‘L Computational Methods

Optimization
Unconstrained Optimization

© Manfred Huber 2011



Optimization

= Optimization problems are concerned with finding the
minimum or maximum of an objective function

= Find x* such that f(x*)<f(x) for all xin S
= Maximization of f(x) is the same as minimization of —(x)

= Least squares problem is a special case where the function
to be minimized is the residual

= Optimization problems can also include a set of
constraints that limit the set of feasible points, S
= Unconstrained optimization does not have any constraints
= Equality constraints are of the form g(x) = 0
= Inequality constraints are of the form h(x) < 0
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Optimization

= General continuous optimization problem is defined
by the objective function and the constraints
Find min f(x)
Subject to g(x) =0 and hi(x) <0
fR =R, gR =R, bR =R
= Linear programming characterizes optimization problems

where the objective function and the constraints are
linear

= Nonlinear programming characterizes optimization
problems where at least one of the constraints or the

objective function are nonlinear
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Global vs. Local Optimization

= A global optimum is a point that is an optimum for
all feasible points (points matching the constraints)

= A local optimum is a point that is an optimum only
for the feasible points in some neighborhood
around the point

1

local minimum

|
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Global vs. Local Optimization

= Global optimization is in general a very difficult
problem and existing methods for global optimality
are limited to specific function types
= Even verifying that an optimum is a global optimum is
very difficult in general

= Most optimization methods are designed to find
local optima

= To increase the chance of finding global optima, local
optimization methods can be run multiple times from
different starting points
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i Existence of Solution

= Not every function has an optimum

= E.g. Polynomials of odd order do not have global optima
since they they tend to £co for x towards £co

s Some conditions exist under which the existence of
a global minimum can be ensured

= If objective function f(x) is continuous on a closed and
bounded set S of feasible points, then f(x) has a global
minimum on S

= If f(x)is coercive on a closed, unbounded set S of
feasible points, then it has a global minimum on §

=« Coercive: lim f (x) =00
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Uniqueness of Solution

= If function f(x) is convex on the set of feasible
points, S, then any minimum on S is a global
minimum on S
= In a convex function every minimum must have the same
function value (all minima form a “plateau”)
= If function f(x) is strictly convex on the set of
feasible points, S, then it has a unique global
minimum on S
= A strictly convex function can only have one minimum
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Optimality Conditions

= First-Order optimality condition

= Any extremum of a continuous, differentiable function f
(x) has to be either on the boundary of the feasible set or
a critical point, i.e. a solution to the nonlinear system

Vi(x)=0

= Not every critical point is an extrema (e.g. saddle points)

= Second-Order optimality condition

« If f(x)is twice differentiable, the Hessian matrix (matrix
of partial second derivatives) permits to identify extrema
= Critical point x*is a minimum if H{x*) is positive definite
= Critical point x*is a maximum if H{x*) is negative definite
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i Sensitivity and Conditioning

= Sensitivity analysis for the scalar case using Taylor
series expansion
= Absolute forward error: Ax =x - x *

= Absolute backward error:
J(xF+Ax) = f(x*) + f'(XF)Ax + %f”(X*)sz + O(Ax®) = f(x*) + %f"(X*)sz
FG) - fx%) = %f"(x*)sz

= Sensitivity of optimization:

AX| =~ 2 f () = FC)|/| (%)
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i Unconstrained Optimization

= Unconstrained optimization has many similarities to
the problem of solving equations and solution

methods are similar

= Direct search methods iteratively narrow down the
neighborhood of the solution (like bisection method for
equation solving

» Iterated approximation methods use a fixed-point
formulation and the derivative (or an approximation of it)
to achieve the solution
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Direct Search Methods for
i One-Dimensional Optimization

= Golden Section search iteratively narrows down the
interval within which the solution has to exist

= T0 ensure existence of the solution within the interval,
the function is assumed to be unimodal in the interval

= f(x)is unimodal in an interval if it has a minimum, x*, in the
interval and is strictly increasing in both directions from this point

Any continuous, twice differentiable function has a (potenitally small)
interval around each minimum for which the function is unimodal

= To divide the interval two points, x;, x,, within the
interval are used and their function values indicate which
end of the interval can be discarded
= The side of the point with the higher function value is discarded
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Golden Section Search

= Golden Section achieves a reduction of the interval
by a constant factor and requires only one function
evaluation in each iteration by carefully choosing
the locations of the interior points

= Interior points in interval [a,b] are chosen at
3-4/5 V5 -1
(b-a)
2 2

X, =a+ b-a) , x,=a+

= If one side of the interval is discarded the other point stays at a
correct location in the new interval. E.q. if left is discarded:

_ A5l o 25-4 I (245 -4)2
X,=a+ 5 b-a)=x+ > - I)/Z(b_xl)_xl 1+ \/7)( -X,)
—3+44/5 - 5 b L (- /5)(- 1+\F )43 \F )
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Example

s Golden Section search on f(x)=0.5- xe™ and initial
interval [0,2]

f(z) =0.5 — xexp(—z?)
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Successive Parabolic
Interpolation

= Golden Section search is safe but converges only at
a linear rate with constant 0.618

= Successive parabolic interpolation uses only one
point in the interval, calculating the next (and
which interval point to remove)

= Take 3 points and their function values and interpolate
them using a parabola

= Minimum of parabola is added as a new point
= Oldest of the points is dropped

= Achieves superlinear convergence with rx1.324
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Newton’ s Method

= As in the case of solving nonlinear equations, a
better convergence rate can be achieved using
information about the function

flre a0 = f+ f a2 A
= Necessary first-order condition yields

Jf (x + Ax) J'(x)
— £ " — O —
A J 0+ 1 (0)Ax = Ax ()
= Yields Newton’ s method for " (x)=0
PR C)
t+1 t f”(xt)

= Has quadratic convergence rate and converges if started close

enough to the solution
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Safeguard Methods

= As in nonlinear equation solving there are interval
search methods that are guaranteed to converge slowly
and methods with higher convergence rates but without
guarantees that they will convergence

= Safeguard methods combine multiple methods to
achieve both guaranteed convergence and a good
convergence rate

= Golden selection search and successive parabolic interpolation
can be combined if no derivatives are available

= Golden selection search and Newton’ s method can be
combined if derivatives are available
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Multi-Dimensional
Optimization

= As for the one-dimensional case, two basic

methods for optimization of multi-dimensional
functions exist

= Direct search methods
= Iterative descent methods

s Direct search methods for multi-dimensional data
introduce additional problems

= Definition of an equivalent to a bracket is not easily
possible in the multi-dimensional case
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Nelder-Mead Method

s Nelder-Mead is a direct search method for the
multi-variate case

= Does not use a “bracket” but a simplex with n+1 points
for a function with n variables

= Points of the simplex form the points of interest defining a region
No guarantee that the solution lies within this region

= Next search volume can lie partially outside the previous one

= Next simplex is created by replacing the worst point of
the existing simplex with a new point

= New point is improved point on the line connecting the old point
and the centroid of the remaining points in the simplex

= If no better point is found, simplex is shrunk towards best point
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Nelder-Mead Method

= Nelder-Mead does not require any information
about the function to be minimized
= Only evaluation of the function is necessary
= Convergence is only guaranteed if the function within the
simplex region has a unique minimum
= Operations change location and shape of simplex
= Reflection: mirrors simplex away from worst point
= Expansion: expands simplex in direction of new point
= Contraction: contracts simplex away from worst point
= Reduction: shrinks simplex around best point
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Nelder-Mead Method

= Variations of the algorithm exists which apply
slightly different rules to select operation

= A common set of rules is:

= Precomputation:
= Sort the vertices of the simplex by function value f(x,)
= Compute centroid x_ of the best n vertices

= Start by applying reflection to worst vertex to get
reflected vertex x,
x. =x,+a(x,-x, ) , often a=1

= If reflected vertex is not the worst of the remaining and not the
best vertex, replace previously worst vertex with reflected vertex
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Nelder-Mead Method

= Else, if reflected vertex is the best vertex apply expansion
X, =x,+px,-x,_) , often p=2
= If expansion point is better than the reflected point, replace the
worst point with the expanded point
= Else replace the worst point with the reflected point

= Else, if reflected point is the worst point apply contraction
'xo ='xc _}/(xc _'xn+1) ’ Often }/:1/2

= If contraction point is better than the original worst point, replace
the worst point with the contraction point

= Else, if the contraction point is no better than the original worst
point apply reduction by shrinking all points towards the best point

X, =x+n(x,-x,) , often n=1/2
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Nelder-Mead Method

= Nelder-Mead can be applied to smooth and non-
smooth functions
= Does not need derivatives
= Computational cost of the algorithm increases fast
as the number of variables increases

= NO guaranteed convergence

= The choice of the initial simplex is essential to finding the
desired minimum
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[terative Descent Methods

= When derivative information of the function is
available, this information can be used to
accelerate optimization on smooth functions

= Steepest descent methods
= Strictly follow the gradient direction of the function

= Newton’s method
= Take into account the derivative of the gradient (the Hessian)

= Quasi-Newton methods

= Use a local approximation of the Hessian to reduce computation
and be potentially more robust
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i Steepest Descent with Line Search

= In steepest descent methods the direction of the
update step for the iterative solution is always
given by the negative gradient at the current point.
X =X~ atvf('xt)
= Pick of step size « is very important for convergence

towards a solution

= Line search can be used to determine the best « for the current
point

o, =argmin_, f(x, —aVf(x,))

Line search can be solved a a one-dimensional minimization
problem
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i Steepest Descent with Line Search

= Steepest descent with line search is very robust
and reliable
= Always makes progress

= Convergence is only linear
= Ignoring of second derivatives makes it inefficient

Multi-Dimensiona timization

Aample, continued
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Newton’ s Method

= Rather than relying on the gradient alone (a first
order approximation), Newton’ s method again
uses a local second order approximation.
i " f (x)
1
X, =X —-H, (x)Vf(x,) , Hf(x)i,j = I ix
= To avoid the inversion, this can again be broken into a

linear equation solution for the step size followed by an
update

H(x,)s, =-Vf(x,)

xt+1 = xt + St
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Newton’ s Method

= If it converges, Newton’ s method converges faster
towards the solution
= Quadratic convergence

= Convergence is assured only when started close enough
to a solution
= In principle a step size is no longer necessary

= Convergence can be improved by adding line search in the
direction of the Newton step to ensure decrease in every step
(damped Newton)

Incurs significant additional complexity
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i Quasi-Newton Methods

= Newton’ s method needs calculation of the Hessian
and its inversion (solution of linear system).
= O(n°) computational complexity
= Requires knowledge of the Hessian

= Quasi-Newton methods use an approximation of
the Hessian (similar to Boyden’ s method)

X, =X - atB}l(xt)Vf(xt)
=« Broyden—Fletcher—Goldfarb—Shannon (BFGS) Method
= Conjugate Gradient Methods
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i BFGS Method

= Broyden—Fletcher—Goldfarb—Shannon (BFGS) is an
extension of Broyden’ s Method for equation
solving that maintains symmetry of approximate

Hegsian, - B, (x,)Vf (x,)

= The approximate Hessian is updated in each iteration
sbattifig-With'ah initial estimate (often B,=I)

Xipg =X T8,

A= V(X)) = V(X))
B, =B +f' A )/(Af 5) = (Bys,s B/ (s Bys,)
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BFGS Method

= BFGS method does not require second derivatives
and is computationally much less expensive

= Methods can be used to directly update factorization of B,
making the method O(n?)

= Converges superlinearly
= More robust than Newton’ s method

= Line search can be used to add a step size

= Can increase the convergence radius for BFGS
Incurs additional cost
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Conjugate Gradient Method

= The Conjugate gradient method further simplifies
the approximation of the Hessian by explicitly
estimating its effect on the gradient
Xyl =X — at(vf(‘xt) — ﬁtst—l)
s, ==Vf(x,)+p,s,_

B, = (Vf (x)" Vf (x )/ (Vf (x, )" Vf (x,.,))

= Conjugate gradient is exact for a quadratic objective
function after at most n iterations
= Also works usually well for general unconstrained optimization

= The step parameter can be formed using line search
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i Unconstrained Optimization

= Unconstrained Optimization allows to find the best
parameters for arbitrary objective functions
= Least squares is a special case of unconstrained
optimization
= [Two basic approaches exist

= Direct search techniques

= Iterative improvement algorithms

= Newton’s method if gradient and Hessian information is available
= Quasi-Newton methods if no such information is to be used.
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