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Systems of Equations 
  Often a system model contains multiple variables 

(parameters) and contains multiple equations 

  Multiple equations arise because problems have multiple 
outputs and multiple parameters 

  Multiple equations can also arise from multiple 
measurements  

  This might lead to equations that are not solvable 

  Many iterative solutions to equation solving do not 
easily extend to solving systems of equations or 
equations in multiple variables 
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Systems of Linear Equations 
  Linear equations are a special type which is easier 

to solve and has analytic solution methods 
  Single linear equation with n variables corresponds to a 

hyperplane in n+1 dimensional space 

  Finding one analytic solution requires only one division 

  Has usually an infinite number of solutions if n is larger than 1 

  Systems of linear equations consist of multiple LEs 
  Solution to a sytem of linear equations corresponds to 

the intersection of multiple hyperplanes 

  

� 

a1x1 + ...+ an xn = b
 a T  x = b
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Systems of Linear Equations 
  A system of linear equations can be written as a 

matrix multiplication 

  Systems of linear equations do not always have a 
unique solution 
  If there are too many equations there might be no solution 

  If there are too few equations then the system might have 
multiple solutions 

  

� 

a1,1x1 + ...+ a1,n xn = b1

                                            ⇒  A x =
 
b 

am,1x1 + ...+ am,n xn = bm
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Solving Linear Systems 
  To solve a linear system analytically it is typically 

transformed into a system for which a solution can 
be easily computed 
  Diagonal system 

  Triangular systems    

� 

 
a1,1 0  0
 

0  0 an,n

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
 x =
 
b   ⇒  

x1 = b1

a1,1
  

xn = bn

an,n

            

  

� 

 
a1,1  a1,n

 

0  0 an,n

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
 x =
 
b   ⇒  

xn = bn

an,n

xn−1 = bn−1 − an−1,n xn

an−1,n−1

            

  
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Solving Linear Systems 
  To transform a linear system into a different linear 

system a number of legal operations can be applied 
  Transformations correspond to premultiplying both sides 

of the linear system by a nonsingular matrix  

  Useful transformations: 
  Permutation: Swaps 2 rows (equations)  

  Row scaling: Scales each row by a scalar 

  Row addition: Subtracts a row from another row 

  

� 

A x =
 
b     ⇔   MA x = M

 
b    if M is not singular
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Solving Linear Systems 
  The most important transformation matrix for 

transforming a system into triangular form is the 
elimination matrix which combines row scaling and 
row subtraction 
  Elementary elimination matrix with pivot ak 

  

� 

Mk = I −mkek
T = I −

0


0
ak+1

ak

an
ak

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

0  0 1 0  0( )
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Solving Linear Systems 
  Elementary elimination matrices can be combined 

into one elimination matrix 

  Elimination matrices are lower triangular and 
nonsingular 

  The inverse of an elimination matrix simply swaps 
the sign for the off-diagonal terms 
  Inverse is lower triangular 

� 

MkMl = I −mkek
T −mlel

T

� 

Lk = Mk
−1 = I + mkek

T
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Naïve Gaussian Elimination 
  For systems of n linear equations in n variables, a 

number of analytic solution methods exist 
  Matrix Inversion 

  Naïve Gaussian elimination 
  Reduce system of equations to upper diagonal form and 

back substitute to compute the values 

  Transformation of the system occurs through elimination 
  Add or subtract one equation from another 

  Multiply equations with a non-zero constant 

  

� 

 x = A−1
 
b 

  

� 

MA x = M
 
b  ,  MA = U
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Naïve Gaussian Elimination 
  Elimination step 

  For every variable xi , starting with i=1 
  Subtract aj,i/ai,i times equation i from every equation j, j>i  

  Back substitution step 
  Once the elimination is complete back substitution 

computes the values 

  For every variable xi , starting with i=n 
  Compute xi  by solving the ith equation using the previously 

computed values for xj , j>I 

  Naïve Gaussian elimination fails if any ai,i is 0 
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Gaussian Elimination 
  Complexity of naïve Gaussian elimination (in terms 

of multiplications and additions) 
  Elimination step: 

  Back substitution step: 

  Computation has to be repeated for every b 
  To address the problem with a 0 on the diagonal 

we have to use additional operations 
  Swap equations (rows) and variables (columns) 

� 

(n − i)(1+ (n − i +1)) = n3

3
+ n2

2
− 5 n
6i=1

n−1

∑

� 

((n − i) +1) = n2

2
+ n
2i= n

1

∑



© Manfred Huber 2011 12 

LU Factorization 
  Gaussian elimination has to be recomputed every time 

A or b change 
  Often in practical problems we have to solve the same 

linear system for different result values 

  LU factorization resolves this by explicitly decomposing 
A into the upper triangular matrix and the inverse of 
the elimination matrix 
  Only A is transformed through elimination 

  Solving for b, forward and backward substitution are used 
  Forward substitution with L 
  Backward substitution with U 

� 

A = LU

  

� 

L y =
 
b 

  

� 

U x =  y 
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LU Factorization 
  Complexity of LU factorization is approximately the 

same as for Gaussian Elimination 
  Elimination step: 

  Forward and back substitution step: 

  Only the forward and back substitution step has to 
be repeated for a new b 

  Both methods (Gaussian Elimination and LU 
Factorization) are approximately 3 times faster 
than matrix inversion 

� 

≈ n
3

3

� 

≈ n
2

2

� 

≈ n3
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Existence and Uniqueness 
  Existence and uniqueness of solution depends on 

the equations and the target result value 
  In systems with n equations and n variables: 

  There exists a unique solution iff A is not singular  

  There are infinitely many solutions iff A is singular and b is in the 
span of  

  There is no solution iff A is singular and b is not in the span of A  

  A is not singular if the following equivalent 
conditions apply: 
  There are n equations that are not linearly dependent  

  A is invertible, rank(A)=n, det(A)≠0 
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Error Measures and Norms 
  To measure errors in multi-dimensional spaces, 

error vectors have to be reduced to scalars 
  Vector and matrix norms allow to do this 

  Properties of vector norms 
  Positive 

  Scalar multiplication 

  Triangle inequality 
� 

x > 0  if  x ≠ 0

� 

αx = α  x  for  any  scalar  α

� 

x + y ≤ x + y  

x − y ≥  x − y  
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Vector Norms 
  Common vector norms: p-norms 

  1-norm: 

  2-norm: 

  ∞-norm: 

  P-norms are related 

� 

x p = xii=1

n∑
p

p

� 

x 1 = xii=1

n∑

� 

x 2 = xii=1

n∑
2

� 

x ∞ =maxi xi

� 

x 1 ≥ x 2 ≥ x ∞  for  all  x ∈ Rn
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Matrix Norms 
  Matrix norms can be defined in terms of a number 

of properties similar to the vector norm 
  Positive 

  Scalar multiplication 

  Triangle inequality 

  For each vector norm there is a special matrix 
norm that can be derived from it and has all the 
properties 
  Induced Matrix norm 

� 

A > 0  if  A ≠ 0

� 

αA = α  A  for  any  scalar  α

� 

A + B ≤ A + B  

� 

A =maxx≠0
Ax
x
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Induced Matrix Norms 
  Induced vector norms (operator norms) correspond 

to the maximum scaling the matrix applies to the 
vector in terms of the specific vector norm 
  For vector p-norms: 

  1-norm: 

  ∞-norm: 

  Induced matrix norms have additional properties � 

A 1 =max j ai, j
i=1

n

∑

� 

A ∞ =maxi ai, j
j=1

n

∑

� 

AB ≤ A  B  

� 

Ax ≤ A  x  
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Sensitivity and Conditioning 
  To estimate the sensitivity of solving a system of 

linear equations we have to calculate the forward 
and backward errors 
  Forward error: 

  Backward error (residual):  

  (Relative) Condition number: � 

x − ˆ x = Δx

� 

Δx x
res b

=
Δx
x

b
res

=
Ax A−1res
res x

≤
A x A−1 res

x res
= A A−1

cond(A) = A A−1 � 

Aˆ x − b = A(x + Δx) − Ax

            = AΔx
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Sensitivity and Conditioning 
  Properties of condition number 

  cond(A) = ∞ for singular A 

  Condition measures the ratio of maximum stretching to 
maximum shrinking 

  cond(A) ≥ 1 

  cond(αA) = cond(A)  

  To compute condition number the norm of the 
inverse is often approximated as the maximum 
ratio of a set of solutions   

� 

A A−1 =maxx≠0
Ax
x

minx≠0
Ax
x

� 

A−1 ≥
x
Ax
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Sensitivity and Conditioning 
  Parameter sensitivity: 

  Conditioning depends on the relation of the 
hyperplanes 

� 

Δx
x

≤ cond(A)
ΔA
A
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Stability 
  Naïve Gaussian Elimination and LU Factorization fail 

when a pivot is 0 

  While Gaussian elimination and LU Factorization 
have no truncation error, they introduce rounding 
error during the elimination and substitution steps 
  Using small pivots (and thus large multiplication factors) 

can lead to swamping where the the equation being 
subtracted overwhelms the equation it is subtracted from 

  Non-singular matrix becomes close to singular 

  Algorithms are more stable if they use larger pivots 
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Partial Pivoting 
  To improve stability, partial pivoting uses row 

swaps (permutation matrices) to ensure that 
always the largest remaining entry in a column is 
used as the pivot 
  For Gaussian Elimination this is directly implemented by 

applying permutations between elimination steps 

  For LU-Factorization this causes problems 
  P-1 is not lower triangular 

  Row permutations have to be handled separately 

  

� 

A x =
 
b     ⇔   PA x = P

 
b    

� 

PA = LU    
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PA=LU Factorization 
  Permutations are tracked separately from 

eliminations leading to a factorization of PA 

  The solution step is extended to address row 
permutations 

  Permute the elements in b using P 

  Forward substitution using L 

  Back substitution using U 

� 

PA = LU    

  

� 

PA x = LU x = P
 
b    

  

� 

 z = P
 
b    

  

� 

L y =  z    

  

� 

U x =  y    



© Manfred Huber 2011 25 

Complete Pivoting 
  Stability can be further improved by ordering the 

pivots from largest to smallest through column 
swaps 
  Always use the largest element in the remaining sub-

matrix below row k as the pivot 
  Column swaps correspond to reordering the variables x 

  For Gaussian Elimination this is directly implemented by 
applying permutations between elimination steps 

  For LU-Factorization row and column swaps have to be 
tracked separately 

  

� 

A x =
 
b     ⇔   AP x =

 
b    

� 

PAQ = LU    
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Scaling and Iterative 
Refinement 

  Scaling of rows and columns can be used to reduce 
rounding error and thus to improve stability 
  Large differences in coefficients can decrease stability 

  Sometimes scaling can improve the stability 

  Iterative refinement allows to iteratively break 
down the residual to improve precision 

  Can sometimes lead to improved precision 
  However, residual calculation is sensitive to cancellation 

� 

Ax = b   ⇒   x0   ⇒  r0 = b − Ax0

Az = r0   ⇒   z0,x1 = x0 + z0   ⇒   r1 = r0 − Az0
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Direct Solution Methods 
  LU Factorization and Gaussian Elimination return a 

result without truncation error in O(n3) 
multiplications. 
  Fixed calculation complexity 

  Guaranteed solution for nonsingular matrix A 

  For very large n or for very sparse matrices the 
complexity of O(n3) can be very high 
  Iterative methods can be used 

  Lower cost per iteration 

  Convergence has to be analyzed  
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Iterative Solution Methods 
  Fixed point methods allowed for iterative solutions 

in single equations  

  Iteration in systems of equations is more difficult 
  Convergence properties are more complex 

  Complexity of iterative methods consists of 
evaluating the system of equations in each 
iteration, thus O(n2) 
  If approximate solution is known the number of iterations 

required can be low 

  If A is sparse the complexity per iteration can drop further 
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Jacobi Method 
  The Jacobi Method defines a fixed point system by 

rewriting each equation fi(x) to compute xi 

  Starting with an initial vector x(0), the next value is 
calculated by evaluating the equations using the 
previous iteration’s value x(t-1) 

  Is ensured to converge if A is strictly diagonally dominant 
(i.e. the coefficients on the diagonal are strictly larger 
than all other coefficients in the corresponding row 

  

� 

fi(
 x ) = ai, j x j = bi   ⇒   xi =

bi − ai, j x jj∈[1..n ], j≠ i
∑

ai,ij=1

n

∑
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Jacobi Method 
  Jacobi Method can be rewritten as strict fixed point 

iteration 

  Number of iterations required depends on the starting 
point 

  For sparse matrices the function form is more efficient 
than the matrix form 

  

� 

A x =
 
b 

(D + L + U) x =
 
b 

D x = (
 
b − (L + U) x )

 x = D−1(
 
b − (L + U)  x )
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Gauss-Seidel Method 
  The Gauss-Seidel method is variation of the Jacobi 

method in which for each equation the most recent 
estimate (from the current iteration) is used rather 
than the result form the previous iteration 

  Has the same convergence conditions as the Jacobi 
method 

  Usually converges faster than Jacobi method 

  

� 

A x =
 
b 

(D + L) x ( t ) =
 
b −U x t−1

 x (t ) = D−1(
 
b −U x (t−1) − L x (t ))
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Successive Over-Relaxation  
  Successive Over-Relaxation (SOR) further increases 

convergence speed by anticipating future changes 
and “overshooting” the iteration point of the Gauss-
Seidel method by a relaxation parameter ω>1 

  For ω=1 SOR is equal to Gauss-Seidel 

  Usually converges faster than Gauss-Seidel for 
appropriate relaxation parameters � 

xi
t = (1−ω)xi

t−1 + ω
bi − ai, j x j

t − ai, j x j
t−1

j= i+1

n∑
j=1

i−1∑
ai,i
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Systems of Linear Equations 
  Systems of linear equations can be solved using 

either direct or iterative methods 

  Direct methods have fixed computation costs (O(n3)) 
and incur no truncation error 

  Iterative methods are variants of fixed point 
methods and have a smaller per iteration complexity 
(O(n2)) 
  Less complex for large systems in which a good starting point is 

known 

  Less complex for sparse matrices (i.e. systems of equations where 
each equation only depends on a subset of the variables 


