ﬁ Computational Methods

Interpolation
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Interpolation

= Computing functions and solving equations (and
systems of equations) are used solve problems on
a known system model (represented by the system
of equations)

= Function calculations compute the output of the system

= Solving equations computes parameter settings for a given
output

= Interpolation is used to determine the system
model from a number of data points
« Estimates system equations from parameter/output data pairs
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i Interpolation

= Interpolation is aimed at determining f(x) from
data points (x, y;) such that

« f(x)=y; (Interpolant fits the data points perfectly)

= Often additional constraints or requirements are
imposed on the interpolant (interpolating function f
(x))
= Desired slope
= Continuity,
= Smoothness

= Convexity
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Interpolation

= Interpolation is useful for a number of applications
where only data points are given
= Filling in unknown data points
= Plotting smooth curves through data points
=« Determining equations for an unknown system

= Interpolation can also be used to simplify or compress
information
= Replacing a complicated function with a simpler approximation
= Compressing complex data into a more compact form

= Interpolation is not for data with significant error

= Approximation / optimization is more appropriate for this
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Interpolation

= Generally there are an infinite number of interpolation
functions for a set of data points

= The choice of interpolation function should depend on the
type and characteristics of the data
= Monotonicity ? Convexity ?
= Is data periodic ?
= What behavior between data points ?

= Choice of function can also be influenced by desired
properties of the function
= Will function be integrated or differentiated ?
= Will function be used for equation solving ?

= Is the result used for solving equations or visual inspection ?
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Interpolation

= Commonly used families of interpolation functions
= Polynomials
= Piecewise polynomials
= Trigonometric functions
= Exponential functions

= Families of interpolation functions are spanned by a
set of basis functions ¢.(x)

= Interpolating function can be computed as a linear
combination of basis functions

f)=) " a,x)
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Interpolation

= The interpolatLon constraints can be defined
fx)=) ad(x)=y,
= Constraints represent a system of linear equations
Ao = Yy aj,i = ¢i()€j)
= Solution to the linear system is the vector of coefficients
= EXxistence and uniqueness of interpolant depends on the
number of points and basis functions
= TOO many data points means usually no interpolant exists

= Too few data points means no unique solution exists

« If there are as many data points as basis functions the system

has a unique solution if A is not singular
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i Sensitivity and Conditioning

= Sensitivity of the parameters in the interpolation
with respect to perturbations in the data depends
on the sensitivity of the solution of the system of
linear equations, cond(A)

= Sensitivity depends on data points (and thus original
function)

= Sensitivity depends on the choice of basis functions
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Polynomial Interpolation

= Polynomial Interpolation is the simplest and most
common type of interpolation

= Basis functions are polynomials

= There is a unique polynomial of degree at most n-1 that
passes through n distinct data points

= There is a wide range of basis polynomials that can

be used

= All interpolating polynomials have to be identical

independent of the basis chosen

= Different polynomial bases might have different complexities for
interpolation or prodice different rounding errors during calculation
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‘_h Monomial Basis

= The most obvious basis choice for polynomial
interpolation are monomial basis functions

(bl-(X) = Xi_l

0.0 ~ 05 1.0

= Interpolating polynomial takes the form
pn—l(x) = al + Otzx + (X3x2 4 .0+ anxn—l
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Monomial Basis

= The interpolating polynomial can be computed by
solving for the constraints given by the data points

= Resulting linear system to resolve parameters is
described by the Vandermonde matrix

n-1

1 xl xl
A _ 1 xz ces x;_l
\1 xn e xZ_I)

= Solution of the interpolation problem requires solving the
linear system of equations

= Interpolation with monomials takes O(r’) operations
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Evaluating Monomial
i Interpolant

= To use the interpolating polynomial it s value has
to be calculated
p_(X)=a, +o,x+ax" ++a x"

|

= This can be made more efficiently using Horner’ s nested
evaluation scheme

p._(x)=a,+x(a, +x(o; + x(---x(a,_,_a x)-)))
= O(n) multiplications and additions

= Other operations such as differentiation are
relatively easy using a monomial basis interpolant
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i Monomial Basis

= Parameter solving for monomial basis becomes
increasingly ill conditioned as the number of data
points increases
= Data point fitting is still precise
= Weight parameters can only be determined imprecisely

= Conditioning can be improved by scaling the

polynomial terms 5 () - X — (min. x, + max, x.)/2 i1

(max; x, —min, x;)/2

= Choice of other polynomial basis can be even
better and reduce complexity of interpolation
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Lagrange Basis

= Lagrange basis functions are n-1t" order

polynomials , "
p.(0)= [ [(x-x) / | [ -x))

j=li=j j=li=j

0.0 0.5 1.0
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Lagrange Basis

= For the Lagrange basis the linear system describing
the data constraints becomes simple

¢,-(xj)=<1 if i=]

kO otherwise

= A is the identity matrix and therefor the Lagrange
interpolant is easy to determine

= Interpolating polynomial takes the form
P (X) =y,0,(X) + y,0,(X) + -+ y,0,(x)
= Lagrange interpolant is difficult to evaluate,
differentiate, integrate, etc.
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Newton Basis

= Newton basis functions are it" order polynomials

-1
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- / / ,
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= Interpolating polynomial has the form

Pn_l(x) =, + OCZ(X — Xl) + 053()6 — xl)(x — x2) 4.

+ (04 X —X (X — X
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Newton Basis

= For the Newton basis the linear system describing
the data constraints is lower triangular

¢.(x)=<l;[(xk_xj) if k=i

0 otherwise

= The interpolation problem can be solved by forward
substitution in  O(n?) operations
= Polynomial evaluation can be made efficient in the
same way as for monomial basis (Horner’ s
method) and is easier to differentiate and integrate
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i Newton Basis

= Newton interpolation can be computed iteratively

pn (X) = pn—l (X) + an+1¢n+1(x)
= The coefficient is a function of the old polynomial without

the additional data point and the data point
— yn+l B pn—l(’xn+1)

an+1
D,(X,,1)

= Incremental construction starts with a constant
polynomial representing a horizontal line through the first
data point

Po(X) =y,
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i Newton Basis

= Newton interpolating functions can also be
constructed incrementally using divided differences
d(xi) =Y

A(Xyy.yX,) —d(X, X5y 03X, )

A(X[, X555 X, ) =
Xy — X

= The coefficients are defined in terms of the divided
differences as

o, =d(x,,...,x,)

= Iterative interpolation takes O(n?) operations
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Orthogonal Polynomials

= Orthogonal polynomials can be used as a basis for
polynomial interpolation

= Two polynomials are orthogonal if their inner product on
a specified interval is 0

(p.a)= [ P(Ogx)w(x)dx =0

= A set of polynomials is orthogonal if any two distinct
polynomials within it are orthogonal

= Orthogonal polynomials have useful properties

= | hree-term recurrence:
pk+1(x) = (/J)kx + 7, )pk (X) - mpk_l(x)
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Orthogonal Polynomials

= Legendre polynomials form an orthogonal basis for
interpolation and are derived for equal weights of 1 and
the base set of monomials over the interval [-1.1]
o (x)=1, ¢,(x)=x , ¢,(x)=(3x>=1)/2
¢, (x)=(5x" =3x)/2 , ¢.(x)=(35x" =30x" +3)/8

¢, (x)=C2n+1D/(n+Dx¢,(x)-n/(n+1¢, (x)
= Other weight functions yield other orhogonal
polynomial bases
= Chebyshev

= Jacobi, ...
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Chebyschev Polynomials

= Chebyschev basis is derived for weights of (1-x2)%/2 and

the base set of monomials over the interval [-1.1]
¢ (x)=cos(n-arccos(x))

¢ (x)=1,0,(x)=x,¢,(x)=2x" -1, ¢,(x) = 4x’ - 3x
D (X)=2x¢,(x) =, (x)

N
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Taylor Interpolation

= If a known function is to be interpolated, the Taylor
series can be used to provide a polynomial
interpolation

f"(@) LG
2

(x—a)"
n!

(x—a)” +--

p,(x)=f(@)+ fl(a)(x-a)+

= Can only be applied to a known function
= Provides a good approximation in the neighborhood of a
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Interpolation Error and
i Convergence

= To characterize an interpolation function we have
to formalize interpolation error

= Interpolation error is the difference between the original
function and the interpolating function

f(x)-p(x)

= For interpolating polynomial of degree n-1 and the Taylor series

F) = play = EERIEZRIEZL) poo ey
= Convergence of interpolation imblies that the error

goes towards 0 as the number of data points is
increased
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Convergence

= Polynomial interpolation does not necessarily
converge

= Runge phenomenon for Monomial interpolation with
uniformly spaced data points

or —— f() = 1/(1+25) !
“““ ps(t)
1.5 = ])10<1->

.07 7 05 . 5 . oL
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Chebyshev Interpolation

= The choice of data points (here from within interval
[-1,1]) influences the interpolation error

= Data points can be chosen such as to minimize the
maximum interpolation error for any point in an interval
(x = x)(x - x$)°°-(x - X,) ()
n.
max (x —x)(x—x,)--(x—x,)

argmin max

(xl'“xn)

= argmin

(xl“'xn)

= Leads to best convergence characteristics

2i-1Drm
= Optimal choice for data points  x; =Cos( =1

2n

= Error: and thus convergence

2n—1
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Chebyshev Points

= Chebyshev points ensure convergence for
polynomial interpolation
= Runge function with monomial basis for Chebyshev points

2.0 -

— f(t) =1/(1 + 25¢%)
‘‘‘‘ ps(t)
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Piecewise Polynomial
i Interpolation

= Fitting a single polynomial to a large number of
data points requires a high-order polynomial
= Very complex polynomial that introduces many
oscillations between data points
= Piecewise polynomials can be used to form an
interpolant from individual polynomials stretching
between two neighboring data points

= X Vvalues of data points are called knots and mark points
where interpolant moves from one polynomial to the next
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Piecewise Polynomial
i Interpolation

= Two data points can be interpolated with a wide
range of polynomials
= Piecewise linear interpolation
= Piecewise quadratic interpolation
= Piecewise cubic interpolation

= Resolves excessive oscillation between data points
but has transition points at knots
= Potentially not smooth

= Potentially large number of parameters that have to be
set
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i Piecewise Linear Interpolation

= Two consecutive data points are connected through
lines

= N data points are interpolated through n-1 lines.
= Each line has 2 parameters (2(n-1) total parameters)
= Each internal data point provides 2 equations while the boundary
ones provide 1 each (2(n-2)+2=2(n-1) total equations)
= Linear interpolation has a unique solution using only the
data points
= Interpolant is not smooth (not differentiable)
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i Piecewise Cubic Interpolation

= Two consecutive data points are connected through
a third order polynomial

= N data points are interpolated through n-1 third order
polynomials.
= Each polynomial has 4 parameters (4(n-1) total parameters)
= Each internal data point provides 2 equations while the boundary
ones provide 1 each (2(n-2)+2=2(n-1) equations)
= Cubic interpolation has an extra 2(n-1) parameters that
are not defined by the data points and can be used to
impose additional characteristics
= Differentiable at knots

= Smoothness of function
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Cubic Hermite Interpolation

‘_L (Cspline)

= Hermite interpolation uses an additional constraint
requiring continuous first derivative
= Continuous first derivatives add n-2 equations
= Hermite interpolation leaves n free parameters

84

6

4 =
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Cubic Hermite Interpolation

= A particular Cubic Hermite interpolation can be
constructed using a set of basis polynomials and
desired slopes at the data points
p(x)=y, (£ =32+ D)+ (x,,, —x)m,(t’ =2t + 1)
+ v, (26 + 3+ (x,,, —x)m,,, (" =17)

Xesl — X

= Multiple ways exist to pick the slopes

= Finite Differences:
Yie1 — Vi + Vi = Vi

o 200, — %) 2(x, —x)
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Smooth Cubic Spline
‘.L Interpolation

= Spline interpolation uses an additional constraint
requiring that the polynomial of degree n is n-1
times continuously differentiable

= For Cubic Splines this adds n-2 equations for the first and
n-2 equations for the second derivative leaving 2 free
parameters
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Cubic Spline Interpolation

= The final 2 parameters can be determined to
ensure additional properties
= Set derivative at first and last knot

= Force second derivative to be 0 at the end points
= Natural spline

= Force two consecutive splines to be the same (effectively
removing one knot)

= Set derivatives and second derivatives to be the same at
end points
= Useful for periodic functions
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B-Splines

= B-Splines form a basis for a family of spline functions
with useful properties
= Spline functions can be defined recursively

1l x,=x=x,,
¢0,i(x) = .
O otherwise
X - X,
¢, (%) = ¢k L (X) + = D101 (X)
ivk Xiishyk — Xisl

1.0 1.0
BY
2
05 0.5 B?
| | | 0.0 1 |

0.0 |
t; tit1 tito tirs titg t; tiy1 tito tiys Lita

1.0 1.0
B}
0.5 ‘ 0.5 B
| | | | | | |
0.0 36

© Manfred Huber 2011 O'Ofi tit1 tivo tits tita Tt tit1 tito tita tita




B-Splines

= B-Splines provide a number of properties that are
useful for piecewise interpolation

= Set of basis functions located at different data points
allows for an efficient formulation of the complete
interpolation function

= Linear systems matrix for solving coefficients is banded
and nonsingular
= Can be solved efficiently

= Operations on interpolant can be performed efficiently
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Splines for Computer Graphics
and Multiple Dimensions

= In Computer Graphics it is often desired to fit a
curve rather than a function through data points

= A curve through data points d;in n dimensions can be
represented as a function through the same points in n+1
dimensions

= Interpolation is represented as n interpolation functions (one
for each dimension) over a free parameter tthat usually
represents the distance of the data points

t1=0 ) t'+1=ti+‘di+l_di

l
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i Splines in Multiple Dimensions

= All interpolation methods covered can be used to
Interpolate data points in multiple dimensions

= One interpolation per dimension, picking one dimension or an
auxiliary dimension as the common basis

= Interpolation in multiple dimensions results in a system of
equations with one function per dimension (if an auxiliary

parameter is used for the interpolation)
= kth order Bézier curves are a frequently used spline technique
where k+1 points are used to define two points to interpolate
through and two directions for the curve through these points

= Used to describe scalable fonts
Type 1 and 3 fonts: Cubic Bézier curves
True type fonts: Quadratic Bézier curves
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Trigonometric Interpolation

= Fourier Interpolation represents a way to interpolate
periodic data using sine and cosine functions as a basis.

¢.(x)=a;sin((i—-1)x)+ B.cos((i —1)x)

= Data points have to be scaled in x to be between —7 and
rn and to not fall on the boundaries (e.g. through

t=n (-1 + 2(X-Xpin+1/(20))/XpaxXmin*1/11))
= Interpolation of 2N (or 2N+1) data points requires the
first N+1 basis functions

F(x) = ENlla sin((i = 1)x) + B, cos((i = 1)x)

= Coefficients can be solved for evenly spaced points efficiently in O
(N log N) using FFT
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Fourier Interpolation

= Fourier Interpolation is very effective and efficient
for periodic data since the function repeats
identically outside the defined region.
= Encoding of audio signals

= Encoding of Video and image signals
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Interpolation

= Interpolation can be used to derive a system of
equations from a set of data points

= Interpolation requires data points to be matched precisely
= Complexity of interpolant has to be high enough to allow interpolation

= Interpolation is appropriate only if there is no substantial noise
in the data points
= Interpolation not only models data but also noise in the data
= Interpolation provides an efficient way to derive
approximations to unknown systems equations from a
set of data points

« It should still be known what is being modeled to pick the

appropriate function form
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