* Data Modeling & Analysis Techniques

Probability Distributions

© Manfred Huber 2017 1



Experiment and Sample

i Space

= A (random) experiment is a procedure that has a
number of possible outcomes and it is not certain
which one will occur

= The sample space is the set of all possible
outcomes of an experiment (often denoted by S).
= Examples:
= Coin : S={H, T}
= Two coins: S={HH, HT, TH, TT}
=« Lifetime of a system: $S={0..c0}
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i Probability Distributions

= Probability distributions represent the likelihood
of certain events

= Probability “mass” (or density for continuous
variables) represents the amount of likelihood
attributed to a particular point

» Cumulative distribution represents the accumulated
probability “mass” at a particular point

= Distributions in probability are usually given and their
results are computed
= Distributions (or their parameters) are usually the items to

be estimated in statistics
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i Probability Distributions

= Distributions can be characterized by their
moments

= " moment: E[(x—a)r]

=« Important moments:
« Mean: F [(x — O)l]

= Variance: £ [(x — M)z]

= Skewness: E[(x— M)3]
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i Distributions

= There are families of important distributions
that are useful to model or analyze events

» Families of distributions are parameterized
= Different distributions are used to answer
different questions about events

= What is the probability of an individual event

= How many times would an event happen in a
repeated experiment

= How long will it take until an event happens
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Distributions

= Discrete distributions for event probability

= Uniform distribution

= Models the likelihood of a set of events assuming they
are all equally likely

« Parameterized by the number of discrete events, N

= Probability function:

1
P(x,N)—P(X—x)—ﬁ

= If the events are integers in the interval [a..b] (with
N=b-a+1) we can compute a mean and variance
« Mean: uy=(b+a)/2 Variance: o0?=(N?-1)/12
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Distributions

= Bernoulli distribution

= Models the likelihood of one of two possible events
happening
Parameterized by the likelihood, p, of event 1
Probability function:

p if x=1

P(x;p)=P(X =x)= .
1-p otherwise

Can be easily extended to represent more than two
possible events

Mean: « =p Variance: oZ2=p*(1-p)
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Distributions

= Discrete distributions for event frequency

= Binomial distribution

= Models the likelihood that an event will occur a certain
number of times in n Bernoulli experiments

« Parameterized by the likelihood, p, of event 1 in the
Bernoulli experiment and the number of experiments, n

= Probability function:

P(x;n,p)=( Z )p’“(l—p)(”)

= Mean: u=np Variance: o?=np(1-p)
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Distributions

= Poisson distribution
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Models the likelihood that an even will occur a given
number of times in a continuous experiment with
constant likelihood that does not depend on the time
since the last occurrence

Parameterized by the expected number of occurrences,
A, of the event within one time period

Probability function:
)Lxe—)u
x!
Mean: E[x]=pu=A  Variance: o0Z=A

P(x;A) =




Distributions

= Multinomial distribution
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Models the likelihood that each event, j, will occur a
certain number of times in n independent experiments
with | different events

Parameterized by the likelihoods, p; of the /events in the
experiment and the number of experiments, n

Probability function:

n! X;
P(Xl.xlanapl“pl)= H X '1_[16[11]1?

g1
Mean: u.=np; Variance: o7=np,(1-p)
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Distributions

= Hypergeometric distribution

= Models the likelihood that an event type will occur a
certain number of times in n experiments if no specific
event can occur twice and they are all equally likely

= Parameterized by the total number of events, N, the
number of events of the event type, M, and the number
of experiments, n

= Probability function: ( M \[ N-M )
- X

> JU s )
R,

= Mean: u=nM/N Variance: a?=n(M(n-M)(N-n)/(N°(N-1 )21

P(x;M ,N,n)=
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Distributions

= Discrete distributions for inter-event timing

= Geometric distribution

= Models the likelihood that an event will occur for the first
time in the x® Bernoulli experiment

=« Parameterized by the probability, p, of the event in each
Bernoulli experiment

= Probability function:

P(x;p)=(1-p) " p

« Mean: uy=1/p Variance: o?=(1-p)/p?
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Distributions

= Continuous distributions for event probability

= Uniform distribution

= Models the likelihood that a particular outcome will result
from an experiment where every outcome value is
equally likely
= Parameterized by the range of possible outcomes, [a..b]
= Probability density function:
1

—d

p(x;a,b) =

=« Mean: y=(@+b)/2 Variance: o?=(b-a)¢/12
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Distributions

= Normal distribution

= Models the likelihood of results if the results are either
distributed with a “Bell curve” or, alternatively, the result
of the summation of a large number of random effects.
This is @ good approximation for a wide range of natural
processes or noise phenomena as we will see a little later

« Parameterized by a mean, «, and standard deviation o
= Probability density function:

1 _(X—Mz)z
p(x;u,0) = e *°
2m0°
= Mean: p Variance: 02
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Distributions

= Continuous distributions for event frequency

= Normal distribution

= Models the number of times an event happens in a very
large (infinite) number of experiments

« Parameterized by a mean, «, and standard deviation o
= Probability density function:

_(a-p)’
1 e 20°

p(x;u,0) = -
20
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Distributions

= Continuous distributions for inter-event timing
= Exponential distribution

|
© Manfred Huber 2017

Models the likelihood of an event happening for the first
time at time x in a Poisson process (i.e. a process where
events occur with the same likelihood at any point in

time, independent of the time since the last occurrence.

Parameterized by event rate, A
Probability density function:

—x . -
p(x;x>={ pet U x=0

0 otherwise
Mean: 1/u Variance: 1/A?
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i Moments

= Moments represent important aspects of the
distribution and can be used to characterize

mean, variance, etc.
E [(x — a)r]

= In some cases the standard definition is
difficult to compute
= Moment generating function can sometimes help
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i Moment Generating Function

= The moment generating function for a
random variable X'is defined as

m,(t)= E[e”]

= The rth moment of X around 0 can then be
computed as:
a?’
lim — t
t1—>n()1 ot’ mX( )

= Note that sometimes this can not be computed since the
limit might not be defined
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i Moment Generating Function

= The moment generating function allows to
compute, e.g., the mean and the variance

= Mean:
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Example: Poisson Distribution

+

= Probability mass function
)Lxe—)»

P(x;A) = 0
= Moment generatlng function
my(t)=Ele"]=e 1)

= Mean
U= ll%laiel(et_l) =A
= Varlance gz .
o’ = 11m—el(e ) 2 A

t—0 atz
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i Multivariate Distributions

= Multivariate distributions sometimes arise
when combining the outcomes of multiple
random variables

= Sometimes we are interested of the joint effect of
multiple random variables

= Distribution of the product of two random
variables

» Distribution of the joint additive effect of
multiple variables
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i Multivariate Distributions

= For some operations combining multiple
variables we can determine the moments of
the distribution relatively easily
= Usually assumptions made about random variables
= Independently distributed

= Moments of the distributions of the individual
variables are known

= If variables are not independent we have to use
conditional distributions and the laws of probability
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‘.L Distribution of the Product

= The mean and variance of the distribution of
the product of two independent random
variables can be determined

ty = 2.3 (x3,P)PG)) = Ei(x,.P(x,-)E j(yjP(yj)))

= (PO ) =y Y, (XP(X)) =ity
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‘L Distribution of the Product

Oy = Eizj((xi)’j — Uy Uy )2 P(‘xi)P(yj)) B Ei(P(xi)Ej((((xi = )+ ) =ty )+ 1y ) = Py )2 P(yj)))

=Ei

(PSS (= 100, = 1)+ G = sy + 0, by ) P(y,-)))

y N
1PDZ - s+ 0, s o]
(

\

(P(xi)Ej((((xi = ux )y =ty )+ (= )iy + (v, =ty )y + MX“Y)_ Uy Ly )2 P(yj))}

(x; - Mx)z(yj - .My)2 +(x; - ALLX)z(yj = Uy )y +(x; = Mx)(yj - .MY)ZMX +(x; - Aux)(yj‘ — Uy ) Uy iy

[ S (-G = POD)+ (= 0 0 = ) PO+ D (6= )0, = 1) 1, PO)))
+ 3 (- w00, - s POD)+ Y, (- w1 PO))+ (0 - 1 03P J
[ (=3 (0= ) PO+ 0= ) 1y > (0= )P+ (= Ouy 3, (0= 1) PO)))
405 = )ttty 3 (G5 = PG+ (=)’ )Y (PO + 3, (0= 1) POy)) J

= Ei(P('xi)((xi - MX)ZG)% + ('xi - MX)ZMY(MY - MY)+ (xi - MX)A“XO'I% + (xi - Mx)MxMy(My - MY)+ ('xi - ‘LLX)Z‘LLI% + ‘l,L)z(O‘; ))

= Ei(P('xi)((xi - MX)ZG)% + ('xi - MX)MXO’§ + ('xi - MX)ZMI% + M}Z(O)% )) = Ei(P(xi)(O;((xi - Mx)2 + ('xi - MX)ALLX + Au’)2()+ ('xi - ALl’X)zll’l’é))
=0y ) (4 = ) PO) + Oyt 3 (%= w)P(x) + Oyt 3 P(x)+ pty ) (= (1) P(x;)

= 0,05 + Oy Uy (Uy — Uy) + Oy Uy + U0y = 070y + Oy Uy + U0y
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i Distribution of the Sum

= The mean and variance of the distribution of
the sum of two independent random variables
can be determined

iy = 33 (@4 3)P@PO)) = S PE)S (1P0)+3,P())
B Eip(x")(x"sz(yj)Jr Ej(yjp(yf))) =2iP(xl.)(xl. -ty

= Y POOX +py Y P(x) = iy +
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Distribution of the Sum

Oy = Ei}jj((u,. £y = (g + i) P(x,.>P<y,.>) = 3 (PO (63,7 =200+ 3,00ty + )+ Gt + 1) P

- Ei(P(x,.)E].((Xf 2275+ 37) = 2068+ by + Xy + ¥ty )+ (Ui + 200y + u?))P(yj)))

= 3 (PO (07 ~ 2t + 1)+ 02 =23y + 1820+ 2, = 200+ 500+ 2t ) PO,

- EiP<xi>(<xi — 1Y PO+ Y 0= PO +2x Y v PO =20 Y PO =25, Y PO+ 2uyuxEjP(y,.>)

=3 PG = 1) + 07 + 2,08y = 20ty = 2,08, + 208, 1y )
= P - +07)= Y (- )’ P(x) 407 Y P(x) =03 + 0y
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i Hypergeometric to Binomial

= If the population is large and the
number of samples drawn is small, then
the Hypergeometric distribution can be
approximated by the Binomial
distribution.

= p=M/N
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i Normal to Standard Normal

= We usually denote Normal as: N(m, 04)
= The standard normal as: N(0,1)=7

= If random variable X'is normally
distributed, i.e., X= N(m, 0 2) then
Z=(X-m)/o
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i Binomial to Poisson

= Binomial pdf:

P(x;n,p)=( Z )px(l—p)(”)

= Binomial is hard to calculate for large n

= Poisson asks a similar question but in continuous
time (no d[§crete time steps)
P(x;A) = e

x!
= If nis lage and p is small, then the binomial can
be approximated by a Poisson distribution with

rate A=np
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i Binomial to Normal

= WWe cannot use Poisson to approximate
binomial if p is not very small (as np
goes towards infinity).

= However, we can use the Normal
distribution: N(np, np(1-p) )

= Thus we can also approximate the
Poisson as N( A ,A) for large A -s
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i Distributions

= If a function is always positive and
converges to O, lim,__ f(x)=0, can we
make it into a pdf ?

= E.g. f(®)=a/x between 1 and o0 and 0
otherwise.

= NO

= There are functions of this type that do not
represent probability distributions



i Heavy Tailed Distributions

= How about “quicker” convergence:
= f(x)=a/x? between 1 and oo and 0 otherwise.

= Can this be made into a pdf
= Yes

= What is its mean

= Infinite — the tail is too heavy

= i.e. there are distributions that do not have
numeric mean

= What is its variance
= Infinite
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i Lower Polynomial Powers

= How about even “quicker” convergence:
= f(x)=a/x° between 1 and oo and 0 otherwise.
= Can this be made into a pdf
= Yes
= What is its mean
.2
= What is its variance

= Infinite

= i.e. there are distributions that have a numeric
mean but do no nun313eric variance



‘.L Lower Polynomial Powers

= How about even “quicker” convergence:
= f(x)=a/x? between 1 and oo and 0 otherwise.

= Can this be made into a pdf
= Yes

s Does it have a finite mean
= YEes

= Does it have a finite variance
= Yes
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Pareto Distribution

= The Pareto distribution has two parameters,
a shape parameter o and a minimum X,

= Models many social and physical phenomena

= Wealth distribution (80-20 rule), heard drive failures,
daily maximum rainfalls, size of fires, etc.

= Probability density | X >
p(X;OC,xm) =< x((x+1) X Z xm

\ 0 otherwise
»« Cumulative density function f x \*
1— X=X
P(y<x)=- ( ) "

0 otherwise
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i Pareto Distribution

= The Pareto distribution is heavy tailed for some
parameter settings
= Infinite mean for o<1
= Infinite variance for a<2

= For many interesting problems the
parameters fall into this region
= E.g. 80-20 rule has a=1.161

= Heavy tailed distributions exist and model
existing problems

= Has implications on sums and products of

functions and the central limit theorem
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