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Data Analysis & Modeling Techniques 

Statistics and Hypothesis Testing 
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Hypothesis Testing 

n  Hypothesis testing is a statistical method 
used to evaluate if a particular hypothesis 
about data resulting from an experiment is 
reasonable. 
n  Uses statistics to represent the data 

n  Value of the data 

n  Distribution of the data 

n  Determine how likely it is that a given hypothesis 
about the data is correct  
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Hypothesis Testing 
n  Hypothesis testing is aimed at establishing if a particular 

hypothesis about a set of observations (data) should be 
trusted 
n  Example: 

n  The average and variance of the body height of the population of a 
country is 

n  In a different country a set of 10 people are randomly selected and 
measured resulting in the following data set with mean    = 1.776: 

n  Can we conclude that people in this second country are on the 
average taller (average height μX) than people in the first one ? 

01.0,7.1 2 == σµ

}7.1,65.1,75.1,82.1,77.1,7.1,75.1,92.1,9.1,8.1{
X
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Hypothesis Testing 
n  To be able to trust in a hypothesis on statistical data 

we have to make sure that the data set could not be 
the result of random chance  
n  In the example the hypothesis would be: 

n  To determine if the hypothesis has a base we have to make 
sure that we do not accept it if the data could be the result 
of random chance 

n  What is the likelihood that the data could be obtained by 
randomly sampling 10 items from the distribution in the first 
country ? 

µµ >XH :
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Percentiles 
n  To determine the likelihood that a data item could 

come from a distribution we have to be able to 
determine percentiles 
n  A data item belongs to the nth percentile if the likelihood to 

obtain a value that is equal to the data item or even 
further away from the distribution mean is greater or equal 
to n%  

n  For certain distributions (e.g. normal distribution) 
percentiles can be relatively easily calculated 
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Percentiles in Normal 
Distributions 

n  The percentile in a normal distribution is a function of the 
distance of the data value from the mean and of the 
standard deviation 

n  E.g. a data value that is more than 1.5 standard deviations 
larger than the mean of the distribution occurs only with 
probability 0.0668 

σ
µ−

=
Xz
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Percentiles 
n  If the distribution of the population is normal, the 

z-value and the z-table allow to compute how 
likely it would be to randomly draw the particular 
data value (or one even further from the mean) 
n  If the likelihood is not very small, then we should not 

assume that the data value is significant different from 
the value of the distribution 

n  Percentiles for general, skewed distributions are 
difficult to derive 
n  Attempt to formulate hypothesis on a statistic for which 

the distribution is approximately normal 
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Sampling Distributions 
n  Sample Distribution: The probability distribution 

representing individual data items 

n  Sampling Distribution: The probability distribution 
of a statistic calculated from a set of randomly 
drawn data items 
n  Sampling Distribution of the mean: The distribution of the 

means of random data samples of size n 
n  For a sample distribution with mean μ and standard 

deviation σ the mean μs and standard deviation σs of the 
sampling distribution of the mean over n samples is: 

nss
σ

σµµ == ,
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Central Limit Theorem 
n  For any sample distribution with mean μ and 

standard deviation σ , the sampling distribution of 
the mean approaches a normal distribution with 
mean μ and standard deviation σ/√n as n 
becomes larger 
n  Percentiles for the sampling  

 distribution of the mean are  

 easier to compute than for  

 the sample distribution. 
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Logic of Hypothesis Testing 
n  The goal of hypothesis testing is to establish the viability of a 

hypothesis about a parameter of the population (often the 
mean) 
n  Define hypothesis (also called alternative hypothesis) 

n  E.g.:  

n  Set up Null hypothesis (i.e. the “opposite” of the hypothesis) 
n  E.g.:  

n  Compute the percentile and thus the likelihood of the Null 
hypothesis 

n  If the Null hypothesis has more than a small likelihood, the data 
does not significantly support the hypothesis (since it could also 
represent the Null hypothesis) 

n  Usually thresholds or 5% or smaller are used 

µµ >XAH :

µµ =XH :0
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Logic of Hypothesis Testing 
n  If the Null hypothesis’ likelihood (i.e. the likelihood to 

obtain data at least as extreme) is smaller than the 
significance level, the Null hypothesis can be rejected 
n  Rejection implies that the Null hypothesis is discarded in 

favor of the alternative hypothesis and the result is 
considered significant 

n  Note that a p-value less than 5% for the Null hypothesis does 
NOT imply a likelihood of 95% for the alternative hypothesis. 

n  Note that it is NOT possible to show that the Null hypothesis is 
correct. Failure to reject the Null hypothesis does NOT imply 
acceptance of the Null hypothesis but rather that no significant 
conclusion could be drawn from the test  
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One-Tailed vs. Two-Tailed Tests 
n  Depending on the hypotheses we might be interested to know how 

the likelihood to generate data that is more extreme than the test 
data in a particular direction (e.g. the likelihood of it being larger 
than or equal to the given data) or in any direction (i.e. that it is 
further from the mean than the given data) 

n  If we are only interested in data on one end of  

 the distribution we perform a one-tailed test,  

 i.e. we only count the percentile at one end of  

 the distribution 

n  If we are interested in both sides, we perform a  

 two-tailed test which computes the percentile at  

 both ends 

n  If we are not sure we should choose a two-tailed test (which is more 
stringent) 
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The Z Test 
n  The Z Test is the most basic hypothesis test to evaluate a hypothesis 

relating an unknown distribution (with mean μX) from which a 
known sample set {Xi} of size n with mean    was randomly drawn to 
a population with sample distribution with mean μ and standard 
deviation σ  

n  Assumes that the sampling distribution of the means is normal 
n  Either the sample distribution is normal or the sample size is very large 

n  Example Hypotheses: 

n  Compute z-value: 

n  Translate z-value to p-value and evaluate significance 
n  Translation usually uses z-table. E.g. p = 2.5% -> z=1.96 

 

X
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Z Test With Unknown Variance 
n  If the standard deviation of the population is unknown we can 

make the assumption that the population and the data set 
have come from populations with the same standard deviation 

n  Use standard error s of the sample set to estimate standard deviation of 
the sampling distribution 

n  Compute z-value: 

n  Translate z-value to p-value and evaluate significance 
n  Translation usually uses z-table. E.g. p = 2.5% -> z=1.96 

 

ns
Xz µ−

=

n
s

ns ≈=
σ
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Student’s t Distribution 
n  If the sample size is small and the form of the 

sample distribution is unknown a normal distribution 
might not be the correct distribution for the 
sampling distribution of the mean 
n  Student’s t distribution addresses this by increasing the 

spread of the distribution as the sample size decreases 
n  For large sample sizes Student’s t approximates the normal 

distribution arbitrarily well 

n  For small sample sizes Student’s t models the deviations in 
the variance estimates 
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The t Test 
n  The t test operates in the same way as the Z test 

but uses Student’s t distribution instead of the 
normal distribution  
n  Example Hypotheses: 

n  Compute t-value: 

n  Translate t-value to the corresponding p-value (percentile) 
according to the Student’s t distribution for sample size n and 
evaluate significance 

n  Translation usually uses t-table. E.g. p = 2.5% -> t9=2.26 

 

µµ

µµ

≠

=

HA

H

H
H
:
:0

ns
Xtn

µ−
=−1



© Manfred Huber 2017 17 

The t Test 
n  The t test should be used whenever the sample size is smaller than 

approximately 30  

n  Example: 
n  The average and variance of the body height of the population of a 

country is 

n  In a different country a set of 10 people are randomly selected and 
measured resulting in the following data set with mean    = 1.776: 

n  Can we conclude that people in this second country are on the average 
taller (average height μX) than people in the first one ? 

n  Hypotheses:   

n  T value:   

n  Reject Null hypothesis in favor of alternative hypothesis.  
n  People in the second country are on average taller than in the first country  

 

01.0,7.1 2 == σµ

}7.1,65.1,75.1,82.1,77.1,7.1,75.1,92.1,9.1,8.1{

µµµµ >= XAX HH :,:0
26.2403.2
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7.1776.1
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Two-Sample t Test 
n  A two-sample test is to compare two samples to see whether they come from 

the same or different distributions  
n  E.g.: Does algorithm 1 perform better than algorithm 2 based on a set of 

experiments performed with each 

n  Since no population standard deviation or mean is available, the standard error from 
the two samples is pooled to obtain an estimate of the standard deviation of the 
difference between the two sample distributions 

n  Example Hypotheses: 

n  Compute t-value: 

n  Translate t-value to the corresponding p-value (percentile) according to the Student’s t distribution 
for n1+n2-2 degrees of freedom and evaluate significance 
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Paired Sample t Test 
n  A paired sample test is used to compare two sample sets that have a different 

common variable that should be controlled for to see whether they come from 
the same or different distributions  

n  E.g.: Does algorithm 1 perform better than algorithm 2 based on their performance 
on a specific set of problems (the same problems for both) 

n  A paired sample test avoids the variance caused by the controlled variable (e.g. the 
specific problem the algorithm is applied to) by establishing the sampling 
distribution over the differences in the value between paired data items from both 
sets 

n  Example Hypotheses: 

n  Compute t-value: 

n  Translate t-value to the corresponding p-value (percentile) according to the Student’s t distribution 
for sample size n and evaluate significance 
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Paired Sample vs. Two-Sample 
Test 

n  The paired sample test is preferable 
whenever an additional variable is known 
which produces variations in the data items 
n  Paired sample test often has smaller standard 

deviations because of the avoided variance  

n  If no conditional variable that would pair 
individual samples together is known to be 
relevant, the two-sample test is most of the 
time better because it uses more samples  
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Confidence Intervals 
n  Confidence intervals on the means of data points (or curves) 

indicate intervals for which, if a data point from a different 
sample falls within it, a significance test would not succeed to 
reject the Null hypothesis. 
n  E.g.: The performance for system 1 is significantly better than the 

performance of system 2 if the performance values lie outside the 
confidence intervals.  

n  A (1-α)% confidence interval around a data point     would cover 
all values for which the t-value with respect to     would have a p-
value below α% 

n  Confidence interval bounds:  

X
X
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Confidence Intervals 
n  When presenting and comparing performance data (and 

making statements regarding performance differences) either 
significance test should be performed or error bars 
(confidence intervals) should be presented with the data 
n  Error bars illustrate the  

 significance of the difference  

 between two performance  

  measures 
n  Error bars usually either  

 represent (1-α)% confidence  

 intervals or are of size α 
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Testing Other Properties 
n  Z and T tests utilize the results of the central limit 

theorem to allow the test of (and determination of 
the significance of evidence for) hypotheses about 
the mean of a distribution 
n  Since the sampling distribution for the mean is represented 

by either a Student-t distribution or, if the number of 
samples is large enough or the sample distribution is 
normal, by a normal distribution 

n  We can use the same approach for any other 
statistic for which we know the sampling 
distribution 
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Testing Variance 
n  Another important property of distributions is the 

variance 
n  Variance indicates the spread of the values drawn 

n  Can correspond to “reliability”, “noisiness”, etc. 
n  To allow significance tests about hypotheses related 

to the variance we need to know what the sampling 
distribution of the variance of a sample distribution 
is and be able to compute its percentiles 
n  If we know this distribution, significance tests can be 

performed in the same way as for the mean 
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Sampling Distribution  
of the Variance 

n  The variance of a random variable can be 
interpreted itself as a random variable (x-μ)2 

n  While we have shown that the mean and variance of the 
product of two independent random variables are μXμY 
and σX

2σY
2+μX

2σY
2+μY

2σX
2, respectively, independent 

of the distribution of the variables, this does not apply to 
the variance (dependent variables) 

n  The distribution of the variance is specific to the 
distribution of the variable 

n  Only for some cases are general distributions of the variance 
easily known and usable 

 



© Manfred Huber 2017 26 

The Chi-Squared Distribution 
n  The χk

2 -Distribution is a family of distributions of 
the sum of squares of k variates independently 
drawn from a standard normal distribution 
n  For k=1 this corresponds to the distribution of the variance 

of a standard normal distribution. For larger k it 
corresponds to the distribution of the variance of a sample 
set of size k+1 taken from the standard normal distribution 
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Chi-Squared Tests 
n  The χ2 –Distribution can be used in tests related to 

the variance of a distribution  
n  If the distribution is known to be normal the χ2 value for the 

correct number of degrees of freedom can be used 
n  To extend it to arbitrary normal distributions, it is important 

to note that any normal distribution is just a shifted, 
stretched version of the standard normal (shifted by μ and 
stretched by σ) 

n  For distributions of unknown shape, the distribution of the 
mean of samples of sufficient size is normal with mean μ and 
standard deviation σ/√n. χ2 thus models the variance of 
sample means of sufficiently large samples (after scaling) 
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The Chi-Squared Tests 
n  The χ2 test operates in the same way as the Z and 

t tests but uses the χk
2 distribution 

n  Example Hypotheses: 

n  Compute χ2-value: 

n  Translate χ2-value to the corresponding p-value (percentile) 
according to the χ2 distribution for sample size n and evaluate 
significance 

n  Translation usually uses χ2-table. E.g. p = 2.5% -> χ9
2=19.02 
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The F-Distribution 
n  If the shape of the sample distribution is not known and 

there are not enough samples to perform a variance test on 
a normal sampling distribution we need a different 
distribution for the variance 

n  The F-distribution models the distribution of the ratio of 
two random variables, each drawn from a χk

2-Distribution 
scaled by 1/k. 

n  For k1=1 and k2=n-1, the F-distribution models the distribution of 
the variance of samples drawn from a student-t distribution for 
sample size n (n-1 degrees of freedom) 

pF (x;k1,k2 ) =
(k1x)

k1 k2
k2

(k1x + k2 )
k1+k2

! k1 + k2( )
x ! k1( ) + ! k2( )( )
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F-Test 
n  There are multiple scenarios under which we can use the 

F-distribution to evaluate hypotheses about the variance of 
a random distribution 

n  F-Distribuiton F(k1,k2) models the ratio of the variances of 
sample sets drawn from two normal distributions.  

n  F-test can evaluate how likely it is to obtain a given value for 
the ratio between a known normal distribution and a sample set 
taken from that distribution  

n  F-test can evaluate the likelihood to obtain a given value for the 
ratio between two sample sets taken from a normal distribution. 

n  F-Distribution F(1,k) models the variance of a set of samples 
taken from a t-distribution with k degrees of freedom 
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The F-Tests 
n  The F-test operates in the same way as the other 

tests but uses the F- distribution 
n  Example Hypotheses: 

n  Compute F-value: 

n  Translate F-value to the corresponding p-value (percentile) 
according to the F-distribution for sample sizes n,m and evaluate 
significance 

n  Translation usually uses F-table. E.g. p = 5% -> F9,9=3.18 
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Other Test Distributions 
n  F-tests and χ2-tests can also be used in paired scenarios 

and with and without one of the test distributions being 
known. 

n  If the variance does not fit the χ2 or the F-distribution, 
there are a large range of related test statistics (and 
distributions) that can be used 

n  Many variations of the F-test  

n  Likelihood ratio test 

n  Anova 

n  r-test 

n  … 
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Significance Testing 
n  To be able to make statements comparing performance derived from 

experiments it is necessary to show that the differences are not the 
result of chance 

n  Benefits 
n  Significance tests are a flexible way to evaluate if a hypothesis about the 

sampling mean (or some similar statistics) has significant support 

n  Significance tests can be applied without complete knowledge of the 
distributions underlying the problem 

n  Problems: 
n  Significance tests only reject the Null hypothesis 

n  No direct proof of the hypothesis 

n  Significance tests are difficult when trying to evaluate hypotheses that are 
not involving the mean 

 


