
UT Arlington CSE 6392 Advanced Topics in Scalable Learning 1

CSE 6392  Lecture 3  

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Advanced Topics in Scalable Learning 



Trustworthy Graph Learning

Deep graph learning  are wildly 
applied to  various risk/privacy-
sensitive scenarios! 

How to deploy these algorithms in 
a trustworthy manner?

Drug discovery Healthcare Credit 
modeling

Fraud detection

Distribution 
shift 

Adversarial 
attack

Label/attribute 
noise

Explainability Privacy 
Protection

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 2



Overview

• Inherent noise

• Distribution shift

• Adversarial attack

Reliability

• Post-hoc method

• Self-explainable method

Explainability

• Federated GNN

• Privacy inference attack 

• Privacy enhancing technique

Privacy
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Reliability of GNNs
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Reliability of GNNs

● Overview
● GNNs against inherent noise

○ Threat Overview
○ Enhancing Techniques

● GNNs against distribution shift
○ Threat Overview
○ Enhancing Techniques

● GNNs against adversarial attacks 
○ Threat Overview
○ Enhancing Techniques

● Toolbox
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Overview

• Inherent Noise

• Distribution Shift

• Adversarial Attack

Structure noise Attribute noise

Data distribution

Label noise

Adversarial goal

Training data
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Threat Overview： Inherent Noise

Label noise

Class Blue Class Red

Class Circle Class Cross

Blue Circle Red
Cross

Red Circle Blue Cross

Annotation

Ground Truth

⚠

⚠ ⚠

⚠

Structure noise Attribute noise

Noise Edge Noise Feature

Noise Label
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Defending Against Inherent Noise

Enhancing techniques on graph data can be categorized as:

• Graph Denoising

• Regularization Tricks
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Graph Denoising: UnionNET

Unified Robust Training for Graph Neural Networks against Label Noise. PAKDD 2021

• Label aggregation

• Sample reweighting

• Label correction
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Graph Denoising: UnionNET

Unified Robust Training for Graph Neural Networks against Label Noise. PAKDD 2021

Node embedding

Step 1:non-parametric attention mechanism: Step 2: compute reweighting score

Step 3:label correction loss Step 4: KL-divergence loss

Step 5: Total training loss

Predicted/ground truth label
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Graph Denoising: NRGNN

NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021

• Edge predictor:

• Link unlabeled nodes with similar nodes 

having noisy/pseudo labels

• Accurate pseudo label miner:

• Obtain accurate pseudo labels

• GNN classifier: 

• Link unlabeled nodes with edge predictor 

• Produce robust predictions

NRGNN is composed of an edge predictor, an accurate pseudo label miner, and a GNN 

classifier.
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Graph Denoising: NRGNN

NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021

• GCN is the backbone of Edge predictor

• Predict the score of node pairs to determine whether adding edges

• Objective function (reconstruction loss with negative sampling)

Edge Predictor
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Graph Denoising: NRGNN

NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021

Accurate Pseudo Label Miner

Prediction of  pseudo label miner
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Graph Denoising: NRGNN

NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021

GNN Classifier

• Accurate pseudo labels and provided noisy labels are covered in the loss function

Extended labeled nodes

labeled 
nodes

unlabeled 
nodes

Overall objective function
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• positive edges          high quality node representation 

• negative edges         low predictive accuracy

Graph Denoising: PTDNet

Motivating Example

Learning to Drop: Robust Graph Neural Network via Topological Denoising, WSDM 2021
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• positive edges      high quality node representation 

• negative edges       low predictive accuracy

Graph Denoising: PTDNet

Motivating Example

• Model Agnostic

• Task Agnostic
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Graph Denoising: PTDNet

• The denoising network 

In each denoising network, parameterized neural networks are adopted 

to learn a weight for each edge. Then we adopt hard concrete 

distribution to ensure that an edge weight can be exactly 0

• The low-rank constraint 
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Graph Denoising: Feature Propagation

On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features. ICLR 2021

• Most GNNs expect as input a graph with a full feature vector for each node (left). In real-world 

scenario, only some of the features are available (right).
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Graph Denoising: Feature Propagation

On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features. ICLR 2021

• Feature Propagation is a simple and surprisingly powerful approach for learning on graphs with 

missing features.
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Graph Denoising: Feature Propagation

On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features. ICLR 2021

• The reconstruction of missing features by FP at different steps (left).

• Graph Fourier transform magnitudes of the original Cora features (red) and those reconstructed 

by FP for varying rates of missing rates (right).
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Graph Denoising: Feature Propagation

On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features. 
ICLR 2021

• Node classification accuracy for varying rates of missing features on the Cora dataset. 

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 22



Regularization: DropEdge & DropNode

⮚ DropEdge: Towards deep graph convolutional networks on node classification. ICLR 2020
⮚ Graph Contrastive Learning with Augmentations, NeurIPS 2020

DropEdge

Epoch 1

Epoch 2

Epoch 3

DropNode

Epoch 1

Epoch 2

Epoch 3
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Threat Overview: Distribution Shift
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Threat Overview: Distribution Shift

Robust Graph Neural Networks. Google AI Blog

• Why does the distribution shift occur? 
• Non-IID bias

• Sampling bias
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Defending Against Distribution Shift

Enhancing techniques on graph data can be categorized as:

• Invariant Learning

• Graph Augmentation Technique
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Invariant Learning: Shift-Robust GNNs

Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data. NeurIPS 2021
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning. ICLR 2017

• Distribution shift (CMD) between training and testing data could be a good indicator of 

performance (F1) 

• As the distribution shift increases, the model’s accuracy falls.

Negative effect of distribution shifts
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Invariant Learning: Shift-Robust GNNs

Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data. NeurIPS 2021

• Distribution shift is also a problem in deeper GNNs

More Motivation

Shift gets bigger as models get deeper!
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Invariant Learning: Shift-Robust GNNs

Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data. NeurIPS 2021

• Solution: Regularizations to make GNNs 

robust against domain shift.

• Normal GNN - Fully differentiable deep 

models allow applying domain shift 

regularization at any layer

Shift-Robust GNNs

• We can regularize a layer in this network to force the features to 
be representative for both a biased and unbiased samples:
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Invariant Learning: FATE (FeATure 
Extrapolation Networks)

Challenges and Limitations of Neural Networks

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach. NeurIPS 2021
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Overall Framework: FATE

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach. NeurIPS 2021

• Low-level backbone: take each instance as input and output prediction

• High-level GNN: take feature-data matrix as input and update feat. embeddings

Invariant Learning: FATE (FeATure 
Extrapolation Networks)
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Training Approach

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach. NeurIPS 2021

Invariant Learning: FATE (FeATure 
Extrapolation Networks)
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Graph Augmentation Learning

Graph Augmentation Learning. WWW 2022

• Graph Augmentation Learning helps models generalize to out-of-

distribution samples and boosts model performance at test time.
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Graph Augmentation Learning:  FLAG

Robust Optimization as Data Augmentation for Large-scale Graphs. CVPR 2022

GNNs

Standard training
FLAG training

FLAG: Free Large-scale Adversarial Augmentation on Graphs

• Improve model generalization via adversarial training
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Graph Augmentation Learning:  FLAG

Robust Optimization as Data Augmentation for Large-scale Graphs. CVPR 2022

• FLAG can address overfitting problem and improves model robustness 

against out-of-distribution samples

FLAG: Free Large-scale Adversarial Augmentation on Graphs
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Graph Augmentation Learning:  GraphMixup

GraphMixup: Improving Class-Imbalanced Node Classification on Graphs by Self-supervised Context Prediction. ICML 2021
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Adversarial Attacks on Deep Learning

Explaining and harnessing adversarial examples. ICLR 2015

Classified as panda Small adversarial noise Classified as gibbon
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Adversarial Attacks on Deep Learning

Explaining and harnessing adversarial examples. ICLR 2015

Classified as panda Small adversarial noise Classified as gibbon

Do Graph Neural Networks 
Suffer the Same Problem?
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Adversarial Attacks on Deep Graph Learning

● Adversarial attacks on GNNs aims to change their prediction by 

modifying the edges or features 
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Adversarial Attacks on Deep Graph Learning

• Financial Systems
• Credit Card Fraud Detection

• Recommender Systems
• Social Recommendation
• Product Recommendation

• ….

7
7
2

8

Consequences
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Types of Perturbations 
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Types of Attacking Type
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Evasion & Poisoning Attack
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Attack Methods

Attack 
Methods

Node 
Injection

Edge 
Insertion/
Deletion

Feature 
Modification

Targeted Non-
Targeted

Evasion Poisoning Universal Backdoor

Nettack
(KDD 18)

✔ ✔ ✔ ✔ ✔

Metattack
(ICLR 19)

✔ ✔ ✔

GF-Attack
(AAAI 20)

✔ ✔ ✔

CD-Attack
(WWW 20)

✔ ✔ ✔

GUA
(IJCAI 21)

✔ ✔ ✔ ✔

GTA
(USENIX 

21)

✔ ✔ ✔ ✔ ✔
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Nettack (KDD 18)

、

[KDD18] Adversarial Attacks on Neural Networks for Graph Data

Prediction of 
clean model

Prediction of attacked model
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Nettack (KDD 18)

[KDD18] Adversarial Attacks on Neural Networks for Graph Data
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Nettack (KDD 18)

Degree 
Distribution

Feature Co-
occurrence 

[KDD18] Adversarial Attacks on Neural Networks for Graph Data

constrained as for 
the unnoticeability
of adversarial 
samples.
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GF-Attack (AAAI 20)
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Deep Graph Learning Toolbox

• DrugOOD: OOD benchmarks for drug design

• GreatX: PyTorch based graph reliability toolbox
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GraphGallery

GraphGallery: PyTorch based GNN  model gallery

Link: https://github.com/EdisonLeeeee/GraphGallery

UT Arlington CSE 6392 Advanced Topics in Scalable Learning 54



DrugOOD 

● Paper: https://arxiv.org/pdf/2201.09637.pdf
● Code: https://github.com/tencent-ailab/DrugOOD
● Project: https://drugood.github.io/

Training Testing

Distribution shift in Drug AI
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Overview of DrugOOD

● Automated OOD Dataset Curator with Real-world Domain and Noise 
Annotations

○ Five domain definitions (scaffold, assay, molecule size, protein, protein family) reflect the 

real distribution offset scenarios. Three noise levels (core, refined, general) can anchor 

different noise levels
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Config example

● Automated OOD Dataset Curator
○ Fully customizable for users.
○ 96  realized datasets are provided 

Curation configuration example 
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Robust Optimization Baseline

● Rigorous OOD benchmarking

○ Six SOTA OOD algorithms with various backbones
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Predefined Benchmark

|

The benchmark tests revealed that the in-distribution out-of-distribution (ID-
OOD) classification performance (AUC score) on DrugOOD datasets by 
more than 20%, verifying the authenticity and challenge of the domain 
definition and noise calibration methods in this dataset.

Table 6: The in-distribution (ID) vs out-of-distribution (OOD) 
of datasets with measurement type of IC50 trained with ERM.  
We adopt the AUROC to estimate model performance; the 
higher score is better. All datasets show performance drops due 
to distribution shift, with substantially better ID performance 
than OOD performance. 
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GreatX

GreatX: PyTorch based graph reliability toolbox

Link: https://github.com/EdisonLeeeee/GreatX
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