
03/0 1
o4/ 0 01 0 1|

- =4

PaN
] BI] node embeddings
———>  message passing

------ > data flow

- - replace & update

lfl f2 f3 Ja fs‘_-_—"

data/feature nodes "‘

Feature-Data Graph
W Op fi =)

— BT
= f3 W
03>
— fa B
S <é,‘§> f5| mO
e === '7 ,/“
——

| S —
| +————Embedding Layer

I3
fa
fs

++ Classifier Network —8 |

Backbone Network

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach. NeurlPS 2021
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Invariant Learning: FATE (FeATure
Extrapolation Networks)

Training Approach

Two useful techniques for learning to extrapolate ‘ﬁ
Proxy training data: Self-supervised learning and oo 1o 1]
: . . o211 1 10
iInductive learning o3l 0 10 1
Asynchronous Updates: Fast/slow for o LAY

backbone/GNN

DropEdge regularization

Scaling to large systems: Mini-batches along the iﬁ
instance dimension (complexity 0(Bd) ) il 1D d
2
o3(0 101
040 0 10

’

n-fold split Gl
AR ffd). e

---------------------------------- =R

™7 e

B

| =)

‘ ~ N30
AL S5 fa) NN Backbone | > £3°X(3)
A f]fa] 3] £4) ‘.“\ model network :ﬁi:" ]

| {A]r]f3f)

“fast updates

slow update

(a) Self-supervised learning with n-fold splitting

’

k-shot sample

1 1
A 4 Y
aAAaampana
GO G G
il ool D]
olohi] ol kol foloki )

[f2lf3lf4| {,‘Dr'opEdge
AJAf) ] enn

&
=

&8

model

/
]
]
i
\
\
i
\

INNAIAA

Slow update

» L
Backbone > Léh@_ >l
network :fi:"

fast updates

(b) inductive learning with k-shot sampling

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach. NeurlPS 2021

UT Atrlington
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Graph Augmentation Learning

* Graph Augmentation Learning helps models generalize to out-of-

distribution samples and boosts model performance at test time.

(TTT T T B [ ]l o o e e e e m e mmm———————
L Strategy } Node dropping "’ ) )
—_—— ] : Input graph I Micro-level 1 Meso-level ' Macro-level
Edge adding - | O----0 : O----O : ©—o0
- I I S P !
Edge dropping : ' 00 9@ i :
Attribute completion : b gl \ 9,\' [ O I
| A 5 :
: 1 o 1 :
( \ Graph denoising I : . ; I
— Macro-level ' : : :
\, J Multi-Task learning , @ Inputnode : O----0 | :
1 1 R I !
Pre-Trainin ! © Ignored node | O-\{I) \\O'--O : :
! @ Before augment ! O/ \ ’ o | :
\ y ~a | l
_‘ Meso-level \ Subgraph sampling | @ After augment ! o O,/O ; :
I
Subgraph Cropping T oooomoooooooooooooes

Graph Augmentation Learning. WWW 2022
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Graph Augmentation Learning: FLAG

* Improve model generalization via adversarial training

m steps

v
0 Gradient Perturbation & 0 Gradient
GNNS - -
accumulation gradient ascent decent

|

I I

Standard training
FLAG training

H

0 Model parameters

d perturbations

Robust Optimization as Data Augmentation for Large-scale Graphs. CVPR 2022
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Graph Augmentation Learning: FLAG

* FLLAG can address overfitting problem and improves model robustness

against out-of-distribution samples

Node Classification Link Prediction Graph Classification
0.450 —— Baseline 0.70| — Baseline 0.10 —— Baseline
— o pe— —

»» 0.425 +FLAG = +FLAG & 0.09 +FLAG
8 ® 065 38
(o] n v le)
= 0.400 - = 0.08
5 = 5
5 0.375 € 0.60 S
© S ® 0.07
2 0.350 © 2
5 B 0.55 2 0.06

0.325 o

0.300 0.50 0.05

0 20 40 60 80 100 0 50 100 150 200 0 5 10 15 20 25
epoch epoch epoch

Robust Optimization as Data Augmentation for Large-scale Graphs. CVPR 2022
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Graph Augmentation Learning: GraphMixup

Class-imbalanced is another distribution shift where P4(G,Y) # Pg(G,Y), A and
B are two groups

GraphMixup improves class-imbalanced node classification on graphs by self-
supervised context prediction

- Upsampling Classification
(© Label Minority Node . Unlabel Minority Node Input Node Features Scale update . . S
: Ten] @ 2 w(a]s, Q) > @ ||, Result
= H Disentangled ¥ AL p
(O Label Majority Node  {__) UnLabel Majority Node i Semantic Features ! Reinforcement Mixup Module
"

#2 %
[}

Synthetic Minority | Synthetic Edge

Node Generation Generation —|«— Node Classification —»|

| «——— Semantic Feature Learning ——— | -

GraphMixup: Improving Class-Imbalanced Node Classification on Graphs by Self-supervised Context Prediction. ICML 2021
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Reliability of GNNs

® GNNs against adversarial attacks

O Threat Overview

o Enhancing Techniques

UT Arlington
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Adversarial Attacks on Deep Learning

Classified as panda Small adversarial noise Classified as gibbon

X € x'

Find x’ satisfying ||x' — x|| < Ast. C(x") # y

Explaining and harnessing adversarial examples. ICLR 2015

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Adversarial Attacks on Deep Learning

|

AU Rttt .

Do Graph Neural Networks
Suffer the Same Problem?

Classiried as panda Small adversarial noise Classitied as ngDOIl

X € x'

Find x’ satisfying ||x' — x|| < Ast. C(x") # y

Explaining and harnessing adversarial examples. ICLR 2015
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Adversarial Attacks on Deep Graph Learning

® Adversarial attacks on GNNs aims to change their prediction by

modifying the edges or features

9 Predicted as: . e Predicted as: O

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Adversarial Attacks on Deep Graph Learning

Consequences
* Financial Systems

e (Credit Card Fraud Detection

No/ * Recommender Systems
.% - v * Social Recommendation

e Product Recommendation

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 42



Types of Perturbations

Edge Insertion

Edge Deletion

UT Atrlington

Node Injection

CSE 6392 Advanced Topics in Scalable Learning

Feature Modification
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Types of Attacking Type

Non-Targeted Attack
Targeted Attack

All nodes as
candidates

Ll L L T T,

Backdoor Attack

o Any Target Node

UT Atrlington CSE 6392 Advanced Topics in Scalable Learning

Node agnostic
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Evasion & Poisoning Attack

3 Test
1 Train GNN GNN 3 Test

e ——
- -~

~ Evasion Attack - N Poisoning Attack

-~ -~
------------------------------------------------------------------------------------------------

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Attack Methods

Attack Node Edge Feature Targeted Non- Evasion Poisoning Backdoor
Methods Injection | Insertion/ | Modification Targeted
Deletion
Nettack v v v N4 v
(KDD 18)
Metattack N4 v v
(ICLR 19)
GF-Attack v N4 v
(AAALI 20)
CD-Attack v v v
(WWW 20)
GUA v N4 v
(IJCAI 21)
GTA v v v v v
(USENIX
21)
UT Arlington CSE 6392 Advanced Topics in Scalable Learning 46




Attack Methods

Attack Node Edge Feature Targeted Non- Evasion Poisoning Backdoor
Methods Injection | Insertion/ | Modification Targeted
Deletion
Nettack v v v v v
(KDD 18)
Metattack N4 v v
(ICLR 19)
GF-Attack v v v
(AAALI 20)
CD-Attack v v v
(WWW 20)
GUA v v v
(IJCAI 21)
GTA v v v v v
(USENIX
21)
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Nettack (KDD 18)

* General form of graph adversarial attack as a bi-level optimization problem (poisoning setting):

Prediction of attacked model

T~

s.t. 8" =arg mgin Lirain(fa(A, X)) ,|JA"—A|+|X' = X| <A

arg [Eiqu Latk (fB*(A’: X' )) = Z 'B(JFB* (A’: X' )w Cdld,u )

UEV:

Prediction of
clean model

* Types of attack:

* Targeted attack, Poison/Evasion Attack, White-Box Attack A: adjacent matrix

* Structure and feature modifications X:node features matrix
A': modified structure
X': modified feature
V;: set of target nodes
* Core idea: Establishing a linear surrogate model: Coldu’ the predicted class label of
the clean model.
A: perturbation budget

fs.60(A,X) = softmax(4 ReLUﬁXG)(U)@(Z)) = softmax(A?

0 E®@), trained on the
clean data.
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Nettack (KDD 18)

Optimization approach: one perturbation that maximizes the class ‘distance’ of the surrogate model f5 4 (4, X) before

and after attack.

’g(fS,B*(A!X) » Cold,u ) = maXC¢Cold Z(u)c - Z(u) Cold Z= fS,@"(ArX)

Wron (’Old
class
Attack on edge: score(e )=4(fs-(A",X) , coran ), A=At e - ‘distance’ |l J
Attack on feature: score(f)=€(fso-(A,X') ,coqn ), X =X % f o
Before A\ck After attack
Cola

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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Nettack (KDD 18)

Optimization approach: one perturbation that maximizes the class ‘distance’ of the surrogate model f; (4, X) before
and after attack.

If|A"—A|+|X' —X| <A,repeat r——=——=—=——=—==—=—==—=—--

1
— 't::]"c:the Per.turbation(e; ,_:_ Edge Perturbations Degree
at maximize scorele H . . .
G Sl Distribution

G + e, if score(e”) > score(f™)
G+ f*,if score(f*) > score(e”)

. > -
Find the perturbation f ) -
that maximize score(f) ' Perturbations Feature Co

| Candidates occurrence

constrained as for
the unnoticeability
of adversarial
samples.

Wrong
Prediction

Attack Target GCN Models

Overview
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GF-Attack (AAAI 20)

Graph Embedding Models Graph-shift filter S Polynomial Function h(x)
GCN Lsym —1p, h(x) = x
SGC Lsym —, h(x) =x
K
ChebyNet Lsym _ h(x) = Z T, (%)
k=0
LINE IL,—L" hix) =x
K
DeepWalk I, — L'V h(x) = Z xk
k=0

UT Atrlington CSE 6392 Advanced Topics in Scalable Learning

S: graph-shiftfilter;
h(x): polynomial function used
for constructing graph filter .
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Reliability of GNNs

® Toolbox

UT Arlington

CSE 6392 Advanced Topics in Scalable Learning
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Deep Graph Learning Toolbox

* DrugOOD: OOD benchmarks for drug design
* GreatX: PyTorch based graph reliability toolbox

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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GraphGallery

GraphGallery: PyTorch based GNN model gallery
o Link: https://github.com/Edisonl.ecece/GraphGallery

PyTorch is all you need!

UT Arlington CSE 6392 Advanced Topics in Scalable Learning
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DrugOOD

® Paper: https://arxiv.org/pdf/2201.09637.pdf
® Code: https://github.com/tencent-ailab/DrugOOD

® Project: https://drugood.github.io/

Distribution shift in Drug Al

Training Testing

25
& u

UT Atrlington CSE 6392 Advanced Topics in Scalable Learning
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UT Atrlington

Overview of DrugOOD

Annotations

o Five domain definitions (scaffold, assay, molecule size, protein, protein family) reflect the

real distribution offset scenarios. Three noise levels (core, refined, general) can anchor

different noise levels

Noise
Filtering

= Assay Filter
* Measurement Types
* Number of Molecules %
* Units of Values
* Confidence Score
* Target Type
» Sample Filter
+ Value Relation
* Missing Value
+ Legal SMILES

Uncertainty
Processing

* Uncertainty Value Offset
* Multiple Measurement

Average

* Binary Classification

Task with Adaptive
Threshold

Domain Definition
and Split

* Domain Definition

* Assay
= Scaffold

* Size
* Protein
* Protein Family

* Domain Split

* Domain Sorting
* OOD splitting
* |D splitting

CSE 6392 Advanced Topics in Scalable Learning
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Automated OOD Dataset Curator with Real-world Domain and Noise

DrugOOD
Datasets

* 2 Tasks

* LBAP, SBAP

* 3 Noise Level:

* Core, Refined, General

* 4 Measurement Types

* IC50, ECS0, KI, Potency

* 5 Domains:

* Assay, Scaffold, Size
* Protein, Protein Family
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Config example

® Automated OOD Dataset Curator

O  Fully customizable for users. Curation configuration example

O 96 realized datasets are provided

# configure curation pipeline
curator = dict(
path = dict(
task=dict (type=’1lbap’,
subset=’lbap_core_ec50_assay’),
source_root=’'data/chembl_29.db’,
target_root=’data/’)
uncertainty = dict(
delta=dict({’<?: -1, \
tkmdiy =] Upte 1, Apedy 133)
classification_threshold = dict(
lower_bound=4,
upper_bound=6,
Curator fix_value=5)
fractions = dict(
train_fraction_ood=0.6,
val_fraction_ood=0.2,
iid_train_sample_fractions=0.6,
iid_val_sample_fractions=0.2)
noise_filter = dict(
assay=dict(
measurement_type=[’EC50°’],
assay_value_units=[’nM’>, ’uM’],
molecules_number=[50, 3000],
confidence_score=9),
sample=dict(
filter_none=[],
smile_exist=[],
smile_legal=[],
value_relation=[’=?, 27?]))
domain = dict(
domain_generate_field=’assay_id’,
domain_name=’assay’,
sort_func=’domain_capacity?’,
sort_order='descend’,
protein_family_level=1)

6\
s
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Robust Optimization Baseline

® Rigorous OOD benchmarking

o Six SOTA OOD algorithms with various backbones

UT Arlington

Dataset Loading

Drugood-Ibap-core-ic50-size

1

A .S ?
_’ L] [ P
NN A . 11
1 1 e
o
Train Val Test
96 DrugOOD Datasets
Split D* c* ; D Drug Y
fof-.. 102N 311 34K..... 12 CCCCelec(C(=0)O)n[nH]1 | Inactive
Val 314 19K i 89 Celeee(S(=0)(=0)N2CCN(C activate
Test 699 19K | T

Data Statistics

Data Example

swyjuo3|y

.

Benchmark Configuration

o]
o T
»> 5 > >
3 &
&
6 Algorithms:

* |IRM, DeepCoral, Mixup, etc.
10 Backbones:

* GIN, GCN, GAT, BERT, etc.
2 Heads:

* Classify, Regress
7 Losses & Metrics:
= CE, MSE, AUC, ACC, etc.

CSE 6392 Advanced Topics in Scalable Learning
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Predefined Benchmark

The benchmark tests revealed that the in-distribution out-of-distribution (ID-
OOD) classification performance (AUC score) on DrugOOD datasets by
more than 20%, verifying the authenticity and challenge of the domain

definition and noise calibration methods in this dataset.

Dataset In-dist Out-of-Dist  Gap
Drug00D-lbap-core-ic50-assay 88.21(0.49) 71.59(0.63) 16.62
Drug00D-lbap-core-ic50-scaffold 84.78 (0.74) 67.32(0.17) 17.46
Drug00D-lbap-core-ic50-size 92.20 (0.19) 66.67 (0.61) 25.54 . .. . .. .
Drug00D-Ibap-refined-ic50-assay 80.15 (1.46) 69.43(128) 1072  Lable 6: The in-distribution (ID) vs out-of-disttibution (OOD)
Drug00D-Ibap-refined-ic50-scaffold 76.86 (4.94) 68.49 (1.31) 8.37 of datasets with measurement type of IC50 trained with ERM.
Drug00D-lbap-refined-ic50-size 89.70 (2.15) 68.45(0.17) 21.25 : .
Drug00D-Ibap-general-ic50-assay 30.80 (143) 68.61(092) 1218 e adopt the AUROC to estimate model performance; the
Drug00D-lbap-general-ic50-scaffold 78.99 (3.57) 66.31 (1.13) 12.69 higher score is better. All datasets show performance drops due
Drug00D-lbap-general-ic50-size 89.58 (0.05) 65.81(0.19) 23.76 to distribution shift, with substantially better ID performance
Drug00D-sbap-core-ic50-protein 90.32 (1.49) 68.62(0.45) 21.70
Drug00D-sbap-core-ic50-protein-family ~ 86.79 (2.85) 71.84 (1.01) 1494  than OOD performance.
Drug00D-sbap-refined-ic50-protein 82.92 (1.86) 68.00(1.35) 14.92
Drug00D-sbap-refined-ic50-protein-family 82.12 (0.36) 70.84 (0.74) 11.28
Drug00D-sbap-general-ic50-protein 78.94 (1.90) 68.06 (0.31) 10.88
Drug00D-sbap-general-ic50-protein-family 79.76 (1.94) 65.46 (0.56) 14.30

Tencent :

Al Lab | aFun.
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GreatX

GreatX: PyTorch based graph reliability toolbox
) Link: https://github.com/Edisonl.eecee/GreatX

' Graph REliAbility

": . Toolbo

GreatX is great!
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