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Numerical Analysis /  
Scientific Computing  

  Many problems in Science and Engineering can 
not be solved analytically on a computer 
  Numeric solutions are often required  

  Numeric solutions provide only approximate solutions 

  Numeric solutions are not unique 
  Different numeric algorithms might yield different approximations 

  Numerical Analysis deals with the design and 
analysis of numeric algorithms 
  Deals with continuous quantities 

  Considers / analyzes the effects of approximations  
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Computational Problems and 
Numerical Algorithms  

  Solving of computational problems usually 
involves the following steps: 
  Mathematical modeling 

  Develop a mathematical description for the problem 

  Algorithm design 
  Build an algorithm to solve the mathematical problem 

formulation 

  Analyze the algorithm for its performance 

  Implementation and Evaluation 
  Implement the algorithm 

  Evaluate its performance with real data 
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Computational Problems and 
Numerical Algorithms  

  A problem is well-posed if 
  A solution exists and is unique 

  The solution depends continuously on the data 

  Ill-posed problems are often sensitive to the data 
and solution algorithms are not stable 
  Some ill-posed problems can be approximated by well-

posed similar problems 

  Even solutions to well-posed problems can be 
sensitive to data 
  Computational algorithm should not increase sensitivity 
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Problem Solution Strategies 
  Finding a solution (and subsequently an algorithm) 

for a computational problem often involves 
replacing a difficult problem with a simpler one 
with identical or closely related solution 
  Replace infinite with finite formulations 

  Replace differential equations with algebraic equations 

  Replace non-linear formulations with linear ones 

  Replace complicated functions with simpler ones 

  Replace higher-order systems with lower-order ones 

  Solutions may only approximate the original ones 
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Sources of Approximation 
  Problem formulation and input data 

  Simplifications in the original model of the problem 

  Errors in measurements used as input data  

  Approximations resulting from pre-computations 

  Algorithm and implementation 
  Truncation and discretization as part of the algorithm 

design (usually resulting from simplifications of the 
original mathematical model) 

  Rounding as a result of the use of a finite resolution 
digital computer 
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Approximation and Error 
  The accuracy of the solution produced by a 

numerical algorithm depends on errors introduced 
by the modeling and pre-computation and by the 
computation in the algorithm 
  The first can usually not be addressed but have to be 

considered when analyzing an algorithm  

  The problem and the solution algorithm can have 
major effects on the accuracy of the approximation  
  The problem can amplify input error (sensitivity) 

  The algorithm can amplify computation errors (stability) 
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Approximation and Error 
  The total error is generally a result of errors in the 

data and errors arising through the computation 

  Computational error :  

  Propagated data error:  

  Computational errors arise from simplifications in 
the algorithm and from numeric limitations 
  Truncation error: Caused by the algorithm 

  Rounding error: Caused by limited numeric precision 

  Truncation and Rounding often trade off  

� 

ˆ f ( ˜ x ) − f (x) = ˆ f ( ˜ x ) − f ( ˜ x )  +  f ( ˜ x ) − f (x)

� 

ˆ f ( ˜ x ) − f ( ˜ x )

� 

f ( ˜ x ) − f (x)
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Example: Finite Difference 
  Compute the derivative using finite difference 

approximation: 

  Truncation error is bounded by  

  Rounding error is bounded by  

  Optimal step size:  
� 

f '(x) ≈ f (x + Δx) − f (x)
Δx

� 

M Δx
2

� 

2 ε
Δx

� 

Δx ≈ 2 ε /M

Sin(x) : 
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Absolute and Relative Error 
  Absolute error: 

  Relative error: 

  The true value, y, is generally unknown 

  Relative error is often computed relative to the 
approximate value 

  Error has to be approximated or calculated as a bound 

� 

ˆ y − y

� 

ˆ y − y
y
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Forward and Backward Error 
  Error can be analyzed in the output space or in the 

input space of the algorithm 

  Forward error :  
  error in the output of the algorithm for the same input  

  Backward error:  
  error in the correct input corresponding to the output  � 

Δy = ˆ y − y = ˆ f (x) − f (x)

� 

Δx = ˆ x − x  ; ˆ y = f ( ˆ x )
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Backward Error 
  Backward error can be a useful analysis tool 

  Backward error captures sensitivity 
  Measures how much the original problem has to change to 

result in exactly the approximate solution 

  How much data error would explain the total error 

  Approximate solution is good if it has a small backward 
error 

  Backward error is often easier to estimate than forward 
error 
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Sensitivity and Conditioning 
  A problem is sensitive (ill-conditioned) if a change 

in the input data can cause a much larger change 
in the output data 

  Condition number captures sensitivity: 

  A problem is sensitive if cond >> 1 
  Condition number represents an amplification factor 

between relative backward and relative forward error � 

cond =
relative  output  error
relative  data  error

=
f ( ˆ x ) − f (x)( ) / f (x)

ˆ x − x( ) / x
=
Δy / y
Δx / x
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Stability 
  An algorithm is stable if the result is relatively 

insensitive to perturbations caused by the 
computation 
  Similar to conditioning for problems 

  An algorithm is stable if it results in a small backward 
error (i.e. if its result is the exact solution to a similar 
problem) 

  If an algorithm is stable, the computational error is no 
worse than a small input error  
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Accuracy 
  Accuracy measures the similarity of the true and 

the computed solution 
  Accuracy depends on conditioning of the problem and 

stability of the algorithm 

  Stability or well-conditioning alone do not guarantee 
accuracy 

  A stable algorithm applied to an ill-conditioned problem can yield 
inaccuracy 

  An unstable algorithm applied to a well-conditioned problem can 
yield inaccurate results 

  To achieve accurate solutions a stable algorithm has to 
be applied to a well-conditioned problem 
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Number Representation and 
Rounding Errors 

  Floating point numbers are used to represent 
continuous number 
  Real numbers can not be represented accurately 

  Operations on floating point numbers are not accurate 

  Floating point numbers: 
  Base 

  Precision 

  Exponent range 

� 

β

� 

p

� 

[L,U]

� 

x = ± d0 + d1
β

+ ...+
dp−1
β p−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ β E
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Floating Point Numbers 
  Multiple floating point standards exist 

  Most floating point systems are normalized so that 
the first bit of the mantissa is 1 
  No digits wasted on leading zeros (saves 1 bit) 
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Floating Point Numbers 
  Underflow: smallest positive normalized number 

  Overflow: largest floating point number 

  Machine precision: smallest number larger than 1 
minus 1 

  Machine precision bounds the rounding error: 
  With rounding to nearest:   

� 

UFL = β L

� 

OFL = (1−β−p )βU +1

� 

εmach = β1− p

� 

fl(x) − x
x

≤ 1
2
εmach
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Floating Point Number 
Example 

  Representable numbers for a binary number with 3 
bit mantissa and 2 bit exponent 

  OFL = 3.5 

  UFL = 0.5 

  εmach = 0.125 
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Floating Point Arithmetic 
  Floating point operations introduce rounding errors 

  Addition and subtraction 
  For addition and subtraction the mantissa has to be shifted 

until the exponents of the numbers are equal 
  Potential loss of significant bits in the smaller number 

  Multiplication 
  Mantissas have to be multiplied, yielding theoretically a 

new mantissa with 2p digits which has to be rounded 
  Division 

  Quotient of mantissas can theoretically have an infinite 
number of digits which have to be rounded 
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Floating Point Arithmetic 
  Besides rounding errors, floating point operations 

can result in unrepresentable numbers 
  Overflow 

  Results of an overflow (a number too large to be 
represented) possess no good approximation and can be 
catastrophic. 

  On most computer systems overflow produces an error 
message 

  Underflow 
  Results of an underflow are usually approximated as 0. 

  On many computer systems underflow is handled silently 
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Floating Point Arithmetic 
  Many general arithmetic laws do not strictly hold in 

floating point arithmetic 
  Addition and multiplication are commutative but not 

associative 

� 

1
nn=1

∞∑

  Underflow, overflow, and rounding can lead to 
incorrect results.                                                                                             
 Infinite sum 

  While this sum diverges in reality (and thus has no result) 
numeric calculation of it yields a finite sum 

  Partial sum no longer changes once 1/n is too small compared to 
the value of the partial sum 
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Relative Error and  
Loss of Significance 

  Errors produced by well implemented arithmetic 
floating point operations can be modeled by  

  Relative error bound 

  Error propagation can still lead to high relative 
error through loss of significance (or cancellation) 
  When during subtraction leading digits cancel out the 

result uses fewer than p digits and thus looses precision 

� 

fl(x  op  y)  =  (x  op  y)(1+ δ)  ; δ ≤ εmach

� 

fl(x  op  y) − (x  op  y)
(x  op  y)

 ≤ εmach



© Manfred Huber 2011 24 

Loss of Significance 
  Rounding results in a loss of the least significant 

digits while cancellation leads to a loss of the most 
significant digits 
  It is generally a bad idea to compute a small number by 

subtracting large numbers 
  The propagated rounding error through loss of significance 

might ultimately dominate the actual result 
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Loss of Significance 
  To avoid cancellation errors, problems can 

sometimes be reformulated in a way that avoids 
the problem 
  Multiplication with conjugate expressions: 

� 

y − x = ( y − x)( y + x)
y + x

= y − x 2

y + x
 

� 

1− cos x
sin2 x

= 1
1+ cos x

  

� 

x = −b ± b2 − 4ac
2a

= 2c
−b  b2 − 4ac

  Application of identities to restructure the expression: 



© Manfred Huber 2011 26 

Representation and Error 
  Computations on digital computers produce 

approximations that yield errors  
  Approximation should be taken into account when 

designing and analyzing algorithms 

  Approximations break into multiple types 
  Data errors 

  Computation errors 
  Truncation error due to algorithm 

  Rounding error due to representation limitations 

  Errors can propagate and be amplified 
  Algorithm design should take errors into account 


