
Knowledge base for the wumpus world

“Perception”
∀ b, g, t Percept([Smell, b, g], t) ⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t) ⇒ AtGold(t)

Reflex: ∀ t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential
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Deducing hidden properties

Properties of locations:
∀x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧ Breeze(t) ⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀ y Breezy(y) ⇒ ∃ x Pit(x) ∧ Adjacent(x, y)

Causal rule—infer effect from cause
∀x, y P it(x) ∧ Adjacent(x, y) ⇒ Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]
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Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold,Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s
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Describing actions I

“Effect” axiom—describe changes due to action
∀ s AtGold(s) ⇒ Holding(Gold,Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . . .
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Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

P true afterwards ⇔ [an action made P true

∨ P true already and no action made P false]

For holding the gold:
∀ a, s Holding(Gold,Result(a, s)) ⇔

[(a = Grab ∧ AtGold(s))
∨ (Holding(Gold, s) ∧ a '= Release)]
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Making plans

Initial condition in KB:
At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query: Ask(KB, ∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab, Result(Forward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and that S0

is the only situation described in the KB
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Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, ∃ p Holding(Gold, P lanResult(p, S0)))
has the solution {p/[Forward,Grab]}

Definition of PlanResult in terms of Result:
∀ s P lanResult([ ], s) = s
∀ a, p, s P lanResult([a|p], s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner
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Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB
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