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Eigenvalues and Singular Values 
  Eigenvalues and singular values describe important 

aspects of transformations and of data relations 
  Eigenvalues determine the important the degree to which 

a linear transformation changes the length of 
transformed vectors 

  Eigenvectors indicate the  directions in which the 
principal change happen 

  Eigenvalues are important for many problems in 
computer science and engineering, including 
  Dimensionality reduction 

  Compression 
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Eigenvalues 
  Eigenvalues λ and eigenvectors x  characterize 

dimensions that are purely stretched by a given linear 
transformation 

  The spectrum of A is the set of its eigenvalues 

  The spectral radius of A is the magnitude of the larges of 
its eigenvalues 

  Eigenvalues characterize the degree to which a 
linear transformation stretches input vectors 
  Also important for sensitivity analysis of linear problems 

€ 

Ax = λx
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Eigenvalues 
  A linear transformation has as many eigenvalues and 

eigenvectors as it has dimensions 
  Eigenvectors might be duplicates 

  Eigenvalues might be complex 

  Any data point (vector) can be written as a linear 
combination of eigenvectors 
  Allows efficient decomposition of vectors 
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Power Iteration 
  The eigenvalue equation is related to the fixed point 

equations (except with scaling) 

  Simplest solution method to find eigenvectors (and 
eigenvalues) is power iteration 

  characterize dimensions that are purely stretched by a given 
linear transformation 

  Power iteration converges to a scaled version of the 
eigenvector with the dominant eigenvalue 
€ 

Ax = λx

€ 

xt+1 = Axt
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Power Iteration 
  Power iteration converges except if 

  x0 has no component of the dominant eigenvector 

  There are more than one eigenvector with the same eigenvalue 

  Normalized power iteration renormalizes the result xt+1 
after each iteration 

  Converges to dominant eigenvector and dominant eigenvalue 

€ 

yk+1 = Axk     ,    xk+1 =
yk+1

yk+1 ∞

€ 

yk ∞
→ λd    ,    xk →

1
vd ∞

vd
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Inverse Iteration 
  Inverse iteration is used to find the smallest eigenvalue 

  converges except if 

  Inverse iteration corresponds to power iteration with the 
inverse matrix A-1 

  Inverse iteration and power iteration can only find the 
smallest and the largest eigenvalues 
  Need to find a way to determine other eigenvalues and 

eigenvectors 

€ 

Ayk+1 = xk     ,    xk+1 =
yk+1

yk+1 ∞
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Characteristic Polynomial 
  The determination of eigenvectors and eigenvalues can 

be transformed into a root finding problem 

  Has a nonzero solution for the eigenvector x if and only if      
(A-λI) is not singular 

  Eigenvalues of the nonsingular matrix are the roots of the 
characteristic polynomial 

  The characteristic polynomial is a polynomial of degree n 

  Complex eigenvalues occur in conjugate pairs 

  Computation of the characteristic polynomial is complex 
  Can be accelerated by first performing LU factorization 

€ 

(A − λI)x = 0

€ 

det(A − λI) = 0
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Characteristic Polynomial 
  Computing roots of a polynomial of degree larger than 

4 cannot always be computed directly and require an 
iterative solution 

  Computing eigenvalues using the characteristic 
polynomial is numerically not stable and highly complex 
  Computing coefficients of characteristic polynomial requires 

computation of the determinant 

  Root finding requires iterative solution process 

  Coefficients of characteristic are very sensitive  

  Characteristic polynomial is a powerful theoretical tool 
but not a practical computational approach 
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Eigenvalue Problems 
  Characteristics of eigenvalue problems influence the 

choice of algorithm 
  All or only some eigenvalues 

  Only eigenvalues or eigenvalues and eigenvectors  

  Dense or sparse matrix 

  Real of complex values 

  Other properties of matrix A 
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Problem Transformations 
  A number of transformations either preserve or have a 

predictable effect on the eigenvalues 
  Shift: For any scalar σ 

  Inversion: 

  Powers: 

  Polynomial: for any polynomial p(t) 

  Similarity: for any similar matrix B = T-1AT 

€ 

Ax = λx     →    (A −σI)x = (λ −σ )x

€ 

Ax = λx     →    A−1x =
1
λ
x

€ 

Ax = λx     →    Akx = λk x

€ 

Ax = λx     →    p(A)x = p(λ)x

€ 

Bx = λx     →    ATx = λ(Tx)
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Problem Transformations 
  Eigenvalues and eigenvectors of diagonal matrices are 

easy to determine 
  Eigenvalues are the values on the diagonal 

  Eigenvectors are the columns of the identity matrix 

  Not all matrices are diagonalizable using similarity 
transformations 

  Eigenvalues of triangular matrices can also be 
determined easily 
  Eigenvalues are diagonal entries of the matrix 

  Eigenvectors can be computed from 

€ 

(A − λI)x = 0
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Convergence of Iterations 
  Speed of convergence of power iteration and inverse 

iteration depends on the ratio of two eigenvalues 
  For power iteration, convergence is faster the larger the ratio 

of the largest and the second largest eigenvalue is 

  For inverse iteration, convergence is faster the smaller the ratio 
of the smallest and the second smallest eigenvector is 

  Shift transformation allows to change the ratio of 
eigenvalues 

  Knowledge of eigenvalue of sought after eigenvector would 
allow to lower this ratio to 0 

  Allows to increase the convergence rate of inverse iteration € 

λ1

λ2

  →    λ1 −σ
λ2 −σ
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Rayleigh Quotient Iteration 
  Rayleigh quotient iteration uses the Rayleigh quotient 

as a shift parameter 

  This allows to make the ratio of eigenvalues close to 0 and thus 
accelerates the convergence of inverse iteration 

  This algorithm is usually called Rayleigh quotient iteration 

  Rayleigh quotient iteration converges usually very fast 
  Each iteration requires a new matrix factorization and is therefore O(n3) F 

€ 

σ =
xT Ax
xT x

   ,    (A −σI)

€ 

(A −σ kI)yk+1 = xk

xk+1 =
yk+1

yk+1 ∞
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Computing All Eigenvalues 
  Power iteration and inverse iteration allow to compute 

only the largest and the smallest eigenvalues and 
eigenvectors. 
  To compute the other eigenvalues we need to either 

  Remove the already found eigenvector (and eigenvalue) from the matrix to 
be able to reapply power or inverse iteration 

  Find a way to find all the eigenvectors simultaneously 

  Removing eigenvectors from the space spanned by a 
transformation A is called deflation 
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Deflation 
  To remove an eigenvalue (and corresponding 

eigenvector) we have to find a set of transformations 
that preserves all other eigenvalues 
  Householder transforms can be used to derive such a 

transformation H with 

  The similarity transform described by H yields a matrix 

  Since similarity transforms were used this matrix has the same eigenvalues  

  B has all the eigenvalues of A with the exception of λ1 

  Power iteration can be applied to this new matrix B 

€ 

Hx1 =αe1

€ 

HAH−1 =
λ1 bT

0 B
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Deflation 
  Power iteration with deflation can compute all 

eigenvalues but requires determining the eigenvector in 
each iteration 
  Eigenvector in B can be used to compute eigenvector in A 

  Alternatively, the eigenvalue could be used directly in A to 
determine the eigenvector 

  More computationally complex € 

x3 = H−1
bT y2
λ2 − λ1
y2
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Simultaneous Iteration 
  Simultaneous iteration attempts to simultaneously 

iterate multiple vectors 

  X converges to the space spanned by the p dominant 
eigenvectors 

  Subspace iteration 

  But X becomes ill-conditioned since all columns in X ultimately 
converge to the dominant eigenvector 

  Need normalization that keeps vectors well conditioned and 
non-equal 

  Orthogonal iteration using QR factorization 

€ 

Xk+1 = AXk
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QR Iteration 
  As for least squares (and equation solving) QR 

factorization allows a factorization of the matrix into 
components that stay well conditioned 

  By using Q (a similarity transform) for the iteration, the 
eigenvalues are preserved and it converges to block triangular 
form 

  Triangular form if all eigenvalues are real values and distinct € 

Qk+1Rk+1 = Xk

Xk+1 = AQk+1
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QR Iteration 
  To find eigenvalues, QR iteration can be applied directly 

to A 

  Converges to triangular or block triangular matrix containing all 
eigenvalues as diagonal elements of as eigenvalues of diagonal 
blocks 

  Can be computed without explicitly performing the product 

  Can be accelerated using shift transformation 

€ 

Ak =Qk
H Ak−1Qk

€ 

Qk+1Rk+1 = Ak

Ak+1 = Rk+1Qk+1(=Qk+1
H AkQk+1)
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Singular Values 
  Singular values are related to Eigenvalues and 

characterize important aspects of the space described 
by the transformation 
  Nullspace 

  Span 

  Singular Value Decomposition divides a transformation 
A into a sequence of 3 transformations where the 
second is pure rescaling 
  Scaling parameters are the singular values 

  Columns of the other two transformations are the left and right 
singular vectors, respectively 
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Singular Values 
  Singular values exist for all transformations A, 

independent of A being square or not 
  Right singular vectors represent the input vectors that span the 

orthogonal basis that is being  scaled 

  Left singular vectors represent the vectors that the scaled 
internal basis vectors are transformed into for the output 

  Sinuglar values are directly related to the eigenvalues 
  Singular values are the nonnegative square roots of the 

eigenvalues of AAT or ATA  

  Left singular vectors are eigenvectors of AAT 
  Right singular vectors are eigenvectors of ATA 
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Singular Value Decomposition 
  Singular value decomposition (SVD) factorizes A 

  U is an mxm orthogonal matrix of left singular vectors 

  V is an nxn orthogonal matrix of right singular vectors 

  Σis an mxn diagonal matrix of singular values 
  Usually Σ is arranged such that the singular values are ordered by 

magnitude 

  Left and right singular vectors are related through the 
singular values 

€ 

A =UΣVT

€ 

Av,i =σ iu,i
AT u,i =σ iv,i
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Singular Value Decomposition 
  Singular value decomposition (SVD) can be computed 

in different ways 
  Using eigenvalue computation on  AAT 

  Compute eigenvalues of AAT  

  Determine left singular vectors as eigenvectors for AAT 

  Determine right singular vectors as eigenvectors for ATA 

  Leads to some conditioning issues due to the need for matrix multiplication 

  Directly from A by performing Householder transformations and 
givens rotations until a diagonal matrix is reached 

  Perform QR factorization to achieve triangular matrix 

  Use Householder transforms to achieve bidiagonal shape 

  Use Givens rotations to achieve diagonal form 

  This is usually better conditioned 
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Singular Value Decomposition 
  Singular value decomposition (SVD) can be used for a 

range of applications 
  Compute least squares solution 

  Compute pseudoinverse 

  Euclidean matrix norm: 

  Condition number of a matrix: 

  Matrix rank is equal to the number of non-zero singular values 

  Nullspace of the matrix is spanned by the set of right singular 
vectors corresponding to singular values of 0 

  Span of a matrix is spanned by the left singular vectors 
corresponding to non-zero singular values 

€ 

Ax ≅ b   →   x =
u,i
Tb
σ i

vi
σ i ≠0
∑

€ 

A+ =VΣ+UT

€ 

A 2 =σmax

€ 

cond(A) =σmax σmin
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Singular Value Decomposition 
  Singular value decomposition (SVD) is useful in a 

number of applications 
  Data compression 

  Right singular values transform data into a basis in which it is only scaled 

  Data dimensions with 0 or very small scaling factors are not important for 
the overall data 

  Wide range of applications: 
  Image compression 
  Dimensionality reduction for data 

  Dimensionality reduction for matrix operations 

  Filtering and noise reduction 
  Most of the time, data has only few important dimensions and noise is 

most apparent in additional dimensions (with smaller singular values) 

  Ignoring dimensions with small singular values can lead to less noisy data  
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Compression Example 
  Image compression is an area where SVD has been 

used relatively early on 
  Given an image, can we reduce the amount of data that has to 

be transmitted without loosing too much information 
  Use SVD to find a lower rank approximation of the image that has only 

limited loss. 
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Compression Example 
  In SVD, the magnitude of the singular values often 

decreases rapidly after the first few singular values 

  To compress the image, only keep the k largest singular 
values (and thus singular vectors) to reconstruct the 
image 

€ 

A ≈UpΣpVp
T
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Compression Example 
  Different compression levels have different loss 
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Eigenvalues and Singular Values 
  Eigenvalues and Eigenvectors capture important properties 

about linear transformations A 

  Eigenvalues and Singular values indicate the importance of 
particular dimensions of the space 

  Can be used for compression 

  Singular values can capture noise characteristics  

  Can be used for filtering of data  

  Can be used to remove noise from data before transformations are 
applied 

  Singular values are also important to analyze problems such as 
conditioning and sensitivity 


