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Eigenvalues and Singular Values 
  Eigenvalues and singular values describe important 

aspects of transformations and of data relations 
  Eigenvalues determine the important the degree to which 

a linear transformation changes the length of 
transformed vectors 

  Eigenvectors indicate the  directions in which the 
principal change happen 

  Eigenvalues are important for many problems in 
computer science and engineering, including 
  Dimensionality reduction 

  Compression 
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Eigenvalues 
  Eigenvalues λ and eigenvectors x  characterize 

dimensions that are purely stretched by a given linear 
transformation 

  The spectrum of A is the set of its eigenvalues 

  The spectral radius of A is the magnitude of the larges of 
its eigenvalues 

  Eigenvalues characterize the degree to which a 
linear transformation stretches input vectors 
  Also important for sensitivity analysis of linear problems 

€ 

Ax = λx
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Eigenvalues 
  A linear transformation has as many eigenvalues and 

eigenvectors as it has dimensions 
  Eigenvectors might be duplicates 

  Eigenvalues might be complex 

  Any data point (vector) can be written as a linear 
combination of eigenvectors 
  Allows efficient decomposition of vectors 
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Power Iteration 
  The eigenvalue equation is related to the fixed point 

equations (except with scaling) 

  Simplest solution method to find eigenvectors (and 
eigenvalues) is power iteration 

  characterize dimensions that are purely stretched by a given 
linear transformation 

  Power iteration converges to a scaled version of the 
eigenvector with the dominant eigenvalue 
€ 

Ax = λx

€ 

xt+1 = Axt
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Power Iteration 
  Power iteration converges except if 

  x0 has no component of the dominant eigenvector 

  There are more than one eigenvector with the same eigenvalue 

  Normalized power iteration renormalizes the result xt+1 
after each iteration 

  Converges to dominant eigenvector and dominant eigenvalue 

€ 

yk+1 = Axk     ,    xk+1 =
yk+1

yk+1 ∞

€ 

yk ∞
→ λd    ,    xk →

1
vd ∞

vd
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Inverse Iteration 
  Inverse iteration is used to find the smallest eigenvalue 

  converges except if 

  Inverse iteration corresponds to power iteration with the 
inverse matrix A-1 

  Inverse iteration and power iteration can only find the 
smallest and the largest eigenvalues 
  Need to find a way to determine other eigenvalues and 

eigenvectors 

€ 

Ayk+1 = xk     ,    xk+1 =
yk+1

yk+1 ∞
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Characteristic Polynomial 
  The determination of eigenvectors and eigenvalues can 

be transformed into a root finding problem 

  Has a nonzero solution for the eigenvector x if and only if      
(A-λI) is not singular 

  Eigenvalues of the nonsingular matrix are the roots of the 
characteristic polynomial 

  The characteristic polynomial is a polynomial of degree n 

  Complex eigenvalues occur in conjugate pairs 

  Computation of the characteristic polynomial is complex 
  Can be accelerated by first performing LU factorization 

€ 

(A − λI)x = 0

€ 

det(A − λI) = 0
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Characteristic Polynomial 
  Computing roots of a polynomial of degree larger than 

4 cannot always be computed directly and require an 
iterative solution 

  Computing eigenvalues using the characteristic 
polynomial is numerically not stable and highly complex 
  Computing coefficients of characteristic polynomial requires 

computation of the determinant 

  Root finding requires iterative solution process 

  Coefficients of characteristic are very sensitive  

  Characteristic polynomial is a powerful theoretical tool 
but not a practical computational approach 
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Eigenvalue Problems 
  Characteristics of eigenvalue problems influence the 

choice of algorithm 
  All or only some eigenvalues 

  Only eigenvalues or eigenvalues and eigenvectors  

  Dense or sparse matrix 

  Real of complex values 

  Other properties of matrix A 
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Problem Transformations 
  A number of transformations either preserve or have a 

predictable effect on the eigenvalues 
  Shift: For any scalar σ 

  Inversion: 

  Powers: 

  Polynomial: for any polynomial p(t) 

  Similarity: for any similar matrix B = T-1AT 

€ 

Ax = λx     →    (A −σI)x = (λ −σ )x

€ 

Ax = λx     →    A−1x =
1
λ
x

€ 

Ax = λx     →    Akx = λk x

€ 

Ax = λx     →    p(A)x = p(λ)x

€ 

Bx = λx     →    ATx = λ(Tx)
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Problem Transformations 
  Eigenvalues and eigenvectors of diagonal matrices are 

easy to determine 
  Eigenvalues are the values on the diagonal 

  Eigenvectors are the columns of the identity matrix 

  Not all matrices are diagonalizable using similarity 
transformations 

  Eigenvalues of triangular matrices can also be 
determined easily 
  Eigenvalues are diagonal entries of the matrix 

  Eigenvectors can be computed from 

€ 

(A − λI)x = 0
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Convergence of Iterations 
  Speed of convergence of power iteration and inverse 

iteration depends on the ratio of two eigenvalues 
  For power iteration, convergence is faster the larger the ratio 

of the largest and the second largest eigenvalue is 

  For inverse iteration, convergence is faster the smaller the ratio 
of the smallest and the second smallest eigenvector is 

  Shift transformation allows to change the ratio of 
eigenvalues 

  Knowledge of eigenvalue of sought after eigenvector would 
allow to lower this ratio to 0 

  Allows to increase the convergence rate of inverse iteration € 

λ1

λ2

  →    λ1 −σ
λ2 −σ
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Rayleigh Quotient Iteration 
  Rayleigh quotient iteration uses the Rayleigh quotient 

as a shift parameter 

  This allows to make the ratio of eigenvalues close to 0 and thus 
accelerates the convergence of inverse iteration 

  This algorithm is usually called Rayleigh quotient iteration 

  Rayleigh quotient iteration converges usually very fast 
  Each iteration requires a new matrix factorization and is therefore O(n3) F 

€ 

σ =
xT Ax
xT x

   ,    (A −σI)

€ 

(A −σ kI)yk+1 = xk

xk+1 =
yk+1

yk+1 ∞



© Manfred Huber 2010 15 

Computing All Eigenvalues 
  Power iteration and inverse iteration allow to compute 

only the largest and the smallest eigenvalues and 
eigenvectors. 
  To compute the other eigenvalues we need to either 

  Remove the already found eigenvector (and eigenvalue) from the matrix to 
be able to reapply power or inverse iteration 

  Find a way to find all the eigenvectors simultaneously 

  Removing eigenvectors from the space spanned by a 
transformation A is called deflation 
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Deflation 
  To remove an eigenvalue (and corresponding 

eigenvector) we have to find a set of transformations 
that preserves all other eigenvalues 
  Householder transforms can be used to derive such a 

transformation H with 

  The similarity transform described by H yields a matrix 

  Since similarity transforms were used this matrix has the same eigenvalues  

  B has all the eigenvalues of A with the exception of λ1 

  Power iteration can be applied to this new matrix B 

€ 

Hx1 =αe1

€ 

HAH−1 =
λ1 bT

0 B

 

 
 

 

 
 
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Deflation 
  Power iteration with deflation can compute all 

eigenvalues but requires determining the eigenvector in 
each iteration 
  Eigenvector in B can be used to compute eigenvector in A 

  Alternatively, the eigenvalue could be used directly in A to 
determine the eigenvector 

  More computationally complex € 

x3 = H−1
bT y2
λ2 − λ1
y2

 

 

 
 

 

 

 
 
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Simultaneous Iteration 
  Simultaneous iteration attempts to simultaneously 

iterate multiple vectors 

  X converges to the space spanned by the p dominant 
eigenvectors 

  Subspace iteration 

  But X becomes ill-conditioned since all columns in X ultimately 
converge to the dominant eigenvector 

  Need normalization that keeps vectors well conditioned and 
non-equal 

  Orthogonal iteration using QR factorization 

€ 

Xk+1 = AXk
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QR Iteration 
  As for least squares (and equation solving) QR 

factorization allows a factorization of the matrix into 
components that stay well conditioned 

  By using Q (a similarity transform) for the iteration, the 
eigenvalues are preserved and it converges to block triangular 
form 

  Triangular form if all eigenvalues are real values and distinct € 

Qk+1Rk+1 = Xk

Xk+1 = AQk+1
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QR Iteration 
  To find eigenvalues, QR iteration can be applied directly 

to A 

  Converges to triangular or block triangular matrix containing all 
eigenvalues as diagonal elements of as eigenvalues of diagonal 
blocks 

  Can be computed without explicitly performing the product 

  Can be accelerated using shift transformation 

€ 

Ak =Qk
H Ak−1Qk

€ 

Qk+1Rk+1 = Ak

Ak+1 = Rk+1Qk+1(=Qk+1
H AkQk+1)



© Manfred Huber 2010 21 

Singular Values 
  Singular values are related to Eigenvalues and 

characterize important aspects of the space described 
by the transformation 
  Nullspace 

  Span 

  Singular Value Decomposition divides a transformation 
A into a sequence of 3 transformations where the 
second is pure rescaling 
  Scaling parameters are the singular values 

  Columns of the other two transformations are the left and right 
singular vectors, respectively 



© Manfred Huber 2010 22 

Singular Values 
  Singular values exist for all transformations A, 

independent of A being square or not 
  Right singular vectors represent the input vectors that span the 

orthogonal basis that is being  scaled 

  Left singular vectors represent the vectors that the scaled 
internal basis vectors are transformed into for the output 

  Sinuglar values are directly related to the eigenvalues 
  Singular values are the nonnegative square roots of the 

eigenvalues of AAT or ATA  

  Left singular vectors are eigenvectors of AAT 
  Right singular vectors are eigenvectors of ATA 



© Manfred Huber 2010 23 

Singular Value Decomposition 
  Singular value decomposition (SVD) factorizes A 

  U is an mxm orthogonal matrix of left singular vectors 

  V is an nxn orthogonal matrix of right singular vectors 

  Σis an mxn diagonal matrix of singular values 
  Usually Σ is arranged such that the singular values are ordered by 

magnitude 

  Left and right singular vectors are related through the 
singular values 

€ 

A =UΣVT

€ 

Av,i =σ iu,i
AT u,i =σ iv,i
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Singular Value Decomposition 
  Singular value decomposition (SVD) can be computed 

in different ways 
  Using eigenvalue computation on  AAT 

  Compute eigenvalues of AAT  

  Determine left singular vectors as eigenvectors for AAT 

  Determine right singular vectors as eigenvectors for ATA 

  Leads to some conditioning issues due to the need for matrix multiplication 

  Directly from A by performing Householder transformations and 
givens rotations until a diagonal matrix is reached 

  Perform QR factorization to achieve triangular matrix 

  Use Householder transforms to achieve bidiagonal shape 

  Use Givens rotations to achieve diagonal form 

  This is usually better conditioned 
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Singular Value Decomposition 
  Singular value decomposition (SVD) can be used for a 

range of applications 
  Compute least squares solution 

  Compute pseudoinverse 

  Euclidean matrix norm: 

  Condition number of a matrix: 

  Matrix rank is equal to the number of non-zero singular values 

  Nullspace of the matrix is spanned by the set of right singular 
vectors corresponding to singular values of 0 

  Span of a matrix is spanned by the left singular vectors 
corresponding to non-zero singular values 

€ 

Ax ≅ b   →   x =
u,i
Tb
σ i

vi
σ i ≠0
∑

€ 

A+ =VΣ+UT

€ 

A 2 =σmax

€ 

cond(A) =σmax σmin
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Singular Value Decomposition 
  Singular value decomposition (SVD) is useful in a 

number of applications 
  Data compression 

  Right singular values transform data into a basis in which it is only scaled 

  Data dimensions with 0 or very small scaling factors are not important for 
the overall data 

  Wide range of applications: 
  Image compression 
  Dimensionality reduction for data 

  Dimensionality reduction for matrix operations 

  Filtering and noise reduction 
  Most of the time, data has only few important dimensions and noise is 

most apparent in additional dimensions (with smaller singular values) 

  Ignoring dimensions with small singular values can lead to less noisy data  
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Compression Example 
  Image compression is an area where SVD has been 

used relatively early on 
  Given an image, can we reduce the amount of data that has to 

be transmitted without loosing too much information 
  Use SVD to find a lower rank approximation of the image that has only 

limited loss. 
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Compression Example 
  In SVD, the magnitude of the singular values often 

decreases rapidly after the first few singular values 

  To compress the image, only keep the k largest singular 
values (and thus singular vectors) to reconstruct the 
image 

€ 

A ≈UpΣpVp
T
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Compression Example 
  Different compression levels have different loss 
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Eigenvalues and Singular Values 
  Eigenvalues and Eigenvectors capture important properties 

about linear transformations A 

  Eigenvalues and Singular values indicate the importance of 
particular dimensions of the space 

  Can be used for compression 

  Singular values can capture noise characteristics  

  Can be used for filtering of data  

  Can be used to remove noise from data before transformations are 
applied 

  Singular values are also important to analyze problems such as 
conditioning and sensitivity 


