
1

Computational Methods

Systems of Linear Equations

© Manfred Huber 2011

© Manfred Huber 2011 2

Systems of Equations
  Often a system model contains multiple variables

(parameters) and contains multiple equations

  Multiple equations arise because problems have multiple
outputs and multiple parameters

  Multiple equations can also arise from multiple
measurements

  This might lead to equations that are not solvable

  Many iterative solutions to equation solving do not
easily extend to solving systems of equations or
equations in multiple variables

© Manfred Huber 2011 3

Systems of Linear Equations
  Linear equations are a special type which is easier

to solve and has analytic solution methods
  Single linear equation with n variables corresponds to a

hyperplane in n+1 dimensional space

  Finding one analytic solution requires only one division

  Has usually an infinite number of solutions if n is larger than 1

  Systems of linear equations consist of multiple LEs
  Solution to a sytem of linear equations corresponds to

the intersection of multiple hyperplanes

�

a1x1 + ...+ an xn = b
 a T  x = b

© Manfred Huber 2011 4

Systems of Linear Equations
  A system of linear equations can be written as a

matrix multiplication

  Systems of linear equations do not always have a
unique solution
  If there are too many equations there might be no solution

  If there are too few equations then the system might have
multiple solutions

�

a1,1x1 + ...+ a1,n xn = b1

  ⇒ A x =

b

am,1x1 + ...+ am,n xn = bm

© Manfred Huber 2011 5

Solving Linear Systems
  To solve a linear system analytically it is typically

transformed into a system for which a solution can
be easily computed
  Diagonal system

  Triangular systems

�

a1,1 0  0
 

0  0 an,n

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟
 x =

b ⇒

x1 = b1

a1,1


xn = bn

an,n

�

a1,1  a1,n

 

0  0 an,n

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟
 x =

b ⇒

xn = bn

an,n

xn−1 = bn−1 − an−1,n xn

an−1,n−1

 

© Manfred Huber 2011 6

Solving Linear Systems
  To transform a linear system into a different linear

system a number of legal operations can be applied
  Transformations correspond to premultiplying both sides

of the linear system by a nonsingular matrix

  Useful transformations:
  Permutation: Swaps 2 rows (equations)

  Row scaling: Scales each row by a scalar

  Row addition: Subtracts a row from another row

�

A x =

b ⇔ MA x = M


b if M is not singular

© Manfred Huber 2011 7

Solving Linear Systems
  The most important transformation matrix for

transforming a system into triangular form is the
elimination matrix which combines row scaling and
row subtraction
  Elementary elimination matrix with pivot ak

�

Mk = I −mkek
T = I −

0


0
ak+1

ak

an
ak

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

0  0 1 0  0()

© Manfred Huber 2011 8

Solving Linear Systems
  Elementary elimination matrices can be combined

into one elimination matrix

  Elimination matrices are lower triangular and
nonsingular

  The inverse of an elimination matrix simply swaps
the sign for the off-diagonal terms
  Inverse is lower triangular

�

MkMl = I −mkek
T −mlel

T

�

Lk = Mk
−1 = I + mkek

T

© Manfred Huber 2011 9

Naïve Gaussian Elimination
  For systems of n linear equations in n variables, a

number of analytic solution methods exist
  Matrix Inversion

  Naïve Gaussian elimination
  Reduce system of equations to upper diagonal form and

back substitute to compute the values

  Transformation of the system occurs through elimination
  Add or subtract one equation from another

  Multiply equations with a non-zero constant

�

 x = A−1

b

�

MA x = M

b , MA = U

© Manfred Huber 2011 10

Naïve Gaussian Elimination
  Elimination step

  For every variable xi , starting with i=1
  Subtract aj,i/ai,i times equation i from every equation j, j>i

  Back substitution step
  Once the elimination is complete back substitution

computes the values

  For every variable xi , starting with i=n
  Compute xi by solving the ith equation using the previously

computed values for xj , j>I

  Naïve Gaussian elimination fails if any ai,i is 0

© Manfred Huber 2011 11

Gaussian Elimination
  Complexity of naïve Gaussian elimination (in terms

of multiplications and additions)
  Elimination step:

  Back substitution step:

  Computation has to be repeated for every b
  To address the problem with a 0 on the diagonal

we have to use additional operations
  Swap equations (rows) and variables (columns)

�

(n − i)(1+ (n − i +1)) = n3

3
+ n2

2
− 5 n
6i=1

n−1

∑

�

((n − i) +1) = n2

2
+ n
2i= n

1

∑

© Manfred Huber 2011 12

LU Factorization
  Gaussian elimination has to be recomputed every time

A or b change
  Often in practical problems we have to solve the same

linear system for different result values

  LU factorization resolves this by explicitly decomposing
A into the upper triangular matrix and the inverse of
the elimination matrix
  Only A is transformed through elimination

  Solving for b, forward and backward substitution are used
  Forward substitution with L
  Backward substitution with U

�

A = LU

�

L y =

b

�

U x =  y

© Manfred Huber 2011 13

LU Factorization
  Complexity of LU factorization is approximately the

same as for Gaussian Elimination
  Elimination step:

  Forward and back substitution step:

  Only the forward and back substitution step has to
be repeated for a new b

  Both methods (Gaussian Elimination and LU
Factorization) are approximately 3 times faster
than matrix inversion

�

≈ n
3

3

�

≈ n
2

2

�

≈ n3

© Manfred Huber 2011 14

Existence and Uniqueness
  Existence and uniqueness of solution depends on

the equations and the target result value
  In systems with n equations and n variables:

  There exists a unique solution iff A is not singular

  There are infinitely many solutions iff A is singular and b is in the
span of

  There is no solution iff A is singular and b is not in the span of A

  A is not singular if the following equivalent
conditions apply:
  There are n equations that are not linearly dependent

  A is invertible, rank(A)=n, det(A)≠0

© Manfred Huber 2011 15

Error Measures and Norms
  To measure errors in multi-dimensional spaces,

error vectors have to be reduced to scalars
  Vector and matrix norms allow to do this

  Properties of vector norms
  Positive

  Scalar multiplication

  Triangle inequality
�

x > 0 if x ≠ 0

�

αx = α x for any scalar α

�

x + y ≤ x + y

x − y ≥ x − y

© Manfred Huber 2011 16

Vector Norms
  Common vector norms: p-norms

  1-norm:

  2-norm:

  ∞-norm:

  P-norms are related

�

x p = xii=1

n∑
p

p

�

x 1 = xii=1

n∑

�

x 2 = xii=1

n∑
2

�

x ∞ =maxi xi

�

x 1 ≥ x 2 ≥ x ∞ for all x ∈ Rn

© Manfred Huber 2011 17

Matrix Norms
  Matrix norms can be defined in terms of a number

of properties similar to the vector norm
  Positive

  Scalar multiplication

  Triangle inequality

  For each vector norm there is a special matrix
norm that can be derived from it and has all the
properties
  Induced Matrix norm

�

A > 0 if A ≠ 0

�

αA = α A for any scalar α

�

A + B ≤ A + B

�

A =maxx≠0
Ax
x

© Manfred Huber 2011 18

Induced Matrix Norms
  Induced vector norms (operator norms) correspond

to the maximum scaling the matrix applies to the
vector in terms of the specific vector norm
  For vector p-norms:

  1-norm:

  ∞-norm:

  Induced matrix norms have additional properties �

A 1 =max j ai, j
i=1

n

∑

�

A ∞ =maxi ai, j
j=1

n

∑

�

AB ≤ A B

�

Ax ≤ A x

© Manfred Huber 2011 19

Sensitivity and Conditioning
  To estimate the sensitivity of solving a system of

linear equations we have to calculate the forward
and backward errors
  Forward error:

  Backward error (residual):

  (Relative) Condition number: �

x − ˆ x = Δx

�

Δx x
res b

=
Δx
x

b
res

=
Ax A−1res
res x

≤
A x A−1 res

x res
= A A−1

cond(A) = A A−1 �

Aˆ x − b = A(x + Δx) − Ax

 = AΔx

© Manfred Huber 2011 20

Sensitivity and Conditioning
  Properties of condition number

  cond(A) = ∞ for singular A

  Condition measures the ratio of maximum stretching to
maximum shrinking

  cond(A) ≥ 1

  cond(αA) = cond(A)

  To compute condition number the norm of the
inverse is often approximated as the maximum
ratio of a set of solutions

�

A A−1 =maxx≠0
Ax
x

minx≠0
Ax
x

�

A−1 ≥
x
Ax

© Manfred Huber 2011 21

Sensitivity and Conditioning
  Parameter sensitivity:

  Conditioning depends on the relation of the
hyperplanes

�

Δx
x

≤ cond(A)
ΔA
A

© Manfred Huber 2011 22

Stability
  Naïve Gaussian Elimination and LU Factorization fail

when a pivot is 0

  While Gaussian elimination and LU Factorization
have no truncation error, they introduce rounding
error during the elimination and substitution steps
  Using small pivots (and thus large multiplication factors)

can lead to swamping where the the equation being
subtracted overwhelms the equation it is subtracted from

  Non-singular matrix becomes close to singular

  Algorithms are more stable if they use larger pivots

© Manfred Huber 2011 23

Partial Pivoting
  To improve stability, partial pivoting uses row

swaps (permutation matrices) to ensure that
always the largest remaining entry in a column is
used as the pivot
  For Gaussian Elimination this is directly implemented by

applying permutations between elimination steps

  For LU-Factorization this causes problems
  P-1 is not lower triangular

  Row permutations have to be handled separately

�

A x =

b ⇔ PA x = P


b

�

PA = LU

© Manfred Huber 2011 24

PA=LU Factorization
  Permutations are tracked separately from

eliminations leading to a factorization of PA

  The solution step is extended to address row
permutations

  Permute the elements in b using P

  Forward substitution using L

  Back substitution using U

�

PA = LU

�

PA x = LU x = P

b

�

 z = P

b

�

L y =  z

�

U x =  y

© Manfred Huber 2011 25

Complete Pivoting
  Stability can be further improved by ordering the

pivots from largest to smallest through column
swaps
  Always use the largest element in the remaining sub-

matrix below row k as the pivot
  Column swaps correspond to reordering the variables x

  For Gaussian Elimination this is directly implemented by
applying permutations between elimination steps

  For LU-Factorization row and column swaps have to be
tracked separately

�

A x =

b ⇔ AP x =


b

�

PAQ = LU

© Manfred Huber 2011 26

Scaling and Iterative
Refinement

  Scaling of rows and columns can be used to reduce
rounding error and thus to improve stability
  Large differences in coefficients can decrease stability

  Sometimes scaling can improve the stability

  Iterative refinement allows to iteratively break
down the residual to improve precision

  Can sometimes lead to improved precision
  However, residual calculation is sensitive to cancellation

�

Ax = b ⇒ x0 ⇒ r0 = b − Ax0

Az = r0 ⇒ z0,x1 = x0 + z0 ⇒ r1 = r0 − Az0

© Manfred Huber 2011 27

Direct Solution Methods
  LU Factorization and Gaussian Elimination return a

result without truncation error in O(n3)
multiplications.
  Fixed calculation complexity

  Guaranteed solution for nonsingular matrix A

  For very large n or for very sparse matrices the
complexity of O(n3) can be very high
  Iterative methods can be used

  Lower cost per iteration

  Convergence has to be analyzed

© Manfred Huber 2011 28

Iterative Solution Methods
  Fixed point methods allowed for iterative solutions

in single equations

  Iteration in systems of equations is more difficult
  Convergence properties are more complex

  Complexity of iterative methods consists of
evaluating the system of equations in each
iteration, thus O(n2)
  If approximate solution is known the number of iterations

required can be low

  If A is sparse the complexity per iteration can drop further

© Manfred Huber 2011 29

Jacobi Method
  The Jacobi Method defines a fixed point system by

rewriting each equation fi(x) to compute xi

  Starting with an initial vector x(0), the next value is
calculated by evaluating the equations using the
previous iteration’s value x(t-1)

  Is ensured to converge if A is strictly diagonally dominant
(i.e. the coefficients on the diagonal are strictly larger
than all other coefficients in the corresponding row

�

fi(
 x) = ai, j x j = bi ⇒ xi =

bi − ai, j x jj∈[1..n], j≠ i
∑

ai,ij=1

n

∑

© Manfred Huber 2011 30

Jacobi Method
  Jacobi Method can be rewritten as strict fixed point

iteration

  Number of iterations required depends on the starting
point

  For sparse matrices the function form is more efficient
than the matrix form

�

A x =

b

(D + L + U) x =

b

D x = (

b − (L + U) x)

 x = D−1(

b − (L + U)  x)

© Manfred Huber 2011 31

Gauss-Seidel Method
  The Gauss-Seidel method is variation of the Jacobi

method in which for each equation the most recent
estimate (from the current iteration) is used rather
than the result form the previous iteration

  Has the same convergence conditions as the Jacobi
method

  Usually converges faster than Jacobi method

�

A x =

b

(D + L) x (t) =

b −U x t−1

 x (t) = D−1(

b −U x (t−1) − L x (t))

© Manfred Huber 2011 32

Successive Over-Relaxation
  Successive Over-Relaxation (SOR) further increases

convergence speed by anticipating future changes
and “overshooting” the iteration point of the Gauss-
Seidel method by a relaxation parameter ω>1

  For ω=1 SOR is equal to Gauss-Seidel

  Usually converges faster than Gauss-Seidel for
appropriate relaxation parameters �

xi
t = (1−ω)xi

t−1 + ω
bi − ai, j x j

t − ai, j x j
t−1

j= i+1

n∑
j=1

i−1∑
ai,i

© Manfred Huber 2011 33

Systems of Linear Equations
  Systems of linear equations can be solved using

either direct or iterative methods

  Direct methods have fixed computation costs (O(n3))
and incur no truncation error

  Iterative methods are variants of fixed point
methods and have a smaller per iteration complexity
(O(n2))
  Less complex for large systems in which a good starting point is

known

  Less complex for sparse matrices (i.e. systems of equations where
each equation only depends on a subset of the variables

