
© Manfred Huber 2015 1

Reasoning with Uncertainty

Markov Decision Models

© Manfred Huber 2015 2

Markov Decision Process Models

n  Markov models represent the behavior of a
random process, including its internal state
and the externally visible observations
n  So far represents a passive process that is being

observed but can not be actively influenced
n  Represents a Markov chain

n  Observation probabilities and emission probabilities are
just a different view of the same model component

n  General Markov Decision Processes extend
this to represent random processes that can
be actively influenced through the choice of
actions

© Manfred Huber 2015 3

Markov Decision Process
Model

n  Extends the Markov chain model
n  Adds actions to represent decision options
n  Modifies transitions to reflect all possibilities

n  In its most general form the Markov model
for a system with decision options contains:

 <S, A, O, T, B, π>
n  S={s(1),…,s(n)}: State set
n  A={a(1),…,a(l)}: Action set
n  O={o(1),…o(m)}: Observation set
n  T: P(s(i) |s(j), a(k)) : Transition probability distribution
n  B: P(o(i) | s(j)) : Observation probability distribution
n  π: P(s(i)) : Prior state distribution

© Manfred Huber 2015 4

Markov Decision Process
Model

n  The general Markov Decision Process model
represents all possible Markov chains that
result by applying a decision policy
n  Policy, Π represents a mapping from states/

situations to probabilities of actions

S(2) S(3)

S(6)

S(1)

S(5)

S(4)
P(s(3) | s(2), a(1))

P(s(6) | s(2) , a(1))

P(s(4) | s(3) , a(1))

P(s(4) | s(4) , a(1))

P(s(1) | s(3) , a(1)) P(s(4)
 | s(1) , a(1))

P(s(1) | s(5) , a(1))

P(s(5) | s(5) , a(1))

P(s(5) | s(6) , a(1))

{ P(o(i)
 | s(2)) }

{ P(o(i)
 | s(3)) }

{ P(o(i) | s(6)) }

{ P(o(i)
 | s(1)) }

{ P(o(i) | s(4)) }

{ P(o(i) | s(5)) }

P(s(6) | s(2) , a(2))

P(s(5) | s(2) , a(2))

P(s(5) | s(6) , a(2))
P(s(4) | s(5) , a(2))

P(s(1) | s(5) , a(2))

P(s(3) | s(4) , a(2))
P(s(2) | s(3) , a(2))

© Manfred Huber 2015 5

Policy
n  A policy represents a decision strategy

n  Under the Markov assumptions, an action choice
only needs to depend on the current state

n  Deterministic policy

n  Probabilistic policy

n  Under a policy the general Markov decision
process model reduces to a Markov chain
n  Transition probabilities could be re-written

!(s)

!(s(i)) = a(j)

!(s(i),a(j)) = P(a(j) | s(i))

P!(s
(i) | s(j)) = P(

k" s(i) | s(j),a(k))!(s(j),a(k))

© Manfred Huber 2015 6

Policy
n  In the general formulation of the problem

the state is generally not known
n  Policy as defined so far can only be executed

inside the underlying model
n  In the general case this requires external policies

to be defined in terms of the complete
observation sequence

n  Or alternatively in terms of the Belief state
n  Belief state is the state of the belief of the system (i.e. the

probability distribution over states given the observations)
n  Note: it is not the state that you believe the system is in (i.e.

the most likely state)

© Manfred Huber 2015 7

Markov Decision Process
Model

n  When applying a known policy the general
system resembles a Hidden Markov Model
n  The tasks of determining the quality of the

model, of determining the “best” state sequence,
or to learn the model parameters can be solved
using the same HMM algorithms if the policy is
known

n  Markov Decision Process tasks are related to
determining the “best” policy
n  Requires a definition of “best”

n  Uses utility theory and rational decision making

© Manfred Huber 2015 8

Markov Decision Processes
n  Partially Observable Markov Decision

Processes (POMDPs) use the model
definition with a task definition
n  Rather than defining it directly with utilities it

defines the task using Reward
n  Reward can be seen as the instantaneous “value” gain

n  Reward can be defined as a function of the state and action
independent of the policy

n  Utility of a state is a function of the policy

n  Model/environment “generates” rewards at each step

 <S, A, O, T, B, π, R>
n  R:S✕Aè IR: R(s,a): Reward function

© Manfred Huber 2015 9

From Reward to Utility
n  To obtain a utility needed for decision

making a relation between rewards and
utilities has to exist
n  Utility of a policy in a state is driven by all the

rewards that will be obtained when starting to
execute the policy in this state

n  Sum of future rewards

 To be a valid rational utility, it has to be finite

n  Finite horizon utility
n  Average reward utility
n  Discounted sum of future rewards

V (st) = E R(s! ,a!)!=t

end !of ! time
!"#$

%
&'

V (st) = E R(s! ,a!)!=t

t+T
!"#$

%
&'

V (st) = E 1 !R(s! ,a!)!=t

t+!
"#$%

&
'(

V (st) = E ! "!tR(s" ,a")"=t

"

#$%&
'
()

© Manfred Huber 2015 10

Reward and Utility
n  All three formulations of utility are used
n  The most commonly used formulation is the

discounted sum of rewards formulation
n  Simplest to treat mathematically in most

situations
n  Exception is tasks that naturally have a finite horizon

n  Discount factor choice influences task definition
n  Discount factor represents how much more “important”

immediate reward is relative to future reward
n  Alternatively it can be interpreted as the probability

with which the task continues (rather than stop)

© Manfred Huber 2015 11

Markov Decision Processes
n  Markov Decision Process (MDP) usually

refers to the fully observable case of the
Markov Decision Process model
n  Fully observable implies that observations always

allow to identify the system state

n  An MDP can thus be formulated as
<S, A, T, R>

n  S={s(1),…,s(n)}: State set
n  A={a(1),…,a(l)}: Action set
n  T: P(s(i) |s(j), a(k)) : Transition probability distribution
n  R: R(s(i), a(j)) : Reward function

© Manfred Huber 2015 12

Markov Decision Processes
n  Reward is sometimes defined in alternative

ways:
n  State reward: R(s)
n  State/action/next state reward: R(s, a, s’)

n  All formulations are valid but might require
different state representations to make the
expected value of the reward stationary
n  Expected value of the reward can only depend

on the arguments

© Manfred Huber 2015 13

Markov Decision Processes
n  The main task addressed in Markov Decision

Processes is to determine the policy that
maximizes the utility

n  Value function represents the utility of being
in a particular state
V !(s) = Est=s

! ""tR(s")"=t

#

$%&'
(
)*

!!!!!!!!!!!= R(s)+E ! "!tR(s")"=t+1

"

#$%&
'
()= R(s)+!E ! "!(t+1)R(s")"=t+1

"

#$%&
'
()

!!!!!!!!!!!= R(s)+! !(s,a)P(s ' | s,a)
a"s '" Est+1=s '

! "#t 'R(s")"=t '

$

"%&'
(
)*

!!!!!!!!!!!= R(s)+! !(s,a)P(s ' | s,a)V !(s ')
a"s '"

© Manfred Huber 2015 14

Markov Decision Processes
n  Value function for a given policy can be

written as a recursion
n  Alternatively we can interpret the formula as a

system of linear equations over the state values

n  Two ways to compute the value function for a
given policy

n  Solve the system of linear equations (Polynomial time)
n  Iterate over the recursive formulation

n  Starting with a random function V0
Π(s)

n  Update the function for each state

n  Repeat step 2 until the function no longer changes significantly

V !(s)!= R(s)+! !(s,a)P(s ' | s,a)V !(s ')
a"s '"

Vt+1
!(s)!= R(s)+! !(s,a)P(s ' | s,a)Vt

!(s ')
a"s '"

© Manfred Huber 2015 15

Markov Decision Processes
n  To be able to pick the best policy using the

value (utility) function, there has to be a
value function that is at least as good in
every state as any other value function
n  Two value functions have to be comparable
n  Consider the modified value function

n  This effectively picks according to policy Π’ for one
step in state s but otherwise behaves like policyΠ

n  In state s this function is at least as large as the original value
function for policyΠ

n  Consequently it is at least as large as the value function for
policyΠ in every state

V '! !(s) = R(s)+!max! ' ! '(s,a)P(s ' | s,a)V '!(s ')
a"s '"

© Manfred Huber 2015 16

Markov Decision Processes
n  There is at least one “best” policy

n  Has a value function that in every state is at
least as large as the one of any other policy

n  “Best” policy can be picked by picking the policy
that maximizes the utility in each state

n  Considering picking a deterministic policy

n  At least one of the “best” policies is always
deterministic

V '! !(s) = R(s)+!max! ' ! '(s,a)P(s ' | s,a)V '!(s ')
a"s '"

!!!!!!!!!!!!= R(s)+!max! ' ! '(s,a) P(s ' | s,a)V '!(s ')
s '"a"

= R(s)+!maxa P(s ' | s,a)V '!(s ')
s '"

© Manfred Huber 2015 17

Value Iteration
n  A “best” policy can be determined using

Value iteration
n  Use dynamic programming using the recursion

for best policy to determine the value function
n  Start with a random value function V0(s)
n  Update the function based on the previous estimate

n  Iterate until the value function no longer changes
n  The resulting value function is the value function of the

optimal policy, V*

n  Determine the optimal policy

Vt+1 !(s) = R(s)+!maxa P(s ' | s,a)Vt (s ')s '!

!*(s) = argmaxa R(s)+! P(s ' | s,a)V *(s ')
s '"

© Manfred Huber 2015 18

Value Iteration
n  Value iteration provides a means of

computing the optimal value function and,
given the model is known, the optimal policy
n  Will converge to the optimal value function

n  Number of iterations needed for convergence is related
to the longest possible state sequences that leads to
non zero reward

n  Usually requires to stop iteration before complete convergence
using a threshold on the change of the function

n  Solving as a system of equations is no
longer efficient
n  Nonlinear, non-differentiable equations due to

the presence of max operation

© Manfred Huber 2015 19

Value Iteration Example
n  Grid world task with four actions: up, down,

left, right

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 -­‐10.0	
 -­‐10.0	
 0.0	
 10.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 -­‐10.0	
 -­‐10.0	
 0.0	
 10.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 7.2	

0.0	
 -­‐10.0	
 -­‐10.0	
 7.2	
 10.0	

0.0	
 0.0	
 0.0	
 0.0	
 7.2	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 5.8	
 7.8	

0.0	
 -­‐10.0	
 -­‐10.0	
 7.2	
 10.0	

0.0	
 0.0	
 0.0	
 5.8	
 7.8	

0.0	
 0.0	
 0.0	
 0.0	
 5.2	

0.0	
 0.0	
 3.3	
 6.8	
 8.4	

0.0	
 -­‐10.0	
 -­‐10.0	
 8.2	
 10.0	

0.0	
 0.0	
 3.3	
 6.3	
 8.4	

0.0	
 0.0	
 0.0	
 4.7	
 6.1	

0.0	
 1.5	
 4.3	
 7.4	
 8.6	

0.0	
 -­‐10.0	
 -­‐10.0	
 8.4	
 10.0	

0.0	
 1.5	
 3.6	
 7.2	
 8.5	

0.0	
 0.0	
 3.7	
 5.4	
 7.0	

1.1	
 2.3	
 4.8	
 7.6	
 8.6	

0.0	
 -­‐10.0	
 -­‐10.0	
 8.5	
 10.0	

1.1	
 1.7	
 4.6	
 7.4	
 8.6	

0.0	
 2.8	
 4.5	
 6.2	
 7.3	

1.8	
 2.8	
 5.0	
 7.7	
 8.7	

0.2	
 -­‐10.0	
 -­‐10.0	
 8.5	
 10.0	

1.2	
 2.7	
 4.8	
 7.5	
 8.6	

2.1	
 3.7	
 5.3	
 6.4	
 7.4	

2.2	
 3.0	
 5.1	
 7.7	
 8.7	

0.4	
 -­‐10.0	
 -­‐10.0	
 8.6	
 10.0	

2.1	
 3.2	
 5.0	
 7.6	
 8.7	

2.9	
 4.4	
 5.6	
 6.6	
 7.5	

2.4	
 3.0	
 5.1	
 7.7	
 8.7	

0.7	
 -­‐10.0	
 -­‐10.0	
 8.6	
 10.0	

2.6	
 3.8	
 5.1	
 7.6	
 8.7	

3.6	
 4.7	
 5.7	
 6.7	
 7.5	

2.5	
 3.0	
 5.1	
 7.7	
 8.7	

1.0	
 -­‐10.0	
 -­‐10.0	
 8.6	
 10.0	

3.2	
 4.1	
 5.1	
 7.6	
 8.7	

3.9	
 4.9	
 5.8	
 6.7	
 7.5	

2.5	
 3.1	
 5.1	
 7.7	
 8.7	

1.5	
 -­‐10.0	
 -­‐10.0	
 8.6	
 10.0	

3.5	
 4.3	
 5.2	
 7.6	
 8.7	

4.1	
 4.9	
 5.8	
 6.7	
 7.5	

2.6	
 3.1	
 5.1	
 7.7	
 8.7	

1.7	
 -­‐10.0	
 -­‐10.0	
 8.6	
 10.0	

3.7	
 4.3	
 5.2	
 7.6	
 8.7	

4.2	
 5.0	
 5.8	
 6.7	
 7.5	

n  Goal and
obstacle are
absorbing

n  Actions
succeed with
probability 0.8
and otherwise
move sideways

n  Discout factor
is 0.9

© Manfred Huber 2015 20

Value Iteration
n  The Q function provides an alternative utility

function defined over state/action pairs
n  Represents utility defined over a state space

where the state representation includes the
action to be taken

n  Alternatively, it represents the value if the first action is
chosen according to the parameter and the remainder
according to the policy

n  The Q function can also be defined recursively

Q!(s,a) = R(s)+! P(s ' | s,a)V !(s ')
s '"

V !(s) = !(s,a)
a" Q!(s,a)

Q!(s,a) = R(s)+! P(s ' | s,a) !(s ',b)
b" Q!(s ',b)

s '"

© Manfred Huber 2015 21

Value Iteration
n  As with state utility, state/action utility can

be used to determine an optimal policy
n  Pick initial Q function Q0

n  Update function using the recursive definition

n  Repeat until it converges
n  Converges to optimal state/action utility function Q*

n  Determine optimal policy as

n  State/action utility requires computation of more
values but does not need transition probabilities to
pick optimal policy from Q*

Qt+1(s,a) = R(s)+! P(s ' | s,a)maxb Qt (s ',b)s '!

!*(s) = argmaxa Q
*(s,a)

© Manfred Huber 2015 22

Value Iteration
n  Convergence of value iteration in systems

where state sequences leading to some
reward can be arbitrary long can only be
achieved approximately
n  Need threshold on change of value function

n  Some chance that we terminate before the value
function produces the optimal policy

n  But: policy will be approximately optimal (i.e. the value of the
policy will be very close to optimal

n  To guarantee optimal policy we need an
algorithm that is guaranteed to converge in
finite time

© Manfred Huber 2015 23

Policy Iteration
n  Value iteration first determines the value

function and then extracts the policy
n  Policy iteration directly improves the policy

until it has found the best one
n  Optimize the utility of the policy by adjusting the

policy parameters (action choices)
n  Can be represented as optimization of a marginal

probability of policy parameters and the hidden utilities

n  Policy iteration uses a variation of Expectation
Maximization to optimize the policy parameters
such as to achieve an optimal expected utility

© Manfred Huber 2015 24

Policy Iteration
n  Policy iteration directly improves the policy

n  Start with a randomly picked (deterministic)
policy Π0

n  E-Step:
n  Compute the utility of the policy for each state VΠ(s)

assuming the current policy
n  Usually this is done by solving the linear system of equations

n  M-Step:
n  Determine the optimal policy parameter for each state

assuming the expected utilityfunction from the E-step

n  Repeat until policy no longer changes

V !t (s)!= R(s)+! !(s,a)P(s ' | s,a)V ! (s ')
a"s '"

!t+1(s) = argmaxa R(s)+! P(s ' | s,a)V !t (s ')
s '"

© Manfred Huber 2015 25

Policy Iteration
n  In each M-step, the algorithm either strictly

improves the policy or terminates
n  The state utility function does not have local

maxima in terms of the policy parameters
n  Follows since if a change in action in a single state

improves the utility for that state it can not reduce the
utility for any other state

n  Implies that if the algorithm converges it has to
converge to a globally optimal policy

n  Since no policy can be repeated and there are
only a finite number of deterministic policies, the
algorithm will converge in finite time

n  Thus policy iteration is guaranteed to converge to the
globally optimal policy in finite time

© Manfred Huber 2015 26

Policy Iteration
n  Policy iteration has detectable, guaranteed

convergence
n  Policy no longer changing in the M-step

n  Each iteration of policy iteration is more
complex than an iteration of value iteration
n  One iteration of Value iteration: O(l*n2)
n  One iteration of Policy iteration: O(n3+l*n2)

n  Assuming use of O(n3) algorithm for solving system of
linear equations; best known is O(n2.4) but impractical

n  In each M-step, the algorithm either strictly improves
the policy or terminates

n  Value iteration is easier to implement

© Manfred Huber 2015 27

Policy Iteration Example
n  Grid world task with four actions: up, down,

left, right
0.0	
 0.0	
 0.0	
 0.0	

0.0	
 -­‐10.0	
 -­‐10.0	
 0.0	
 10.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

0.0	
 0.0	
 0.0	
 0.0	
 0.0	

n  Goal and
obstacle are
absorbing

n  Actions
succeed with
probability 0.8
and otherwise
move sideways

n  Discout factor
is 0.9

0.1	
 1.0	
 2.6	
 4.5	
 4.7	

-­‐7.2	
 -­‐10.0	
 -­‐10.0	
 7.9	
 10.0	

-­‐0.2	
 0.5	
 1.8	
 3.5	
 3.7	

0.9	
 1.2	
 1.5	
 1.7	
 1.7	

0.7	
 1.7	
 4.8	
 7.3	
 8.6	

-­‐0.5	
 -­‐10.0	
 -­‐10.0	
 8.5	
 10.0	

3.8	
 4.3	
 4.9	
 7.4	
 8.6	

4.2	
 4.9	
 5.6	
 6.5	
 7.5	

2.6	
 3.1	
 5.1	
 7.7	
 8.7	

2.0	
 -­‐10.0	
 -­‐10.0	
 8.6	
 10.0	

3.8	
 4.4	
 5.3	
 7.6	
 8.7	

4.4	
 5.0	
 5.8	
 6.7	
 7.5	

© Manfred Huber 2015 28

Monte Carlo Solutions
n  Both Value and Policy iteration require

knowledge of the model parameters (i.e. the
transition probabilities)

n  Value iteration can be performed using
Monte Carlo sampling of states without
explicit use of the transition probabilities
n  Monte Carlo dynamic programming requires to

replace the value update with a sampled version
n  Assuming transition sample set D
Qt+1(s,a) = R(s)+! P(s ' | s,a)maxb Qt (s ',b)s '!

!!!!!!!!!!!!!!" R(s)+! 1
#(s,a,?)# D

maxb Qt (s ',b)(s,a,s ')#D!

© Manfred Huber 2015 29

Monte Carlo Solutions
n  Instead of first collecting all the samples and

then using them for the value function
calculation we can also update the function
incrementally for each sample
n  Implies that number of samples for a state action

pair is not known a-priori
n  Implies that each update is to be done based on

a different value function

n  Generally Monte Carlo solutions use one of
two averaging approaches
n  Incremental averaging
n  Exponentially weighted averaging

© Manfred Huber 2015 30

Monte Carlo Solutions
n  Incremental averaging update

n  k is the number of samples so far

n  Exponentially weigthed averaging update

n  Each update is based on a single sample
n  Both formulations will converge to the optimal Q

function under certain circumstances

n  Exponentially weighted averaging is more
commonly used.

n  Is more robust towards very bad initial guesses at the
value function

Qt+1(s,a) =
k(s,a)
k(s,a)+1

Qt (s,a)+
1

k(s,a)+1
R(s)+!maxb Qt (s ',b)()

Qt+1(s,a) = 1!!t()Qt (s,a)+!t R(s)+!maxb Qt (s ',b)()

© Manfred Huber 2015 31

Monte Carlo Solutions
n  Exponentially weighted averaging converges

if certain conditions on α have to be fulfilled
n  Too large values will cause instability

n  Over-commitment to the new sample

n  Too small values will not allow enough change to
reach the optimal function

n  Under-commitment to samples and thus non-vanishing
influence of initial guess

n  There is no fixed definition for too large and too
small, but conditions:

!t !"
t=1

"

#
! 2

t <"t=1

"

#
ç “Large enough”

ç “Not too large”

© Manfred Huber 2015 32

Monte Carlo Solutions
n  Monte Carlo simulation techniques allow to

generate optimal policies and value
functions from data without knowledge of
the system model
n  Policies take into account the uncertainty in the

transitions

© Manfred Huber 2015 33

Partially Observable Markov
Decision Process (POMDP)

n  POMDPs include partial observability
n  Again represents task with a reward function

 <S, A, O, T, B, π, R>
n  S={s(1),…,s(n)}: State set
n  A={a(1),…,a(l)}: Action set
n  O={o(1),…o(m)}: Observation set
n  T: P(s(i) |s(j), a(k)) : Transition probability distribution
n  B: P(o(i) | s(j)) : Observation probability distribution
n  π: P(s(i)) : Prior state distribution
n  R: R(s(i), a(j)): Reward function

n  Markov Property:
P(rt, st | st!1,at!1, st!1,..., s1) = P(rt, st | st!1,at!1)
P(ot | st,at,ot!1,st!1,..., s1) = P(ot | st)

© Manfred Huber 2015 34

Sequential Decision Making in
Partially Observable Systems

n  State only exists inside the environment
n  Inaccessible to the agent

n  Observations are obtained by the agent
n  Agent can try to infer state from observations

Agent

Environment
st

ot rt
at

© Manfred Huber 2015 35

Sequential Decision Making in
Partially Observable Systems

n  Executions can be represented as sequences
n  From the environments view:

n  state / observation / action / reward sequences

n  From the agents view:

n  observation / action / reward sequences

n  Agent has to make decisions based on
knowledge extracted from the observations

st st+1 st+2
ot ot+1 ot+2 at at+1 rt rt+1

! 0, o0,a0, r0,o1,...,ot,at, rt,...

© Manfred Huber 2015 36

Partially Observable
Markov Decision Processes

n  Underlying system behaves as in MDP except
n  In every state it emits a probabilistic observation

n  For analysis simplifications made in the case
of MDPs will be made
n  Transition probabilities are independent of the

reward probabilities

n  Reward probabilities only depend on the state and
are static

n  Observations contain all obtainable information
about state (i.e. reward does not add state info)

T : P(si | sj,a)

R(s) = P(r | s)r
r!

© Manfred Huber 2015 37

Designing POMDPs

n  Design the MDP of the underlying system
n  Ignore whether state attributes are observable

n  Determine the set of observations and design
the observation probabilities
n  Ensure that observations only depend on state

n  If that is not the case the state representation of the
underlying MDP has to be augmented

n  Design a reward function for the task
n  Ensure that reward only depends on the state

© Manfred Huber 2015 38

Belief State

n  In a POMDP the state is unknown
n  Decisions have to be made based on the

knowledge about the state that the agent can
gather from observations

n  Belief state is the state of the agent’s belief
about the state it is in
n  Belief state is a probability distribution over the

state space

 bt :bt (s) = P(st = s |! 0,o0,a0,...,at!1,ot)

© Manfred Huber 2015 39

Belief State

n  Belief state contains all information about the
past of the system

n  POMDP is Markov in terms of the belief state

n  Belief state can be tracked and updated to
maintain information

P(st = s | bt!1,o0,a0,...,at!1,ot) = P(st = s | bt!1,at!1,ot)
P(rt | bt,o0,a0, r0,...,at!1,ot) = P(rt | bt)

bt (s ') = P(st = s ' | bt!1,at!1,ot)=
P(st = s ',ot | bt!1,at!1)

P(ot | bt!1,at!1)
=!P(st = s ',ot | bt!1,at!1) =!P(st = s ' | bt!1,at!1)P(ot | st = s ',bt!1,at!1)

=!P(ot | s ') P(s ' | s,at!1)bt!1(s)s"

© Manfred Huber 2015 40

Decision Making in
POMDPs

n  Value-function based methods have to
compute the value of a belief state

n  System is Markov in terms of the belief state
n  Belief-state MDP

n  Can apply any MDP learning method on this space
n  Belief state space is continuous (thus infinite)

n  Need a function approximator

V ! (b) , Q(b,a)

A, b{ },Tb,R !!!,!!!P(b ' | b,a) =
P(o | b,a) b '!!b,!a,!o

0 otherwise

"
#
$

%$

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!R(b) = b(s)R(s)
s&

© Manfred Huber 2015 41

Value Function Approaches
for POMDPs

n  Q-function on finite horizon POMDPs is locally
linear in terms of the belief state

n  Compute set of value vectors, q
n  Number of vectors grows exponentially with the duration

of policies

n  Different algorithms have been used to compute
the locally linear function

n  Exact value iteration

n  Approximate systems with finite vector sets

Q(b,a) =maxq!La q(s)b(s)
s"

© Manfred Huber 2015 42

Value Function Approaches
for POMDPs

n  The simplest approximate model is linear

n  Approaches differ in the way they estimate the

values q(s,a)
n  QMDP computes q(s,a) assuming full observability

n  Use value iteration to compute q(s,a)=Q*(s,a)

n  Replicated Q-learning uses the assumption that
parameter values independently predict

n  Linear Q-learning treats states separately

Q(b,a) = q(s,a)b(s)
s!

qt+1(s,a) = qt (s,a)+! r +!maxc Qt (b ',c)! q(s,a)()

qt+1(s,a) = qt (s,a)+! r +!maxc Qt (b ',c)!Qt (b,a)()

© Manfred Huber 2015 43

Value Function Approaches
for POMDPs

n  The linear approximation limits the degree to
which the optimal value function and thus
policy can be computed
n  In addition, QMDP strictly over-estimates the value

n  Assumes state information will be known in the next step

n  Will not take actions that only remove state uncertainty

n  Better approximations can be maintained by
building more complex approximate
representations

© Manfred Huber 2015 44

Value Function Approaches
for POMDPs

n  POMDP can be approximated using completely
sampling-based (Monte Carlo POMDP)
n  Compute (track) Belief state using a particle filter

n  Represent Value function (Q-function) as linear
function over support points in belief state space

n  Representation as a set SP of Q-values over belief states

n  Weights represent similarity of the two Belief states
n  E.g. KL-Divergence of the two distributions

n  Often simplified using only k most similar elements of SP

Q(b,a) = wb,b '

wb,b"b"!SP"
Q(b ',a)

b '!SP"

KL(b || b ') = b(s)ld b(s)
b '(s)s!

© Manfred Huber 2015 45

Value Function Approaches
for POMDPs

n  Monte Carlo POMDP
n  Update sampled Belief state Q-values based on

current samples
n  Belief state value for state sample b can be updated

using sampled value iteration
n  For each action sample observations according to P(o|b,a) and

compute the corresponding future belief state b’
n  Compute update

n  Distribute update over support points according to weight

n  If few elements in SP are similar, add b to SP

!Q(b,a) = R(b)+! maxa '
1
wb ',b"b""SP#

wb ',b"Qt (b ',a ')b""SP#b '#
$

%

&
&

'

(

)
)*Qt (b,a)

© Manfred Huber 2015 46

Policy Approaches for
POMDPs

n  Policy improvement approaches can be
applied using the same value function
approximations
n  Working with exact locally linear value function is

difficult since in each iteration new coefficients
have to be computed

n  Approximate representations are more efficient for
policy improvement

n  Usually maximization of the policy (and thus EM) is not
possible.

© Manfred Huber 2015 47

Policy Approaches for
POMDPs

n  The representation of the Belief state in terms
of a probability distribution over states is
difficult to handle for policy approaches
n  Alternative representation of Belief state in terms

of an observation/action sequence
n  Each complete observation/action sequence represents a

unique Belief state

n  Sampled representation of value function in terms
of set of observation/action/reward histories

h = o0,a0,...,ok !!!!!!bh

hr = o0,a0, r0,...,ok

© Manfred Huber 2015 48

Policy Approaches for
POMDPs

n  Value function of a policy is weighted sum
over value of histories

n  Policy improvement by finding what changes to
the policy would improve the value function

n  Value of a modified policy can be estimated from the
same samples using importance sampling

n  Can compute gradient of the value estimate with respect
to probabilistic policy parameters

V !(o0,a0,...,ok) =
1

{h : prefixk (h) = o0,a0,...,ok}
! l"krl

(h)

l=k

#

$
h:prefixk (h)=o0 ,a0 ,...,ok

$

V ! ' (o0,a0,...,ok) =
1

P(h |! ')
P(h |!(h))h:prefixk (h)=o0 ,a0 ,...,ok

"
P(h |! ')
P(h |!(h))

! l#krl
(h)

l=k

$

"
h:prefixk (h)=o0 ,a0 ,...,ok

"

© Manfred Huber 2015 49

Policy Approaches for
POMDPs

n  Probability of a history is a function of the
transition probabilities, observation
probabilities, and policy

n  Value function only depends on policy parameters

n  Gradient of value function only depends on value at the
current policy and the derivative of the policy

V !(o0,a0,...,ok) =
1
P(a0,...,al |!)
P(a0,...,al |!

(h))h:prefixk (h)=o0 ,a0 ,...,ok

"
P(a0,...,al |!)
P(a0,...,al |!

(h))
! l#krl

(h)

l=k

$

"
h:prefixk (h)=o0 ,a0 ,...,ok

"

P(h |!) = P(o0,...,ok |!,T,B,a0,...,ak"1)P(a0,...,ak"1 |!)

!!!!!!!!!!!!!= P(o0,...,ok |!,T,B,a0,...,ak"1) !(h0..t,at)t=0

k"1
#

© Manfred Huber 2015 50

Policy Approaches for
POMDPs

n  To perform policy improvement the policy has
to be parameterized
n  Often as a probabilistic Softmax policy

n  Allows for gradient calculation based on histories

n  Results in effective algorithms to locally
improve policies
n  Has local minima based on policy parameterization

!(b,a,v) = e
vixi (b,a)i"

e
vixi (b,c)i"

c"

© Manfred Huber 2015 51

Markov Decision Processes
n  Partially Observable Markov Decision Processes

are a very general means to model uncertainty in
sequential processes involving decisions
n  Extend Hidden Markov Models with actions and tasks

n  Tasks are represented with reward functions

n  Utility characterizes action selection under uncertainty
n  Outcomes as well as observations can be uncertain

n  Provides a powerful framework to model process
uncertainty and uncertainty in decisions
n  Efficient algorithms for the fully observable case

n  Approximation approaches for partially observable case

