

Eigenvalues and Singular Values

Eigenvalues and Singular Values

- Eigenvalues and singular values describe important aspects of transformations and of data relations
 - Eigenvalues determine the important the degree to which a linear transformation changes the length of transformed vectors
 - Eigenvectors indicate the directions in which the principal change happen
- Eigenvalues are important for many problems in computer science and engineering, including
 - Dimensionality reduction
 - Compression

Eigenvalues

 Eigenvalues λ and eigenvectors x characterize dimensions that are purely stretched by a given linear transformation

$$Ax = \lambda x$$

- The spectrum of A is the set of its eigenvalues
- The spectral radius of A is the magnitude of the larges of its eigenvalues
- Eigenvalues characterize the degree to which a linear transformation stretches input vectors
 - Also important for sensitivity analysis of linear problems

Eigenvalues

- A linear transformation has as many eigenvalues and eigenvectors as it has dimensions
 - Eigenvectors might be duplicates
 - Eigenvalues might be complex
- Any data point (vector) can be written as a linear combination of eigenvectors
 - Allows efficient decomposition of vectors

Power Iteration

 The eigenvalue equation is related to the fixed point equations (except with scaling)

$$Ax = \lambda x$$

- Simplest solution method to find eigenvectors (and eigenvalues) is power iteration
- characterize dimensions that are purely stretched by a given linear transformation
- Power iteration converges to a scaled version of the eigenvector with the dominant eigenvalue

$$x_{t+1} = Ax_t$$

Power Iteration

- Power iteration converges except if
 - *x*₀ has no component of the dominant eigenvector
 - There are more than one eigenvector with the same eigenvalue
- Normalized power iteration renormalizes the result x_{t+1} after each iteration

$$y_{k+1} = Ax_k$$
, $x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_{\infty}}$

Converges to dominant eigenvector and dominant eigenvalue

$$\|y_k\|_{\infty} \rightarrow \lambda_d \quad , \quad x_k \rightarrow \frac{1}{\|v_d\|_{\infty}} v_d$$

Inverse Iteration

- Inverse iteration is used to find the smallest eigenvalue
- converges except if

$$Ay_{k+1} = x_k$$
, $x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_{\infty}}$

- Inverse iteration corresponds to power iteration with the inverse matrix A⁻¹
- Inverse iteration and power iteration can only find the smallest and the largest eigenvalues
 - Need to find a way to determine other eigenvalues and eigenvectors

Characteristic Polynomial

- The determination of eigenvectors and eigenvalues can be transformed into a root finding problem $(A - \lambda I)x = 0$
 - Has a nonzero solution for the eigenvector x if and only if $(A \lambda I)$ is not singular
 - Eigenvalues of the nonsingular matrix are the roots of the characteristic polynomial

$$\det(A - \lambda I) = 0$$

- The characteristic polynomíal is a polynomial of degree *n*
- Complex eigenvalues occur in conjugate pairs
- Computation of the characteristic polynomial is complex

Can be accelerated by first performing LU factorization

© Manfred Huber 2010

Characteristic Polynomial

- Computing roots of a polynomial of degree larger than 4 cannot always be computed directly and require an iterative solution
- Computing eigenvalues using the characteristic polynomial is numerically not stable and highly complex
 - Computing coefficients of characteristic polynomial requires computation of the determinant
 - Root finding requires iterative solution process
 - Coefficients of characteristic are very sensitive
- Characteristic polynomial is a powerful theoretical tool but not a practical computational approach

Eigenvalue Problems

- Characteristics of eigenvalue problems influence the choice of algorithm
 - All or only some eigenvalues
 - Only eigenvalues or eigenvalues and eigenvectors
 - Dense or sparse matrix
 - Real of complex values
 - Other properties of matrix A

Problem Transformations

- A number of transformations either preserve or have a predictable effect on the eigenvalues
 - Shift: For any scalar σ
 - $Ax = \lambda x \quad \rightarrow \quad (A \sigma I)x = (\lambda \sigma)x$ Inversion: $Ax = \lambda x \quad \rightarrow \quad A^{-1}x = \frac{1}{\lambda}x$ Powers: $Ax = \lambda x \quad \rightarrow \quad A^{k}x = \lambda^{k}x$ Polynomial: for any polynomial p(t) $Ax = \lambda x \quad \rightarrow \quad p(A)x = p(\lambda)x$ Give basis of the second sec
 - Similarity: for any similar matrix $B = T^{-1}AT$

© Manfred Huber 2010
$$Bx = \lambda x \longrightarrow ATx = \lambda(Tx)$$
 11

Problem Transformations

- Eigenvalues and eigenvectors of diagonal matrices are easy to determine
 - Eigenvalues are the values on the diagonal
 - Eigenvectors are the columns of the identity matrix
- Not all matrices are diagonalizable using similarity transformations
- Eigenvalues of triangular matrices can also be determined easily
 - Eigenvalues are diagonal entries of the matrix
 - Eigenvectors can be computed from $(A \lambda I)x = 0$

Convergence of Iterations

- Speed of convergence of power iteration and inverse iteration depends on the ratio of two eigenvalues
 - For power iteration, convergence is faster the larger the ratio of the largest and the second largest eigenvalue is
 - For inverse iteration, convergence is faster the smaller the ratio of the smallest and the second smallest eigenvector is
- Shift transformation allows to change the ratio of eigenvalues $\frac{\lambda_1}{\lambda_2} \rightarrow \frac{\lambda_1 \sigma}{\lambda_2 \sigma}$
 - Knowledge of eigenvalue of sought after eigenvector would allow to lower this ratio to 0

Allows to increase the convergence rate of inverse iteration

Rayleigh Quotient Iteration

- Rayleigh quotient iteration uses the Rayleigh quotient as a shift parameter $\sigma = \frac{x^T A x}{x^T x}$, $(A - \sigma I)$
 - This allows to make the ratio of eigenvalues close to 0 and thus accelerates the convergence of inverse iteration

$$(A - \sigma_k I) y_{k+1} = x_k$$

$$x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|_{\infty}}$$

- This algorithm is usually called Rayleigh quotient iteration
- Rayleigh quotient iteration converges usually very fast
 - Each iteration requires a new matrix factorization and is therefore $O(n^3)$ F

Computing All Eigenvalues

- Power iteration and inverse iteration allow to compute only the largest and the smallest eigenvalues and eigenvectors.
 - To compute the other eigenvalues we need to either
 - Remove the already found eigenvector (and eigenvalue) from the matrix to be able to reapply power or inverse iteration
 - Find a way to find all the eigenvectors simultaneously
 - Removing eigenvectors from the space spanned by a transformation A is called deflation

Deflation

- To remove an eigenvalue (and corresponding eigenvector) we have to find a set of transformations that preserves all other eigenvalues
 - Householder transforms can be used to derive such a transformation H with

$$Hx_1 = \alpha e_1$$

- The similarity transform described by H yields a matrix $HAH^{-1} = \begin{pmatrix} \lambda_1 & b^T \\ 0 & B \end{pmatrix}$
 - Since similarity transforms were used this matrix has the same eigenvalues
 - B has all the eigenvalues of A with the exception of λ_1
 - Power iteration can be applied to this new matrix B

© Manfred Huber 2010

Deflation

- Power iteration with deflation can compute all eigenvalues but requires determining the eigenvector in each iteration
 - Eigenvector in B can be used to compute eigenvector in A

$$x_3 = H^{-1} \begin{pmatrix} b^T y_2 \\ \overline{\lambda_2 - \lambda_1} \\ y_2 \end{pmatrix}$$

- Alternatively, the eigenvalue could be used directly in A to determine the eigenvector
 - More computationally complex

Simultaneous Iteration

 Simultaneous iteration attempts to simultaneously iterate multiple vectors

 $X_{k+1} = AX_k$

- X converges to the space spanned by the p dominant eigenvectors
 - Subspace iteration
- But X becomes ill-conditioned since all columns in X ultimately converge to the dominant eigenvector
 - Need normalization that keeps vectors well conditioned and non-equal
 - Orthogonal iteration using QR factorization

QR Iteration

 As for least squares (and equation solving) QR factorization allows a factorization of the matrix into components that stay well conditioned

$$Q_{k+1}R_{k+1} = X_k$$

 $X_{k+1} = AQ_{k+1}$

- By using Q (a similarity transform) for the iteration, the eigenvalues are preserved and it converges to block triangular form
 - Triangular form if all eigenvalues are real values and distinct

QR Iteration

- To find eigenvalues, QR iteration can be applied directly to A $A_k = Q_k^H A_{k-1} Q_k$
 - Converges to triangular or block triangular matrix containing all eigenvalues as diagonal elements of as eigenvalues of diagonal blocks
 - Can be computed without explicitly performing the product

 $Q_{k+1}R_{k+1} = A_k$ $A_{k+1} = R_{k+1}Q_{k+1} (= Q_{k+1}^H A_k Q_{k+1})$

Can be accelerated using shift transformation

Singular Values

- Singular values are related to Eigenvalues and characterize important aspects of the space described by the transformation
 - Nullspace
 - Span
- Singular Value Decomposition divides a transformation
 A into a sequence of 3 transformations where the second is pure rescaling
 - Scaling parameters are the singular values
 - Columns of the other two transformations are the left and right singular vectors, respectively

Singular Values

- Singular values exist for all transformations A, independent of A being square or not
 - Right singular vectors represent the input vectors that span the orthogonal basis that is being scaled
 - Left singular vectors represent the vectors that the scaled internal basis vectors are transformed into for the output

Sinuglar values are directly related to the eigenvalues

- Singular values are the nonnegative square roots of the eigenvalues of AA^T or A^TA
- Left singular vectors are eigenvectors of AA^T
- Right singular vectors are eigenvectors of A^TA

- Singular value decomposition (SVD) factorizes A $A = U\Sigma V^T$
 - U is an *mxm* orthogonal matrix of left singular vectors
 - V is an *nxn* orthogonal matrix of right singular vectors
 - Σ is an *mxn* diagonal matrix of singular values
 - Usually $\boldsymbol{\Sigma}$ is arranged such that the singular values are ordered by magnitude
- Left and right singular vectors are related through the singular values

$$Av_{,i} = \sigma_i u_{,i}$$
$$A^T u_{,i} = \sigma_i v_{,i}$$

- Singular value decomposition (SVD) can be computed in different ways
 - Using eigenvalue computation on AA^T
 - Compute eigenvalues of AA^T
 - Determine left singular vectors as eigenvectors for AA^{T}
 - Determine right singular vectors as eigenvectors for A^TA
 - Leads to some conditioning issues due to the need for matrix multiplication
 - Directly from A by performing Householder transformations and givens rotations until a diagonal matrix is reached
 - Perform QR factorization to achieve triangular matrix
 - Use Householder transforms to achieve bidiagonal shape
 - Use Givens rotations to achieve diagonal form
 - This is usually better conditioned

- Singular value decomposition (SVD) can be used for a range of applications
 - Compute least squares solution $Ax \cong b \rightarrow x$

$$x = \sum_{\sigma_i \neq 0} \frac{u_{,i}^T b}{\sigma_i} v_i$$

- Compute pseudoinverse $A^+ = V \Sigma^+ U^T$
- Euclidean matrix norm: $||A||_2 = \sigma_{\max}$
- Condition number of a matrix: $cond(A) = \sigma_{max} / \sigma_{min}$
- Matrix rank is equal to the number of non-zero singular values
- Nullspace of the matrix is spanned by the set of right singular vectors corresponding to singular values of 0
- Span of a matrix is spanned by the left singular vectors corresponding to non-zero singular values

© Manfred Huber 2010

- Singular value decomposition (SVD) is useful in a number of applications
 - Data compression
 - Right singular values transform data into a basis in which it is only scaled
 - Data dimensions with 0 or very small scaling factors are not important for the overall data
 - Wide range of applications:
 - Image compression
 - Dimensionality reduction for data
 - Dimensionality reduction for matrix operations
 - Filtering and noise reduction
 - Most of the time, data has only few important dimensions and noise is most apparent in additional dimensions (with smaller singular values)
 - Ignoring dimensions with small singular values can lead to less noisy data

Compression Example

- Image compression is an area where SVD has been used relatively early on
 - Given an image, can we reduce the amount of data that has to be transmitted without loosing too much information
 - Use SVD to find a lower rank approximation of the image that has only limited loss.

Compression Example

 In SVD, the magnitude of the singular values often decreases rapidly after the first few singular values

• To compress the image, only keep the *k* largest singular values (and thus singular vectors) to reconstruct the image $A \approx U_p \Sigma_p V_p^T$

Compression Example

Different compression levels have different loss

Eigenvalues and Singular Values

- Eigenvalues and Eigenvectors capture important properties about linear transformations A
- Eigenvalues and Singular values indicate the importance of particular dimensions of the space
 - Can be used for compression
- Singular values can capture noise characteristics
 - Can be used for filtering of data
 - Can be used to remove noise from data before transformations are applied
- Singular values are also important to analyze problems such as conditioning and sensitivity

© Manfred Huber 2010