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Interpolation 
n  Computing functions and solving equations (and 

systems of equations) are used solve problems on 
a known system model (represented by the system 
of equations) 
n  Function calculations compute the output of the system 

n  Solving equations computes parameter settings for a given 
output 

n  Interpolation is used to determine the system 
model from a number of data points 

n  Estimates system equations from parameter/output data pairs 
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Interpolation 
n  Interpolation is aimed at determining f(x) from 

data points (xi, yi) such that 
n  f(xi)=yi       (Interpolant fits the data points perfectly) 

n  Often additional constraints or requirements are 
imposed on the interpolant (interpolating function f
(x) ) 
n  Desired slope 

n  Continuity,  

n  Smoothness 

n  Convexity 
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Interpolation 
n  Interpolation is useful for a number of applications 

where only data points are given 
n  Filling in unknown data points 

n  Plotting smooth curves through data points 

n  Determining equations for an unknown system 

n  Interpolation can also be used to simplify or compress 
information 
n  Replacing a complicated function with a simpler approximation 

n  Compressing complex data into a more compact form 

n  Interpolation is not for data with significant error 
n  Approximation / optimization is more appropriate for this  
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Interpolation 
n  Generally there are an infinite number of interpolation 

functions for a set of data points 
n  The choice of interpolation function should depend on the 

type and characteristics of the data 
n  Monotonicity ? Convexity ? 

n  Is data periodic ? 

n  What behavior between data points ? 

n  Choice of function can also be influenced by desired 
properties of the function 

n  Will function be integrated or differentiated ? 

n  Will function be used for equation solving ? 

n  Is the result used for solving equations or visual inspection ? 
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Interpolation 
n  Commonly used families of interpolation functions 

n  Polynomials 

n  Piecewise polynomials 

n  Trigonometric functions 

n  Exponential functions 

n  Families of interpolation functions are spanned by a 
set of basis functions 
n  Interpolating function can be computed as a linear 

combination of basis functions 

! 

f (x) = " i#i(x)i=1

n
$

! 

"i(x)
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Interpolation 
n  The interpolation constraints can be defined 

n  Constraints represent a system of linear equations 

 
n  Solution to the linear system is the vector of coefficients 

n  Existence and uniqueness of interpolant depends on the 
number of points and basis functions 
n  Too many data points means usually no interpolant exists 

n  Too few data points means no unique solution exists 

n  If there are as many data points as basis functions the system 
has a unique solution if A is not singular 

! 

f (x j ) = " i#i(x j ) = y ji=1

n
$

  

! 

A ! " =
! y   ,   a j ,i = #i(x j )
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Sensitivity and Conditioning  
n  Sensitivity of the parameters in the interpolation 

with respect to perturbations in the data depends 
on the sensitivity of the solution of the system of 
linear equations,  cond(A) 
n  Sensitivity depends on data points (and thus original 

function) 

n  Sensitivity depends on the choice of basis functions 
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Polynomial Interpolation 
n  Polynomial Interpolation is the simplest and most 

common type of interpolation 
n  Basis functions are polynomials 

n  There is a unique polynomial of degree at most n-1 that 
passes through n distinct data points 

n  There is a wide range of basis polynomials that can 
be used 
n  All interpolating polynomials have to be identical 

independent of the basis chosen 
n  Different polynomial bases might have different complexities for 

interpolation or prodice different rounding errors during calculation 
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Monomial Basis 
n  The most obvious basis choice for polynomial 

interpolation are monomial basis functions 

n  Interpolating polynomial takes the form 

! 

"i(x) = x i#1

  

! 

pn"1(x) =#1 +#2x +#3x
2 +!+#n x

n"1

Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Monomial, Lagrange, and Newton Interpolation
Orthogonal Polynomials
Accuracy and Convergence

Monomial Basis, continued

< interactive example >

Solving system Ax = y using standard linear equation
solver to determine coefficients x of interpolating
polynomial requires O(n3) work

Michael T. Heath Scientific Computing 14 / 56
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Monomial Basis 
n  The interpolating polynomial can be computed by 

solving for the constraints given by the data points 

n  Resulting linear system to resolve parameters is 
described by the Vandermonde matrix 

n  Solution of the interpolation problem requires solving the 
linear system of equations 

n  Interpolation with monomials takes  O(n3) operations 

  

! 

A =

1 x1 ! x1
n"1

1 x2 ! x2
n"1

" " # "
1 xn ! xn

n"1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
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Evaluating Monomial 
Interpolant 

n  To use the interpolating polynomial it’s value has 
to be calculated 

n  This can be made more efficiently using Horner’s nested 
evaluation scheme 

n  O(n) multiplications and additions 

n  Other operations such as differentiation are 
relatively easy using a monomial basis interpolant 

 

 

  

! 

pn"1(x) =#1 +#2x +#3x
2 +!+#n x

n"1

  

! 

pn"1(x) =#1 + x(#2 + x(#3 + x(!x(#n"1 _#n x)!)))



© Manfred Huber 2011 13 

Monomial Basis 
n  Parameter solving for monomial basis becomes 

increasingly ill conditioned as the number of data 
points increases 
n  Data point fitting is still precise 

n  Weight parameters can only be determined imprecisely 

n  Conditioning can be improved by scaling the 
polynomial terms 

 

n  Choice of other polynomial basis can be even 
better and reduce complexity of interpolation 

! 

"n (x) =
x # (mini xi +maxi xi) /2
(maxi xi #mini xi) /2

$ 

% 
& 

' 

( 
) 

n#1
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Lagrange Basis 
n  Lagrange basis functions are n-1th order 

polynomials 

 

! 

"i(x) = (x # x j )
j=1,i$ j

n

% (xi # x j )
j=1,i$ j

n

%
Interpolation

Polynomial Interpolation
Piecewise Polynomial Interpolation

Monomial, Lagrange, and Newton Interpolation
Orthogonal Polynomials
Accuracy and Convergence

Lagrange Basis Functions

< interactive example >

Lagrange interpolant is easy to determine but more
expensive to evaluate for given argument, compared with
monomial basis representation
Lagrangian form is also more difficult to differentiate,
integrate, etc.

Michael T. Heath Scientific Computing 19 / 56
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Lagrange Basis 
n  For the Lagrange basis the linear system describing 

the data constraints becomes simple 

n  A is the identity matrix and therefor the Lagrange 
interpolant is easy to determine 

n  Interpolating polynomial takes the form 

n  Lagrange interpolant is difficult to evaluate, 
differentiate, integrate, etc. 

! 

"i(x j ) =
1 if  i = j
0 otherwise
# 
$ 
% 

  

! 

pn"1(x) = y1#1(x) + y2#2(x) +!+ yn#n (x)



© Manfred Huber 2011 16 

Newton Basis 
n  Newton basis functions are ith order polynomials 

 

n  Interpolating polynomial has the form 

 

Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Monomial, Lagrange, and Newton Interpolation
Orthogonal Polynomials
Accuracy and Convergence

Newton Basis Functions

< interactive example >

Michael T. Heath Scientific Computing 22 / 56

  

! 

pn"1(x) =#1 +#2(x " x1) +#3(x " x1)(x " x2) +!
               +#n (x " x1)!(x " xn"1)

! 

"i(x) = (x # x j )
j=1

i#1

$
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Newton Basis 
n  For the Newton basis the linear system describing 

the data constraints is lower triangular 

n  The interpolation problem can be solved by forward 
substitution in  O(n2) operations 

n  Polynomial evaluation can be made efficient in the 
same way as for monomial basis (Horner’s 
method) and is easier to differentiate and integrate 

! 

"i(xk ) =
(xk # x j )

j=1

i#1

$ if  k % i

0 otherwise

& 

' 
( 

) ( 
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Newton Basis 
n  Newton interpolation can be computed iteratively 

n  The coefficient is a function of the old polynomial without 
the additional data point and the data point 

n  Incremental construction starts with a constant 
polynomial representing a horizontal line through the first 
data point 

! 

pn (x) = pn"1(x) +#n+1$n+1(x)

! 

"n+1 =
yn+1 # pn#1(xn+1)
$n+1(xn+1)

! 

p0(x) = y1
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Newton Basis 
n  Newton interpolating functions can also be 

constructed incrementally using divided differences 

 

n  The coefficients are defined in terms of the divided 
differences as 

n  Iterative interpolation takes  O(n2) operations 

  

! 

d(xi) = yi

d(x1,x2,…,xk ) =
d(x2,…,xk ) " d(x1,x2,…,xk"1)

xk " x1

  

! 

"n = d(x1,…,xn )
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Orthogonal Polynomials 
n  Orthogonal polynomials can be used as a basis for 

polynomial interpolation 
n  Two polynomials are orthogonal if their inner product on 

a specified interval is 0 

n  A set of polynomials is orthogonal if any two distinct 
polynomials within it are orthogonal 

n  Orthogonal polynomials have useful properties 
n  Three-term recurrence: 

! 

p,q = p(x)q(x)w(x)dx = 0
a

b
"

pk+1(x) = (!k x +" k )pk (x)!#k pk!1(x)
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Orthogonal Polynomials 
n  Legendre polynomials form an orthogonal basis for 

interpolation and are derived for equal weights of 1 and 
the base set of monomials over the interval [-1.1] 

 
n  Other weight functions yield other orhogonal 

polynomial bases 
n  Chebyshev 

n  Jacobi, … 

! 

"1(x) =1 , "2(x) = x  ,  "3(x) = (3x 2 #1) /2
"4 (x) = (5x 3 # 3x) /2  ,  "5(x) = (35x 4 # 30x 2 + 3) /8  

"n+1(x) = (2n +1) /(n +1)x"n (x) # n /(n +1)"n#1(x)
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Chebyschev Polynomials 
n  Chebyschev basis is derived for weights of (1-x2)-1/2 and 

the base set of monomials over the interval [-1.1] 

 

 

 

!n (x) = cos(n !arccos(x))
!1(x) =1 , !2 (x) = x , !3(x) = 2x2 "1, !4 (x) = 4x3 "3x 
!n+1(x) = 2x!n (x)"!n"1(x)

Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Monomial, Lagrange, and Newton Interpolation
Orthogonal Polynomials
Accuracy and Convergence

Chebyshev Basis Functions

< interactive example >

Michael T. Heath Scientific Computing 31 / 56
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Taylor Interpolation 
n  If a known function is to be interpolated, the Taylor 

series can be used to provide a polynomial 
interpolation 

n  Can only be applied to a known function 

n  Provides a good approximation in the neighborhood of a 

 

 

 

 

  

! 

pn (x) = f (a) + f '(a)(x " a) +
f ' '(a)
2

(x " a)2 +!+
f (n )(a)
n!

(x " a)n
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Interpolation Error and 
Convergence 

n  To characterize an interpolation function we have 
to formalize interpolation error 
n  Interpolation error is the difference between the original 

function and the interpolating function 

n  For interpolating polynomial of degree n-1 and the Taylor series  

 
n  Convergence of interpolation implies that the error 

goes towards 0 as the number of data points is 
increased 

  

! 

f (x) " p(x) =
(x " x1)(x " x2)!(x " xn )

n!
f (n )(c)  

! 

f (x) " p(x)  
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Convergence 
n  Polynomial interpolation does not necessarily 

converge 
n  Runge phenomenon for Monomial interpolation with 

uniformly spaced data points 

Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Monomial, Lagrange, and Newton Interpolation
Orthogonal Polynomials
Accuracy and Convergence

Example: Runge’s Function

Polynomial interpolants of Runge’s function at equally
spaced points do not converge

< interactive example >
Michael T. Heath Scientific Computing 37 / 56
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Chebyshev Interpolation 
n  The choice of data points (here from within interval 

[-1,1]) influences the interpolation error 
n  Data points can be chosen such as to minimize the 

maximum interpolation error for any point in an interval 

n  Leads to best convergence characteristics 

n  Optimal choice for data points 
 

n  Error:                     and thus convergence 

  

! 

argmin(x1!xn )
maxx

(x " x1)(x " x2)!(x " xn )
n!

f (n )(c)

= argmin(x1!xn )
maxx (x " x1)(x " x2)!(x " xn )

! 

xi = cos (2i "1)#
2n

! 

1
2n"1
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Chebyshev Points 
n  Chebyshev points ensure convergence for 

polynomial interpolation 
n  Runge function with monomial basis for Chebyshev points 

 

Interpolation
Polynomial Interpolation

Piecewise Polynomial Interpolation

Monomial, Lagrange, and Newton Interpolation
Orthogonal Polynomials
Accuracy and Convergence

Example: Runge’s Function

Polynomial interpolants of Runge’s function at Chebyshev
points do converge

< interactive example >

Michael T. Heath Scientific Computing 38 / 56
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Piecewise Polynomial 
Interpolation 

n  Fitting a single polynomial to a large number of 
data points requires a high-order polynomial 
n  Very complex polynomial that introduces many 

oscillations between data points 

n  Piecewise polynomials can be used to form an 
interpolant from individual polynomials stretching 
between two neighboring data points 
n  x values of data points are called knots and mark points 

where interpolant moves from one polynomial to the next 
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Piecewise Polynomial 
Interpolation 

n  Two data points can be interpolated with a wide 
range of polynomials 
n  Piecewise linear interpolation 

n  Piecewise quadratic interpolation 

n  Piecewise cubic interpolation 

n  Resolves excessive oscillation between data points 
but has transition points at knots 
n  Potentially not smooth 

n  Potentially large number of parameters that have to be 
set 
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Piecewise Linear Interpolation 
n  Two consecutive data points are connected through 

lines 
n  N data points are interpolated through n-1 lines. 

n  Each line has 2 parameters (2(n-1) total parameters) 

n  Each internal data point provides 2 equations while the boundary 
ones provide 1 each  (2(n-2)+2=2(n-1) total equations) 

n  Linear interpolation has a unique solution using only the 
data points 

n  Interpolant is not smooth (not differentiable) 
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Piecewise Cubic Interpolation 
n  Two consecutive data points are connected through 

a third order polynomial 
n  N data points are interpolated through n-1 third order 

polynomials. 
n  Each polynomial has 4 parameters (4(n-1) total parameters) 

n  Each internal data point provides 2 equations while the boundary 
ones provide 1 each  (2(n-2)+2=2(n-1) equations) 

n  Cubic interpolation has an extra 2(n-1) parameters that 
are not defined by the data points and can be used to 
impose additional characteristics 

n  Differentiable at knots 

n  Smoothness of function 
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Cubic Hermite Interpolation 
(Cspline) 

n  Hermite interpolation uses an additional constraint 
requiring continuous first derivative 
n  Continuous first derivatives add n-2 equations 

n  Hermite interpolation leaves n free parameters 

Interpolation

Polynomial Interpolation

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation

Hermite Cubic Interpolation

Cubic Spline Interpolation

Hermite Cubic vs Spline Interpolation

Michael T. Heath Scientific Computing 50 / 56
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Cubic Hermite Interpolation 
n  A particular Cubic Hermite interpolation can be 

constructed using a set of basis polynomials and 
desired slopes at the data points 

n  Multiple ways exist to pick the slopes 
n  Finite Differences: 

! 

p(x) = yk (t
3 " 3t 2 +1) + (xk+1 " xk )mk (t

3 " 2t 2 + t)
        + yk+1("2t 3 + 3t 2) + (xk+1 " xk )mk+1(t

3 " t 2)

t =
x " xk
xk+1 " xk

! 

mk =
yk+1 " yk
2(xk+1 " xk )

+
yk " yk"1
2(xk " xk"1)
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Smooth Cubic Spline 
Interpolation 

n  Spline interpolation uses an additional constraint 
requiring that the polynomial of degree n is n-1 
times continuously differentiable 
n  For Cubic Splines this adds n-2 equations for the first and 

n-2 equations for the second derivative leaving 2 free 
parameters 

Interpolation

Polynomial Interpolation

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation

Hermite Cubic Interpolation

Cubic Spline Interpolation

Hermite Cubic vs Spline Interpolation

Michael T. Heath Scientific Computing 50 / 56
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Cubic Spline Interpolation 
n  The final 2 parameters can be determined to 

ensure additional properties 
n  Set derivative at first and last knot 

n  Force second derivative to be 0 at the end points 
n  Natural spline 

n  Force two consecutive splines to be the same (effectively 
removing one knot) 

n  Set derivatives and second derivatives to be the same at 
end points 

n  Useful for periodic functions 
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B-Splines 
n  B-Splines form a basis for a family of spline functions 

with useful properties 
n  Spline functions can be defined recursively 

Interpolation

Polynomial Interpolation

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation

Hermite Cubic Interpolation

Cubic Spline Interpolation

B-splines, continued

< interactive example >

Michael T. Heath Scientific Computing 53 / 56

! 

"0,i(x) =
1 xi # x # xi+1
0 otherwise
$ 
% 
& 

"k,i(x) =
x ' xi
xi+k ' xi

"k'1,i(x) + 1' x ' xi+1
x( i+1)+k ' xi+1

( 

) 
* 

+ 

, 
- "k'1,i+1(x)
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B-Splines 
n  B-Splines provide a number of properties that are 

useful for piecewise interpolation 
n  Set of basis functions located at different data points 

allows for an efficient formulation of the complete 
interpolation function 

n  Linear systems matrix for solving coefficients is banded 
and nonsingular 

n  Can be solved efficiently 

n  Operations on interpolant can be performed efficiently 
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Splines for Computer Graphics 
and Multiple Dimensions 

n  In Computer Graphics it is often desired to fit a 
curve rather than a function through data points 

 
 

n  A curve through data points di in n dimensions can be 
represented as a function through the same points in n+1 
dimensions 

n  Interpolation is represented as n interpolation functions (one 
for each dimension) over a free parameter t that usually 
represents the distance of the data points 

! 

t1 = 0   ,   ti+1 = ti + di+1 " di



© Manfred Huber 2011 39 

Splines in Multiple Dimensions 
n  All interpolation methods covered can be used to 

interpolate data points in multiple dimensions 
n  One interpolation per dimension, picking one dimension or an 

auxiliary dimension as the common basis  
n  Interpolation in multiple dimensions results in a system of 

equations with one function per dimension (if an auxiliary 
parameter is used for the interpolation) 

n  kth order Bézier curves are a frequently used spline technique 
where k+1 points are used to define two points to interpolate 
through and two directions for the curve through these points 

n  Used to describe scalable fonts  
n  Type 1 and 3 fonts: Cubic Bézier curves 

n  True type fonts: Quadratic Bézier curves 
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Trigonometric Interpolation 
n  Fourier Interpolation represents a way to interpolate 

periodic data using sine and cosine functions as a basis. 

n  Data points have to be scaled in x to be between –π and 
π and to not fall on the boundaries (e.g. through  

 t=π (-1 + 2(x-xmin+1/(2n))/(xmax-xmin+1/n)) 

n  Interpolation of 2N (or 2N+1) data points requires the 
first N+1 basis functions 

n  Coefficients can be solved for evenly spaced points efficiently in O
(N log N) using FFT  

! 

"i(x) =# i sin((i $1)x) + %i cos((i $1)x)

! 

f (x) = " i sin((i #1i=1

N +1
$ )x) + %i cos((i #1)x)
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Fourier Interpolation 
n  Fourier Interpolation is very effective and efficient 

for periodic data since the function repeats 
identically outside the defined region. 
n  Encoding of audio signals 

n  Encoding of Video and image signals 
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Interpolation 
n  Interpolation can be used to derive a system of 

equations from a set of data points 
n  Interpolation requires data points to be matched precisely 

n  Complexity of interpolant has to be high enough to allow interpolation 

n  Interpolation is appropriate only if there is no substantial noise 
in the data points 

n  Interpolation not only models data but also noise in the data 

n  Interpolation provides an efficient way to derive 
approximations to unknown systems equations from a 
set of data points 
n  It should still be known what is being modeled to pick the 

appropriate function form 


