Computational Methods

Eigenvalues and Singular Values

Eigenvalues and Singular Values

- Eigenvalues and singular values describe important aspects of transformations and of data relations
- Eigenvalues determine the important the degree to which a linear transformation changes the length of transformed vectors
- Eigenvectors indicate the directions in which the principal change happen
- Eigenvalues are important for many problems in computer science and engineering, including
- Dimensionality reduction
- Compression

Eigenvalues

- Eigenvalues λ and eigenvectors x characterize dimensions that are purely stretched by a given linear transformation

$$
A x=\lambda x
$$

- The spectrum of A is the set of its eigenvalues
- The spectral radius of A is the magnitude of the larges of its eigenvalues
- Eigenvalues characterize the degree to which a linear transformation stretches input vectors
- Also important for sensitivity analysis of linear problems

Eigenvalues

- A linear transformation has as many eigenvalues and eigenvectors as it has dimensions
- Eigenvectors might be duplicates
- Eigenvalues might be complex
- Any data point (vector) can be written as a linear combination of eigenvectors
- Allows efficient decomposition of vectors

Power Iteration

- The eigenvalue equation is related to the fixed point equations (except with scaling)

$$
A x=\lambda x
$$

- Simplest solution method to find eigenvectors (and eigenvalues) is power iteration
- characterize dimensions that are purely stretched by a given linear transformation
- Power iteration converges to a scaled version of the eigenvector with the dominant eigenvalue

$$
x_{t+1}=A x_{t}
$$

Power Iteration

- Power iteration converges except if
- x_{0} has no component of the dominant eigenvector
- There are more than one eigenvector with the same eigenvalue
- Normalized power iteration renormalizes the result x_{t+1} after each iteration

$$
y_{k+1}=A x_{k} \quad, \quad x_{k+1}=\frac{y_{k+1}}{\left\|y_{k+1}\right\|_{\infty}}
$$

- Converges to dominant eigenvector and dominant eigenvalue

$$
\left\|y_{k}\right\|_{\infty} \rightarrow \lambda_{d} \quad, \quad x_{k} \rightarrow \frac{1}{\left\|v_{d}\right\|_{\infty}} v_{d}
$$

Inverse Iteration

- Inverse iteration is used to find the smallest eigenvalue
- converges except if

$$
A y_{k+1}=x_{k} \quad, \quad x_{k+1}=\frac{y_{k+1}}{\left\|y_{k+1}\right\|_{\infty}}
$$

- Inverse iteration corresponds to power iteration with the inverse matrix A^{-1}
- Inverse iteration and power iteration can only find the smallest and the largest eigenvalues
- Need to find a way to determine other eigenvalues and eigenvectors

Characteristic Polynomial

- The determination of eigenvectors and eigenvalues can be transformed into a root finding problem

$$
(A-\lambda I) x=0
$$

- Has a nonzero solution for the eigenvector x if and only if ($A-\lambda I$) is not singular
- Eigenvalues of the nonsingular matrix are the roots of the characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=0
$$

- The characteristic polynomial is a polynomial of degree n
- Complex eigenvalues occur in conjugate pairs
- Computation of the characteristic polynomial is complex
- Can be accelerated by first performing LU factorization

Characteristic Polynomial

- Computing roots of a polynomial of degree larger than 4 cannot always be computed directly and require an iterative solution
- Computing eigenvalues using the characteristic polynomial is numerically not stable and highly complex
- Computing coefficients of characteristic polynomial requires computation of the determinant
- Root finding requires iterative solution process
- Coefficients of characteristic are very sensitive
- Characteristic polynomial is a powerful theoretical tool but not a practical computational approach

Eigenvalue Problems

- Characteristics of eigenvalue problems influence the choice of algorithm
- All or only some eigenvalues
- Only eigenvalues or eigenvalues and eigenvectors
- Dense or sparse matrix
- Real of complex values
- Other properties of matrix A

Problem Transformations

- A number of transformations either preserve or have a predictable effect on the eigenvalues
- Shift: For any scalar σ

$$
A x=\lambda x \quad \rightarrow \quad(A-\sigma I) x=(\lambda-\sigma) x
$$

- Inversion:
- Powers:

$$
A x=\lambda x \quad \rightarrow \quad A^{-1} x=\frac{1}{\lambda} x
$$

$$
A x=\lambda x \quad \rightarrow \quad A^{k} x=\lambda^{k} x
$$

- Polynomial: for any polynomial $\mathrm{p}(\mathrm{t})$

$$
A x=\lambda x \quad \rightarrow \quad p(A) x=p(\lambda) x
$$

- Similarity: for any similar matrix $B=T^{-1} A T$

$$
B x=\lambda x \quad \rightarrow \quad A T x=\lambda(T x)
$$

Problem Transformations

- Eigenvalues and eigenvectors of diagonal matrices are easy to determine
- Eigenvalues are the values on the diagonal
- Eigenvectors are the columns of the identity matrix
- Not all matrices are diagonalizable using similarity transformations
- Eigenvalues of triangular matrices can also be determined easily
- Eigenvalues are diagonal entries of the matrix
- Eigenvectors can be computed from $(A-\lambda I) x=0$

Convergence of Iterations

- Speed of convergence of power iteration and inverse iteration depends on the ratio of two eigenvalues
- For power iteration, convergence is faster the larger the ratio of the largest and the second largest eigenvalue is
- For inverse iteration, convergence is faster the smaller the ratio of the smallest and the second smallest eigenvector is
- Shift transformation allows to change the ratio of eigenvalues $\frac{\lambda_{1}}{\lambda_{2}} \rightarrow \frac{\lambda_{1}-\sigma}{\lambda_{2}-\sigma}$
- Knowledge of eigenvalue of sought after eigenvector would allow to lower this ratio to 0
- Allows to increase the convergence rate of inverse iteration

Rayleigh Quotient Iteration

- Rayleigh quotient iteration uses the Rayleigh quotient as a shift parameter $\sigma=\frac{x^{t} A x}{x^{T} x}$, ($\left.A-\sigma I\right)$
- This allows to make the ratio of eigenvalues close to 0 and thus accelerates the convergence of inverse iteration

$$
\begin{aligned}
& \left(A-\sigma_{k} I\right) y_{k+1}=x_{k} \\
& x_{k+1}=\frac{y_{k+1}}{\left\|y_{k+1}\right\|_{\infty}}
\end{aligned}
$$

- This algorithm is usually called Rayleigh quotient iteration
- Rayleigh quotient iteration converges usually very fast
- Each iteration requires a new matrix factorization and is therefore $O\left(n^{3}\right) \mathrm{F}$

Computing All Eigenvalues

- Power iteration and inverse iteration allow to compute only the largest and the smallest eigenvalues and eigenvectors.
- To compute the other eigenvalues we need to either
- Remove the already found eigenvector (and eigenvalue) from the matrix to be able to reapply power or inverse iteration
- Find a way to find all the eigenvectors simultaneously
- Removing eigenvectors from the space spanned by a transformation A is called deflation

Deflation

- To remove an eigenvalue (and corresponding eigenvector) we have to find a set of transformations that preserves all other eigenvalues
- Householder transforms can be used to derive such a transformation H with

$$
H x_{1}=\alpha e_{1}
$$

- The similarity transform described by H yields a matrix

$$
H A H^{-1}=\left(\begin{array}{cc}
\lambda_{1} & b^{T} \\
0 & B
\end{array}\right)
$$

- Since similarity transforms were used this matrix has the same eigenvalues
- B has all the eigenvalues of A with the exception of λ_{1}
- Power iteration can be applied to this new matrix B

Deflation

- Power iteration with deflation can compute all eigenvalues but requires determining the eigenvector in each iteration
- Eigenvector in B can be used to compute eigenvector in A

$$
x_{3}=H^{-1}\binom{\frac{b^{T} y_{2}}{\lambda_{2}-\lambda_{1}}}{y_{2}}
$$

- Alternatively, the eigenvalue could be used directly in A to determine the eigenvector
- More computationally complex

Simultaneous Iteration

- Simultaneous iteration attempts to simultaneously iterate multiple vectors

$$
X_{k+1}=A X_{k}
$$

- X converges to the space spanned by the p dominant eigenvectors
- Subspace iteration
- But X becomes ill-conditioned since all columns in X ultimately converge to the dominant eigenvector
- Need normalization that keeps vectors well conditioned and non-equal
- Orthogonal iteration using QR factorization

QR Iteration

- As for least squares (and equation solving) QR factorization allows a factorization of the matrix into components that stay well conditioned

$$
\begin{aligned}
& Q_{k+1} R_{k+1}=X_{k} \\
& X_{k+1}=A Q_{k+1}
\end{aligned}
$$

- By using Q (a similarity transform) for the iteration, the eigenvalues are preserved and it converges to block triangular form
- Triangular form if all eigenvalues are real values and distinct

QR Iteration

- To find eigenvalues, QR iteration can be applied directly to A

$$
A_{k}=Q_{k}^{H} A_{k-1} Q_{k}
$$

- Converges to triangular or block triangular matrix containing all eigenvalues as diagonal elements of as eigenvalues of diagonal blocks
- Can be computed without explicitly performing the product

$$
\begin{aligned}
& Q_{k+1} R_{k+1}=A_{k} \\
& A_{k+1}=R_{k+1} Q_{k+1}\left(=Q_{k+1}^{H} A_{k} Q_{k+1}\right)
\end{aligned}
$$

- Can be accelerated using shift transformation

Singular Values

- Singular values are related to Eigenvalues and characterize important aspects of the space described by the transformation
- Nullspace
- Span
- Singular Value Decomposition divides a transformation A into a sequence of 3 transformations where the second is pure rescaling
- Scaling parameters are the singular values
- Columns of the other two transformations are the left and right singular vectors, respectively

Singular Values

- Singular values exist for all transformations A, independent of A being square or not
- Right singular vectors represent the input vectors that span the orthogonal basis that is being scaled
- Left singular vectors represent the vectors that the scaled internal basis vectors are transformed into for the output
- Sinuglar values are directly related to the eigenvalues
- Singular values are the nonnegative square roots of the eigenvalues of $A A^{T}$ or $A^{T} A$
- Left singular vectors are eigenvectors of $A A^{T}$
- Right singular vectors are eigenvectors of $A^{\top} A$

Singular Value Decomposition

- Singular value decomposition (SVD) factorizes A

$$
A=U \Sigma V^{T}
$$

- U is an mxm orthogonal matrix of left singular vectors
- V is an $n x n$ orthogonal matrix of right singular vectors
- Σ is an $m x n$ diagonal matrix of singular values
- Usually Σ is arranged such that the singular values are ordered by magnitude
- Left and right singular vectors are related through the singular values

$$
\begin{aligned}
& A v_{, i}=\sigma_{i} u_{, i} \\
& A^{T} u_{, i}=\sigma_{i} v_{, i}
\end{aligned}
$$

Singular Value Decomposition

- Singular value decomposition (SVD) can be computed in different ways
- Using eigenvalue computation on AA^{\top}
- Compute eigenvalues of $A A^{T}$
- Determine left singular vectors as eigenvectors for $A A^{T}$
- Determine right singular vectors as eigenvectors for $A^{T} A$
- Leads to some conditioning issues due to the need for matrix multiplication
- Directly from A by performing Householder transformations and givens rotations until a diagonal matrix is reached
- Perform QR factorization to achieve triangular matrix
- Use Householder transforms to achieve bidiagonal shape
- Use Givens rotations to achieve diagonal form
- This is usually better conditioned

Singular Value Decomposition

- Singular value decomposition (SVD) can be used for a range of applications
- Compute least squares solution $A x \cong b \quad \rightarrow \quad x=\sum_{\sigma_{i} \neq 0} \frac{u_{i,}^{T} b}{\sigma_{i}} v_{i}$
- Compute pseudoinverse $A^{+}=V \Sigma^{+} U^{T}$
- Euclidean matrix norm: $\|A\|_{2}=\sigma_{\text {max }}$
- Condition number of a matrix: $\operatorname{cond}(A)=\sigma_{\text {max }} / \sigma_{\text {min }}$
- Matrix rank is equal to the number of non-zero singular values
- Nullspace of the matrix is spanned by the set of right singular vectors corresponding to singular values of 0
- Span of a matrix is spanned by the left singular vectors corresponding to non-zero singular values

Singular Value Decomposition

- Singular value decomposition (SVD) is useful in a number of applications
- Data compression
- Right singular values transform data into a basis in which it is only scaled
- Data dimensions with 0 or very small scaling factors are not important for the overall data
- Wide range of applications:
- Image compression
- Dimensionality reduction for data
- Dimensionality reduction for matrix operations
- Filtering and noise reduction
- Most of the time, data has only few important dimensions and noise is most apparent in additional dimensions (with smaller singular values)
- Ignoring dimensions with small singular values can lead to less noisy data

Compression Example

- Image compression is an area where SVD has been used relatively early on
- Given an image, can we reduce the amount of data that has to be transmitted without loosing too much information
- Use SVD to find a lower rank approximation of the image that has only limited loss.

Compression Example

- In SVD, the magnitude of the singular values often decreases rapidly after the first few singular values

- To compress the image, only keep the k largest singular values (and thus singular vectors) to reconstruct the image

$$
A \approx U_{p} \Sigma_{p} V_{p}^{T}
$$

Compression Example

- Different compression levels have different loss

Eigenvalues and Singular Values

- Eigenvalues and Eigenvectors capture important properties about linear transformations A
- Eigenvalues and Singular values indicate the importance of particular dimensions of the space
- Can be used for compression
- Singular values can capture noise characteristics
- Can be used for filtering of data
- Can be used to remove noise from data before transformations are applied
- Singular values are also important to analyze problems such as conditioning and sensitivity

