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Data Modeling & Analysis Techniques 

Probability Distributions 
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Experiment and Sample 
Space 

n  A (random) experiment  is a procedure that has a 
number of possible outcomes and it is not certain 
which one will occur  

n  The sample space is the set of all possible 
outcomes of an experiment (often denoted by S).  
n  Examples:  

n  Coin : S={H, T} 

n  Two coins: S={HH, HT, TH, TT} 

n  Lifetime of a system: S={0..∞} 
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Probability Distributions 

n  Probability distributions represent the likelihood 
of certain events  
n  Probability “mass” (or density for continuous 

variables) represents the amount of likelihood 
attributed to a particular point 

n  Cumulative distribution represents the accumulated 
probability “mass” at a particular point 

n  Distributions in probability are usually given and their 
results are computed 

n  Distributions (or their parameters) are usually the items to 
be estimated in statistics 



n  Distributions can be characterized by their 
moments  
n  rth moment:  

n  Important moments: 
n  Mean: 

n  Variance: 

n  Skewness:   
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Probability Distributions 
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Distributions 

n  There are families of important distributions 
that are useful to model or analyze events 
n  Families of distributions are parameterized  

n  Different distributions are used to answer 
different questions about events 

n  What is the probability of an individual event 

n  How many times would an event happen in a 
repeated experiment 

n  How long will it take until an event happens 
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Distributions 

n  Discrete distributions for event probability 
n  Uniform distribution 

n  Models the likelihood of a set of events assuming they 
are all equally likely 

n  Parameterized by the number of discrete events, N 
n  Probability function: 

n  If the events are integers in the interval [a..b] (with 
N=b-a+1) we can compute a mean and variance 

n  Mean: μ=(b+a)/2           Variance: σ2=(N2-1)/12 

 

 
 

P(x;N ) = P(X = x) = 1
N
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Distributions 
n  Bernoulli distribution 

n  Models the likelihood of one of two possible events 
happening 

n  Parameterized by the likelihood, p,  of event 1 
n  Probability function: 

P(x; p) = P(X = x) =
p if x = 1

1! p otherwise

"
#
$
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n  Can be easily extended to represent more than two 
possible events 

n  Mean: μ=p              Variance: σ2=p*(1-p) 
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Distributions 

n  Discrete distributions for event frequency 
n  Binomial distribution 

n  Models the likelihood that an event will occur a certain 
number of times in n Bernoulli experiments 

n  Parameterized by the likelihood, p, of event 1 in the 
Bernoulli experiment and the number of experiments, n 

n  Probability function: 

n  Mean: μ=np              Variance: σ2=np(1-p) 

 

P(x;n, p) = n
x
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Distributions 
n  Poisson distribution 

n  Models the likelihood that an even will occur a given 
number of times in a continuous experiment with 
constant likelihood that does not depend on the time 
since the last occurrence 

n  Parameterized by the expected number of occurrences, 
λ, of the event within one time period 

n  Probability function: 

n  Mean:  E[x]=μ=λ      Variance: σ2=λ 

P(x;!) = !
xe"!

x!
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Distributions 
n  Multinomial distribution 

n  Models the likelihood that each event, i, will occur a 
certain number of times in n independent experiments 
with l different events 

n  Parameterized by the likelihoods, pi, of the l events in the 
experiment and the number of experiments, n 

n  Probability function: 

n  Mean: μi=npi            Variance: σi
2=npi(1-pi) 

 

 

P(x1..xl;n, p1..pl ) =
n!

xi !i![1..l ]"
pxi

i![1..l ]"
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Distributions 
n  Hypergeometric distribution 

n  Models the likelihood that an event type will occur a 
certain number of times in n experiments if no specific 
event can occur twice and they are all equally likely 

n  Parameterized by the total number of events, N, the 
number of events of the event type, M, and the number 
of experiments, n 

n  Probability function: 

n  Mean: μ=nM/N   Variance: σ2=n(M(n-M)(N-n)/(N2(N-1)) 
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Distributions 

n  Discrete distributions for inter-event timing 
n  Geometric distribution 

n  Models the likelihood that an event will occur for the first 
time in the xth Bernoulli experiment 

n  Parameterized by the probability, p, of the event in each 
Bernoulli experiment 

n  Probability function: 

n  Mean: μ=1/p        Variance: σ2=(1-p)/p2 

 

 

 

P(x; p) = 1! p( )x!1 p
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Distributions 

n  Continuous distributions for event probability 
n  Uniform distribution 

n  Models the likelihood that a particular outcome will result 
from an experiment where every outcome value is 
equally likely 

n  Parameterized by the range of possible outcomes, [a..b] 

n  Probability density function: 

n  Mean: μ=(a+b)/2      Variance: σ2=(b-a)2/12 

 

p(x;a,b) = 1
b ! a
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Distributions 
n  Normal distribution 

n  Models the likelihood of results if the results are either 
distributed with a “Bell curve” or, alternatively, the result 
of the summation of a large number of random effects. 
This is a good approximation for a wide range of natural 
processes or noise phenomena as we will see a little later  

n  Parameterized by a mean, μ, and standard deviation σ 
n  Probability density function: 

n  Mean: μ        Variance: σ2 

 

p(x;µ,! ) = 1
2"! 2
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Distributions 

n  Continuous distributions for event frequency 
n  Normal distribution 

n  Models the number of times an event happens in a very 
large (infinite) number of experiments 

n  Parameterized by a mean, μ, and standard deviation σ 
n  Probability density function: 

 

p(x;µ,! ) = 1
2"! 2
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Distributions 

n  Continuous distributions for inter-event timing 
n  Exponential distribution 

n  Models the likelihood of an event happening for the first 
time at time x in a Poisson process (i.e. a process where 
events occur with the same likelihood at any point in 
time, independent of the time since the last occurrence. 

n  Parameterized by event rate, λ 
n  Probability density function: 

n  Mean: 1/μ         Variance: 1/λ2 

 

 

 

p(x;!) = !e"!x if x # 0
0 otherwise
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n  Moments represent important aspects of the 
distribution and can be used to characterize 
mean, variance, etc. 

n  In some cases the standard definition is 
difficult to compute 
n  Moment generating function can sometimes help 
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Moments 
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n  The moment generating function for a 
random variable X is defined as 

n  The rth moment of X around 0 can then be 
computed as: 

n  Note that sometimes this can not be computed since the 
limit might not be defined 
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Moment Generating Function 

mX (t) = E ext!" #$

lim
t!0

"r

"t r
mX (t)



n  The moment generating function allows to 
compute, e.g., the mean and the variance 
n  Mean: 

n  Variance: 
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Moment Generating Function 

µ = lim
t!0

"
"t

ext p(x)dx#

! 2 = lim
t"0

#2

#t 2
e(x$µ )t p(x)dx%



n  Probability mass function 

n  Moment generating function 

n  Mean 

n  Variance 
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Example: Poisson Distribution 
 

mX (t) = E[e
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n  Multivariate distributions sometimes arise 
when combining the outcomes of multiple 
random variables 
n  Sometimes we are interested of the joint effect of 

multiple random variables 

n  Distribution of the product of two random 
variables 

n  Distribution of the joint additive effect of 
multiple variables 
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Multivariate Distributions 



n  For some operations combining multiple 
variables we can determine the moments of 
the distribution relatively easily 
n  Usually assumptions made about random variables 

n  Independently distributed 

n  Moments of the distributions of the individual 
variables are known 

n  If variables are not independent we have to use 
conditional distributions and the laws of probability 
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Multivariate Distributions 



n  The mean and variance of the distribution of 
the product of two independent random 
variables can be determined 
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Distribution of the Product 

µXY = xiyjP(xi )P(yj )( )j!i! = xiP(xi ) yjP(yj )( )j!( )i!
= xiP(xi )µY( ) =

i! µY xiP(xi )( ) =
i! µXµY
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Distribution of the Product 
! 2

XY = xiyj " µXµY( )2 P(xi )P(yj )( )j#i# = P(xi ) ((xi " µX )+ µX )((yj " µY )+ µY )" µXµY( )2 P(yj )( )j#( )i#

= P(xi ) (xi " µX )(yj " µY )+ (xi " µX )µY + (yj " µY )µX + µXµY( )" µXµY( )2 P(yj )( )j#$
%

&
'i#

= P(xi ) (xi " µX )(yj " µY )+ (xi " µX )µY + (yj " µY )µX( )2 P(yj )( )j#( )i#

= P(xi )
(xi " µX )

2 (yj " µY )
2 + (xi " µX )

2 (yj " µY )µY + (xi " µX )(yj " µY )
2µX + (xi " µX )(yj " µY )µXµY

+(xi " µX )
2µY

2 + (yj " µY )
2µX

2

$

%
(

&

'
) P(yj )

$

%
((

&

'
))j#

$

%
(
(

&

'
)
)i#

= P(xi )
(xi " µX )

2 (yj " µY )
2P(yj )( ) + (xi " µX )

2 (yj " µY )µY P(yj )( ) + (xi " µX )(yj " µY )
2µXP(yj )( )j#j#j#

+ (xi " µX )(yj " µY )µXµY P(yj )( )j# + (xi " µX )
2µY

2P(yj )( )j# + (yj " µY )
2µX

2P(yj )( )j#

$

%

(
(

&

'

)
)

$

%

(
(

&

'

)
)i#

= P(xi )
(xi " µX )

2 (yj " µY )
2P(yj )( ) + (xi " µX )

2µY (yj " µY )P(yj )( ) + (xi " µX )µX (yj " µY )
2P(yj )( )j#j#j#

+(xi " µX )µXµY (yj " µY )P(yj )( )j# + (xi " µX )
2µY

2 P(yj )( )j# + µX
2 (yj " µY )

2P(yj )( )j#

$

%

(
(

&

'

)
)

$

%

(
(

&

'

)
)i#

= P(xi ) (xi " µX )
2! Y

2 + (xi " µX )
2µY (µY " µY )+ (xi " µX )µX! Y

2 + (xi " µX )µXµY (µY " µY )+ (xi " µX )
2µY

2 + µX
2! Y

2( )( )i#
= P(xi ) (xi " µX )

2! Y
2 + (xi " µX )µX! Y

2 + (xi " µX )
2µY

2 + µX
2! Y

2( )( )i# = P(xi ) ! Y
2 (xi " µX )

2 + (xi " µX )µX + µX
2( ) + (xi " µX )

2µY
2( )( )i#

=! Y
2 (xi " µX )

2P(xi )i# +! Y
2µX (xi " µX )P(xi )i# +! Y

2µX
2 P(xi )i# + µY

2 (xi " µX )
2

i# P(xi )

=! Y
2! X

2 +! Y
2µX (µX " µX )+! Y

2µX
2 + µY

2! X
2 =! Y

2! X
2 +! Y

2µX
2 + µY

2! X
2



n  The mean and variance of the distribution of 
the sum of two independent random variables 
can be determined 

© Manfred Huber 2017 25 

Distribution of the Sum 

µX+Y = (xi + yj )P(xi )P(yj )( )j!i! = P(xi ) xiP(yj )+ yjP(yj )( )j!i!
= P(xi ) xi P(yj )j! + yjP(yj )( )j!( ) =i! P(xi ) xi + µY( )

i!
= P(xi )xi + µY P(xi )i!i! = µX + µY
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Distribution of the Sum 
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Hypergeometric to Binomial 

n  If the population is large and the 
number of samples drawn is small, then 
the Hypergeometric distribution can be 
approximated by the Binomial 
distribution. 
n  p=M/N 
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Normal to Standard Normal 

n  We usually denote Normal as: N(m,σ2) 
n  The standard normal as: N(0,1)=Z 

n  If random variable X is normally 
distributed, i.e., X= N(m,σ 2) then   
Z=(X-m)/σ  
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Binomial to Poisson 
n  Binomial pdf:  

 
n  Binomial is hard to calculate for large n 
n  Poisson asks a similar question but in continuous 

time (no discrete time steps) 

n  If n is lage and p is small, then the binomial can 
be approximated by a Poisson distribution with 
rate  λ=np 

29 
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Binomial to Normal 

n  We cannot use Poisson to approximate 
binomial if p is not very small (as np 
goes towards infinity). 

n  However, we can use the Normal 
distribution:  N(np, np(1-p) ) 

n  Thus we can also approximate the 
Poisson as N(λ,λ) for large λ-s 
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Distributions 

n  If a function is always positive and 
converges to 0,                 , can we 
make it into a pdf ? 

n  E.g.             between 1 and ∞ and 0 
otherwise. 

n  No 
n  There are functions of this type that do not 

represent probability distributions 31 

lim x!" f (x) = 0

f (x) = a x



Heavy Tailed Distributions 

n  How about “quicker” convergence: 
n  f(x)=a/x2 between 1 and ∞ and 0 otherwise. 

n  Can this be made into a pdf 
n  Yes 

n  What is its mean 
n  Infinite – the tail is too heavy 
n  i.e. there are distributions that do not have 

numeric mean 

n  What is its variance 
n  Infinite 
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Lower Polynomial Powers 

n  How about even “quicker” convergence: 
n  f(x)=a/x3 between 1 and ∞ and 0 otherwise. 

n  Can this be made into a pdf 
n  Yes 

n  What is its mean 
n  2 

n  What is its variance 
n  Infinite 
n  i.e. there are distributions that have a numeric 

mean but do no numeric variance 
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Lower Polynomial Powers 

n  How about even “quicker” convergence: 
n  f(x)=a/x4 between 1 and ∞ and 0 otherwise. 

n  Can this be made into a pdf 
n  Yes 

n  Does it have a finite mean 
n  Yes 

n  Does it have a finite variance 
n  Yes 
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Pareto Distribution 
n  The Pareto distribution has two parameters,  

a shape parameter α and a minimum xm 

n  Models many social and physical phenomena 
n  Wealth distribution (80-20 rule), heard drive failures, 

daily maximum rainfalls, size of fires, etc. 

n  Probability density 

 
n  Cumulative density function 
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Pareto Distribution 
n  The Pareto distribution is heavy tailed for some 

parameter settings 
n  Infinite mean for α≤1

n  Infinite variance for α≤2


n  For many interesting problems the 
parameters fall into this region

n  E.g. 80-20 rule has α≈1.161


n  Heavy tailed distributions exist and model 
existing problems

n  Has implications on sums and products of 

functions and the central limit theorem
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