
1

Computational Methods

Sources of Errors

© Manfred Huber 2011

© Manfred Huber 2011 2

Numerical Analysis /
Scientific Computing

  Many problems in Science and Engineering can
not be solved analytically on a computer
  Numeric solutions are often required

  Numeric solutions provide only approximate solutions

  Numeric solutions are not unique
  Different numeric algorithms might yield different approximations

  Numerical Analysis deals with the design and
analysis of numeric algorithms
  Deals with continuous quantities

  Considers / analyzes the effects of approximations

© Manfred Huber 2011 3

Computational Problems and
Numerical Algorithms

  Solving of computational problems usually
involves the following steps:
  Mathematical modeling

  Develop a mathematical description for the problem

  Algorithm design
  Build an algorithm to solve the mathematical problem

formulation

  Analyze the algorithm for its performance

  Implementation and Evaluation
  Implement the algorithm

  Evaluate its performance with real data

© Manfred Huber 2011 4

Computational Problems and
Numerical Algorithms

  A problem is well-posed if
  A solution exists and is unique

  The solution depends continuously on the data

  Ill-posed problems are often sensitive to the data
and solution algorithms are not stable
  Some ill-posed problems can be approximated by well-

posed similar problems

  Even solutions to well-posed problems can be
sensitive to data
  Computational algorithm should not increase sensitivity

© Manfred Huber 2011 5

Problem Solution Strategies
  Finding a solution (and subsequently an algorithm)

for a computational problem often involves
replacing a difficult problem with a simpler one
with identical or closely related solution
  Replace infinite with finite formulations

  Replace differential equations with algebraic equations

  Replace non-linear formulations with linear ones

  Replace complicated functions with simpler ones

  Replace higher-order systems with lower-order ones

  Solutions may only approximate the original ones

© Manfred Huber 2011 6

Sources of Approximation
  Problem formulation and input data

  Simplifications in the original model of the problem

  Errors in measurements used as input data

  Approximations resulting from pre-computations

  Algorithm and implementation
  Truncation and discretization as part of the algorithm

design (usually resulting from simplifications of the
original mathematical model)

  Rounding as a result of the use of a finite resolution
digital computer

© Manfred Huber 2011 7

Approximation and Error
  The accuracy of the solution produced by a

numerical algorithm depends on errors introduced
by the modeling and pre-computation and by the
computation in the algorithm
  The first can usually not be addressed but have to be

considered when analyzing an algorithm

  The problem and the solution algorithm can have
major effects on the accuracy of the approximation
  The problem can amplify input error (sensitivity)

  The algorithm can amplify computation errors (stability)

© Manfred Huber 2011 8

Approximation and Error
  The total error is generally a result of errors in the

data and errors arising through the computation

  Computational error :

  Propagated data error:

  Computational errors arise from simplifications in
the algorithm and from numeric limitations
  Truncation error: Caused by the algorithm

  Rounding error: Caused by limited numeric precision

  Truncation and Rounding often trade off

�

ˆ f (˜ x) − f (x) = ˆ f (˜ x) − f (˜ x) + f (˜ x) − f (x)

�

ˆ f (˜ x) − f (˜ x)

�

f (˜ x) − f (x)

© Manfred Huber 2011 9

Example: Finite Difference
  Compute the derivative using finite difference

approximation:

  Truncation error is bounded by

  Rounding error is bounded by

  Optimal step size:
�

f '(x) ≈ f (x + Δx) − f (x)
Δx

�

M Δx
2

�

2 ε
Δx

�

Δx ≈ 2 ε /M

Sin(x) :

© Manfred Huber 2011 10

Absolute and Relative Error
  Absolute error:

  Relative error:

  The true value, y, is generally unknown

  Relative error is often computed relative to the
approximate value

  Error has to be approximated or calculated as a bound

�

ˆ y − y

�

ˆ y − y
y

© Manfred Huber 2011 11

Forward and Backward Error
  Error can be analyzed in the output space or in the

input space of the algorithm

  Forward error :
  error in the output of the algorithm for the same input

  Backward error:
  error in the correct input corresponding to the output �

Δy = ˆ y − y = ˆ f (x) − f (x)

�

Δx = ˆ x − x ; ˆ y = f (ˆ x)

© Manfred Huber 2011 12

Backward Error
  Backward error can be a useful analysis tool

  Backward error captures sensitivity
  Measures how much the original problem has to change to

result in exactly the approximate solution

  How much data error would explain the total error

  Approximate solution is good if it has a small backward
error

  Backward error is often easier to estimate than forward
error

© Manfred Huber 2011 13

Sensitivity and Conditioning
  A problem is sensitive (ill-conditioned) if a change

in the input data can cause a much larger change
in the output data

  Condition number captures sensitivity:

  A problem is sensitive if cond >> 1
  Condition number represents an amplification factor

between relative backward and relative forward error �

cond =
relative output error
relative data error

=
f (ˆ x) − f (x)() / f (x)

ˆ x − x() / x
=
Δy / y
Δx / x

© Manfred Huber 2011 14

Stability
  An algorithm is stable if the result is relatively

insensitive to perturbations caused by the
computation
  Similar to conditioning for problems

  An algorithm is stable if it results in a small backward
error (i.e. if its result is the exact solution to a similar
problem)

  If an algorithm is stable, the computational error is no
worse than a small input error

© Manfred Huber 2011 15

Accuracy
  Accuracy measures the similarity of the true and

the computed solution
  Accuracy depends on conditioning of the problem and

stability of the algorithm

  Stability or well-conditioning alone do not guarantee
accuracy

  A stable algorithm applied to an ill-conditioned problem can yield
inaccuracy

  An unstable algorithm applied to a well-conditioned problem can
yield inaccurate results

  To achieve accurate solutions a stable algorithm has to
be applied to a well-conditioned problem

© Manfred Huber 2011 16

Number Representation and
Rounding Errors

  Floating point numbers are used to represent
continuous number
  Real numbers can not be represented accurately

  Operations on floating point numbers are not accurate

  Floating point numbers:
  Base

  Precision

  Exponent range

�

β

�

p

�

[L,U]

�

x = ± d0 + d1
β

+ ...+
dp−1
β p−1

⎛

⎝
⎜

⎞

⎠
⎟ β E

© Manfred Huber 2011 17

Floating Point Numbers
  Multiple floating point standards exist

  Most floating point systems are normalized so that
the first bit of the mantissa is 1
  No digits wasted on leading zeros (saves 1 bit)

© Manfred Huber 2011 18

Floating Point Numbers
  Underflow: smallest positive normalized number

  Overflow: largest floating point number

  Machine precision: smallest number larger than 1
minus 1

  Machine precision bounds the rounding error:
  With rounding to nearest:

�

UFL = β L

�

OFL = (1−β−p)βU +1

�

εmach = β1− p

�

fl(x) − x
x

≤ 1
2
εmach

© Manfred Huber 2011 19

Floating Point Number
Example

  Representable numbers for a binary number with 3
bit mantissa and 2 bit exponent

  OFL = 3.5

  UFL = 0.5

  εmach = 0.125

© Manfred Huber 2011 20

Floating Point Arithmetic
  Floating point operations introduce rounding errors

  Addition and subtraction
  For addition and subtraction the mantissa has to be shifted

until the exponents of the numbers are equal
  Potential loss of significant bits in the smaller number

  Multiplication
  Mantissas have to be multiplied, yielding theoretically a

new mantissa with 2p digits which has to be rounded
  Division

  Quotient of mantissas can theoretically have an infinite
number of digits which have to be rounded

© Manfred Huber 2011 21

Floating Point Arithmetic
  Besides rounding errors, floating point operations

can result in unrepresentable numbers
  Overflow

  Results of an overflow (a number too large to be
represented) possess no good approximation and can be
catastrophic.

  On most computer systems overflow produces an error
message

  Underflow
  Results of an underflow are usually approximated as 0.

  On many computer systems underflow is handled silently

© Manfred Huber 2011 22

Floating Point Arithmetic
  Many general arithmetic laws do not strictly hold in

floating point arithmetic
  Addition and multiplication are commutative but not

associative

�

1
nn=1

∞∑

  Underflow, overflow, and rounding can lead to
incorrect results.
 Infinite sum

  While this sum diverges in reality (and thus has no result)
numeric calculation of it yields a finite sum

  Partial sum no longer changes once 1/n is too small compared to
the value of the partial sum

© Manfred Huber 2011 23

Relative Error and
Loss of Significance

  Errors produced by well implemented arithmetic
floating point operations can be modeled by

  Relative error bound

  Error propagation can still lead to high relative
error through loss of significance (or cancellation)
  When during subtraction leading digits cancel out the

result uses fewer than p digits and thus looses precision

�

fl(x op y) = (x op y)(1+ δ) ; δ ≤ εmach

�

fl(x op y) − (x op y)
(x op y)

 ≤ εmach

© Manfred Huber 2011 24

Loss of Significance
  Rounding results in a loss of the least significant

digits while cancellation leads to a loss of the most
significant digits
  It is generally a bad idea to compute a small number by

subtracting large numbers
  The propagated rounding error through loss of significance

might ultimately dominate the actual result

© Manfred Huber 2011 25

Loss of Significance
  To avoid cancellation errors, problems can

sometimes be reformulated in a way that avoids
the problem
  Multiplication with conjugate expressions:

�

y − x = (y − x)(y + x)
y + x

= y − x 2

y + x

�

1− cos x
sin2 x

= 1
1+ cos x

�

x = −b ± b2 − 4ac
2a

= 2c
−b b2 − 4ac

  Application of identities to restructure the expression:

© Manfred Huber 2011 26

Representation and Error
  Computations on digital computers produce

approximations that yield errors
  Approximation should be taken into account when

designing and analyzing algorithms

  Approximations break into multiple types
  Data errors

  Computation errors
  Truncation error due to algorithm

  Rounding error due to representation limitations

  Errors can propagate and be amplified
  Algorithm design should take errors into account

