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Reasoning with Uncertainty 

Markov Decision Models 
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Markov Decision Process Models 

n  Markov models represent the behavior of a 
random process, including its internal state 
and the externally visible observations 
n  So far represents a passive process that is being 

observed but can not be actively influenced 
n  Represents a Markov chain  

n  Observation probabilities and emission probabilities are 
just a different view of the same model component 

n  General Markov Decision Processes extend 
this to represent random processes that can 
be actively influenced through the choice of 
actions 
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Markov Decision Process 
Model 

n  Extends the Markov chain model  
n  Adds actions to represent decision options 
n  Modifies transitions to reflect all possibilities 

n  In its most general form the Markov model 
for a system with decision options contains: 

 <S, A, O, T, B, π> 
n  S={s(1),…,s(n)}: State set 
n  A={a(1),…,a(l)}: Action set 
n  O={o(1),…o(m)}: Observation set 
n  T: P(s(i) |s(j), a(k)) : Transition probability distribution 
n  B: P(o(i) | s(j)) : Observation probability distribution 
n  π: P(s(i)) : Prior state distribution 
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Markov Decision Process 
Model 

n  The general Markov Decision Process model 
represents all possible Markov chains that 
result by applying a decision policy 
n  Policy, Π represents a mapping from states/

situations to probabilities of actions 

S(2) S(3) 

S(6) 

S(1) 

S(5) 

S(4) 
P(s(3) | s(2), a(1)) 

P(s(6) | s(2) , a(1)) 

P(s(4) | s(3) , a(1)) 

P(s(4) | s(4) , a(1)) 

P(s(1) | s(3) , a(1)) P(s(4)
 | s(1) , a(1)) 

P(s(1) | s(5) , a(1)) 

P(s(5) | s(5) , a(1)) 

P(s(5) | s(6) , a(1)) 

{ P(o(i)
 | s(2)) } 

{ P(o(i)
 | s(3)) } 

{ P(o(i) | s(6)) } 

{ P(o(i)
 | s(1)) } 

{ P(o(i) | s(4)) } 

{ P(o(i) | s(5)) } 

P(s(6) | s(2) , a(2)) 

P(s(5) | s(2) , a(2)) 

P(s(5) | s(6) , a(2)) 
P(s(4) | s(5) , a(2)) 

P(s(1) | s(5) , a(2)) 

P(s(3) | s(4) , a(2)) 
P(s(2) | s(3) , a(2)) 
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Policy 
n  A policy represents a decision strategy  

n  Under the Markov assumptions, an action choice 
only needs to depend on the current state 

 
n  Deterministic policy 

n  Probabilistic policy 

n  Under a policy the general Markov decision 
process model reduces to a Markov chain 
n  Transition probabilities could be re-written 

!(s)

!(s(i) ) = a( j )

!(s(i),a( j ) ) = P(a( j ) | s(i) )

P!(s
(i) | s( j ) ) = P(

k" s(i) | s( j ),a(k ) )!(s( j ),a(k ) )
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Policy 
n  In the general formulation of the problem 

the state is generally not known 
n  Policy as defined so far can only be executed 

inside the underlying model 
n  In the general case this requires external policies 

to be defined in terms of  the complete 
observation sequence 

n  Or alternatively in terms of the Belief state 
n  Belief state is the state of the belief of the system (i.e. the 

probability distribution over states given the observations) 
n  Note: it is not the state that you believe the system is in (i.e. 

the most likely state) 
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Markov Decision Process 
Model 

n  When applying a known policy the general 
system resembles a Hidden Markov Model 
n  The tasks of determining the quality of the 

model, of determining the “best” state sequence, 
or to learn the model parameters can be solved 
using the same HMM algorithms if the policy is 
known 

n  Markov Decision Process tasks are related to 
determining the “best” policy 
n  Requires a definition of “best” 

n  Uses utility theory and rational decision making 
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Markov Decision Processes 
n  Partially Observable Markov Decision 

Processes (POMDPs) use the model 
definition with a task definition 
n  Rather than defining it directly with utilities it 

defines the task using Reward 
n  Reward can be seen as the instantaneous “value” gain 

n  Reward can be defined as a function of the state and action 
independent of the policy 

n  Utility of a state is a function of the policy 

n  Model/environment “generates” rewards at each step 

    <S, A, O, T, B, π, R> 
n  R:S✕Aè IR: R(s,a): Reward function 
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From Reward to Utility 
n  To obtain a utility needed for decision 

making a relation between rewards and 
utilities has to exist 
n  Utility of a policy in a state is driven by all the 

rewards that will be obtained when starting to 
execute the policy in this state  

n  Sum of future rewards 

 
   To be a valid rational utility, it has to be finite 

n  Finite horizon utility 
n  Average reward utility 
n  Discounted sum of future rewards 

V (st ) = E R(s! ,a! )!=t

end !of ! time
!"#$

%
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Reward and Utility 
n  All three formulations of utility are used 
n  The most commonly used formulation is the 

discounted sum of rewards formulation 
n  Simplest to treat mathematically in most 

situations 
n  Exception is tasks that naturally have a finite horizon 

n  Discount factor choice influences task definition 
n  Discount factor represents how much more “important” 

immediate reward is relative to future reward 
n  Alternatively it can be interpreted as the probability 

with which the task continues (rather than stop) 
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Markov Decision Processes 
n  Markov Decision Process (MDP) usually 

refers to the fully observable case of the 
Markov Decision Process model 
n  Fully observable implies that observations always 

allow to identify the system state  

n  An MDP can thus be formulated as 
<S, A, T, R> 

n  S={s(1),…,s(n)}: State set 
n  A={a(1),…,a(l)}: Action set 
n  T: P(s(i) |s(j), a(k)) : Transition probability distribution 
n  R: R(s(i), a(j)) : Reward function 
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Markov Decision Processes 
n  Reward is sometimes defined in alternative 

ways: 
n  State reward: R(s) 
n  State/action/next state reward: R(s, a, s’) 

n  All formulations are valid but might require 
different state representations to make the 
expected value of the reward stationary 
n  Expected value of the reward can only depend 

on the arguments 
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Markov Decision Processes 
n  The main task addressed in Markov Decision 

Processes is to determine the policy that 
maximizes the utility 

n  Value function represents the utility of being 
in a particular state 
V !(s) = Est=s

! ""tR(s" )"=t

#

$%&'
(
)*

!!!!!!!!!!!= R(s)+E ! "!tR(s" )"=t+1

"

#$%&
'
()= R(s)+!E ! "!(t+1)R(s" )"=t+1

"

#$%&
'
()

!!!!!!!!!!!= R(s)+! !(s,a)P(s ' | s,a)
a"s '" Est+1=s '

! "#t 'R(s" )"=t '

$

"%&'
(
)*

!!!!!!!!!!!= R(s)+! !(s,a)P(s ' | s,a)V !(s ')
a"s '"
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Markov Decision Processes 
n  Value function for a given policy can be 

written as a recursion 
n  Alternatively we can interpret the formula as a 

system of linear equations over the state values 

n  Two ways to compute the value function for a 
given policy 

n  Solve the system of linear equations (Polynomial time) 
n  Iterate over the recursive formulation 

n  Starting with a random function V0
Π(s) 

n  Update the function for each state 

n  Repeat step 2 until the function no longer changes significantly 

V !(s)!= R(s)+! !(s,a)P(s ' | s,a)V !(s ')
a"s '"

Vt+1
!(s)!= R(s)+! !(s,a)P(s ' | s,a)Vt

!(s ')
a"s '"
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Markov Decision Processes 
n  To be able to pick the best policy using the 

value (utility) function, there has to be a 
value function that is at least as good in 
every state as any other value function 
n  Two value functions have to be comparable 
n  Consider the modified value function 

n  This effectively picks according to policy Π’  for one 
step in state s but otherwise behaves like policyΠ  

n  In state s this function is at least as large as the original value 
function for policyΠ  

n  Consequently it is at least as large as the value function for 
policyΠ in every state 

V '! !(s) = R(s)+!max! ' ! '(s,a)P(s ' | s,a)V '!(s ')
a"s '"
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Markov Decision Processes 
n  There is at least one “best” policy 

n  Has a value function that in every state is at 
least as large as the one of any other policy 

n  “Best” policy can be picked by picking the policy 
that maximizes the utility in each state 

n  Considering picking a deterministic policy 

n  At least one of the “best” policies is always 
deterministic 

V '! !(s) = R(s)+!max! ' ! '(s,a)P(s ' | s,a)V '!(s ')
a"s '"

!!!!!!!!!!!!= R(s)+!max! ' ! '(s,a) P(s ' | s,a)V '!(s ')
s '"a"

= R(s)+!maxa P(s ' | s,a)V '!(s ')
s '"
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Value Iteration 
n  A “best” policy can be determined using 

Value iteration 
n  Use dynamic programming using the recursion 

for best policy to determine the value function 
n  Start with a random value function V0(s) 
n  Update the function based on the previous estimate 

n  Iterate until the value function no longer changes 
n  The resulting value function is the value function of the 

optimal policy, V* 

n  Determine the optimal policy 

Vt+1 !(s) = R(s)+!maxa P(s ' | s,a)Vt (s ')s '!

!*(s) = argmaxa R(s)+! P(s ' | s,a)V *(s ')
s '"
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Value Iteration 
n  Value iteration provides a means of 

computing the optimal value function and, 
given the model is known, the optimal policy 
n  Will converge to the optimal value function 

n  Number of iterations needed for convergence is related 
to the longest possible state sequences that leads to 
non zero reward 

n  Usually requires to stop iteration before complete convergence 
using a threshold on the change of the function 

n  Solving as a system of equations is no 
longer efficient 
n  Nonlinear, non-differentiable equations due to 

the presence of max operation 
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Value Iteration Example 
n  Grid world task with four actions: up, down, 

left, right 

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   -­‐10.0	
   -­‐10.0	
   0.0	
   10.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   -­‐10.0	
   -­‐10.0	
   0.0	
   10.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   7.2	
  

0.0	
   -­‐10.0	
   -­‐10.0	
   7.2	
   10.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   7.2	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   5.8	
   7.8	
  

0.0	
   -­‐10.0	
   -­‐10.0	
   7.2	
   10.0	
  

0.0	
   0.0	
   0.0	
   5.8	
   7.8	
  

0.0	
   0.0	
   0.0	
   0.0	
   5.2	
  

0.0	
   0.0	
   3.3	
   6.8	
   8.4	
  

0.0	
   -­‐10.0	
   -­‐10.0	
   8.2	
   10.0	
  

0.0	
   0.0	
   3.3	
   6.3	
   8.4	
  

0.0	
   0.0	
   0.0	
   4.7	
   6.1	
  

0.0	
   1.5	
   4.3	
   7.4	
   8.6	
  

0.0	
   -­‐10.0	
   -­‐10.0	
   8.4	
   10.0	
  

0.0	
   1.5	
   3.6	
   7.2	
   8.5	
  

0.0	
   0.0	
   3.7	
   5.4	
   7.0	
  

1.1	
   2.3	
   4.8	
   7.6	
   8.6	
  

0.0	
   -­‐10.0	
   -­‐10.0	
   8.5	
   10.0	
  

1.1	
   1.7	
   4.6	
   7.4	
   8.6	
  

0.0	
   2.8	
   4.5	
   6.2	
   7.3	
  

1.8	
   2.8	
   5.0	
   7.7	
   8.7	
  

0.2	
   -­‐10.0	
   -­‐10.0	
   8.5	
   10.0	
  

1.2	
   2.7	
   4.8	
   7.5	
   8.6	
  

2.1	
   3.7	
   5.3	
   6.4	
   7.4	
  

2.2	
   3.0	
   5.1	
   7.7	
   8.7	
  

0.4	
   -­‐10.0	
   -­‐10.0	
   8.6	
   10.0	
  

2.1	
   3.2	
   5.0	
   7.6	
   8.7	
  

2.9	
   4.4	
   5.6	
   6.6	
   7.5	
  

2.4	
   3.0	
   5.1	
   7.7	
   8.7	
  

0.7	
   -­‐10.0	
   -­‐10.0	
   8.6	
   10.0	
  

2.6	
   3.8	
   5.1	
   7.6	
   8.7	
  

3.6	
   4.7	
   5.7	
   6.7	
   7.5	
  

2.5	
   3.0	
   5.1	
   7.7	
   8.7	
  

1.0	
   -­‐10.0	
   -­‐10.0	
   8.6	
   10.0	
  

3.2	
   4.1	
   5.1	
   7.6	
   8.7	
  

3.9	
   4.9	
   5.8	
   6.7	
   7.5	
  

2.5	
   3.1	
   5.1	
   7.7	
   8.7	
  

1.5	
   -­‐10.0	
   -­‐10.0	
   8.6	
   10.0	
  

3.5	
   4.3	
   5.2	
   7.6	
   8.7	
  

4.1	
   4.9	
   5.8	
   6.7	
   7.5	
  

2.6	
   3.1	
   5.1	
   7.7	
   8.7	
  

1.7	
   -­‐10.0	
   -­‐10.0	
   8.6	
   10.0	
  

3.7	
   4.3	
   5.2	
   7.6	
   8.7	
  

4.2	
   5.0	
   5.8	
   6.7	
   7.5	
  

n  Goal and 
obstacle are 
absorbing 

n  Actions 
succeed with 
probability 0.8 
and otherwise 
move sideways 

n  Discout factor 
is 0.9 
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Value Iteration 
n  The Q function provides an alternative utility 

function defined over state/action pairs 
n  Represents utility defined over a state space 

where the state representation includes the 
action to be taken 

n  Alternatively, it represents the value if the first action is 
chosen according to the parameter and the remainder 
according to the policy 

n  The Q function can also be defined recursively 

Q!(s,a) = R(s)+! P(s ' | s,a)V !(s ')
s '"

V !(s) = !(s,a)
a" Q!(s,a)

Q!(s,a) = R(s)+! P(s ' | s,a) !(s ',b)
b" Q!(s ',b)

s '"
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Value Iteration 
n  As with state utility, state/action utility can 

be used to determine an optimal policy 
n  Pick initial Q function Q0 

n  Update function using the recursive definition 

n  Repeat until it converges 
n  Converges to optimal state/action utility function Q* 

n  Determine optimal policy as 

n  State/action utility requires computation of more 
values but does not need transition probabilities to 
pick optimal policy from Q* 

Qt+1(s,a) = R(s)+! P(s ' | s,a)maxb Qt (s ',b)s '!

!*(s) = argmaxa Q
*(s,a)
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Value Iteration 
n  Convergence of value iteration in systems 

where state sequences leading to some 
reward can be arbitrary long can only be 
achieved approximately 
n  Need threshold on change of value function 

n  Some chance that we terminate before the value 
function produces the optimal policy 

n  But: policy will be approximately optimal (i.e. the value of the 
policy will be very close to optimal 

n  To guarantee optimal policy we need an 
algorithm that is guaranteed to converge in 
finite time 
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Policy Iteration 
n  Value iteration first determines the value 

function and then extracts the policy 
n  Policy iteration directly improves the policy 

until it has found the best one 
n  Optimize the utility of the policy by adjusting the 

policy parameters (action choices) 
n  Can be represented as optimization of a marginal 

probability of policy parameters and the hidden utilities 

n  Policy iteration uses a variation of Expectation 
Maximization to optimize the policy parameters 
such as to achieve an optimal expected utility 
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Policy Iteration 
n  Policy iteration directly improves the policy 

n  Start with a randomly picked (deterministic) 
policy Π0 

n  E-Step: 
n  Compute the utility of the policy for each state VΠ(s) 

assuming the current policy 
n  Usually this is done by solving the linear system of equations 

n  M-Step: 
n  Determine the optimal policy parameter for each state 

assuming the expected utilityfunction from the E-step 

n  Repeat until policy no longer changes 

V !t (s)!= R(s)+! !(s,a)P(s ' | s,a)V ! (s ')
a"s '"

!t+1(s) = argmaxa R(s)+! P(s ' | s,a)V !t (s ')
s '"
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Policy Iteration 
n  In each M-step, the algorithm either strictly 

improves the policy or terminates 
n  The state utility function does not have local 

maxima in terms of the policy parameters  
n  Follows since if a change in action in a single state 

improves the utility for that state it can not reduce the 
utility for any other state 

n  Implies that if the algorithm converges it has to 
converge to a globally optimal policy 

n  Since no policy can be repeated and there are 
only a finite number of deterministic policies, the 
algorithm will converge in finite time 

n  Thus policy iteration is guaranteed to converge to the 
globally optimal policy in finite time 
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Policy Iteration 
n  Policy iteration has detectable, guaranteed 

convergence 
n  Policy no longer changing in the M-step 

n  Each iteration of policy iteration is more 
complex than an iteration of value iteration 
n  One iteration of Value iteration: O(l*n2)  
n  One iteration of Policy iteration: O(n3+l*n2) 

n  Assuming use of O(n3) algorithm for solving system of 
linear equations; best known is O(n2.4) but impractical  

n  In each M-step, the algorithm either strictly improves 
the policy or terminates 

n  Value iteration is easier to implement 
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Policy Iteration Example 
n  Grid world task with four actions: up, down, 

left, right 
0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   -­‐10.0	
   -­‐10.0	
   0.0	
   10.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

0.0	
   0.0	
   0.0	
   0.0	
   0.0	
  

n  Goal and 
obstacle are 
absorbing 

n  Actions 
succeed with 
probability 0.8 
and otherwise 
move sideways 

n  Discout factor 
is 0.9 

0.1	
   1.0	
   2.6	
   4.5	
   4.7	
  

-­‐7.2	
   -­‐10.0	
   -­‐10.0	
   7.9	
   10.0	
  

-­‐0.2	
   0.5	
   1.8	
   3.5	
   3.7	
  

0.9	
   1.2	
   1.5	
   1.7	
   1.7	
  

0.7	
   1.7	
   4.8	
   7.3	
   8.6	
  

-­‐0.5	
   -­‐10.0	
   -­‐10.0	
   8.5	
   10.0	
  

3.8	
   4.3	
   4.9	
   7.4	
   8.6	
  

4.2	
   4.9	
   5.6	
   6.5	
   7.5	
  

2.6	
   3.1	
   5.1	
   7.7	
   8.7	
  

2.0	
   -­‐10.0	
   -­‐10.0	
   8.6	
   10.0	
  

3.8	
   4.4	
   5.3	
   7.6	
   8.7	
  

4.4	
   5.0	
   5.8	
   6.7	
   7.5	
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Monte Carlo Solutions 
n  Both Value and Policy iteration require 

knowledge of the model parameters (i.e. the 
transition probabilities) 

n  Value iteration can be performed using 
Monte Carlo sampling of states without 
explicit use of the transition probabilities 
n  Monte Carlo dynamic programming requires to 

replace the value update with a sampled version 
n  Assuming transition sample set D 
Qt+1(s,a) = R(s)+! P(s ' | s,a)maxb Qt (s ',b)s '!

!!!!!!!!!!!!!!" R(s)+! 1
#(s,a,?)# D

maxb Qt (s ',b)(s,a,s ')#D!
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Monte Carlo Solutions 
n  Instead of first collecting all the samples and 

then using them for the value function 
calculation we can also update the function 
incrementally for each sample 
n  Implies that number of samples for a state action 

pair is not known a-priori  
n  Implies that each update is to be done based on 

a different value function  

n  Generally Monte Carlo solutions use one of 
two averaging approaches 
n  Incremental averaging 
n  Exponentially weighted averaging 
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Monte Carlo Solutions 
n  Incremental averaging update  

n  k is the number of samples so far 

n  Exponentially weigthed averaging update 

n  Each update is based on a single sample 
n  Both formulations will converge to the optimal Q 

function under certain circumstances 

n  Exponentially weighted averaging is more 
commonly used. 

n  Is more robust towards very bad initial guesses at the 
value function 

Qt+1(s,a) =
k(s,a)
k(s,a)+1

Qt (s,a)+
1

k(s,a)+1
R(s)+!maxb Qt (s ',b)( )

Qt+1(s,a) = 1!!t( )Qt (s,a)+!t R(s)+!maxb Qt (s ',b)( )
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Monte Carlo Solutions 
n  Exponentially weighted averaging converges 

if certain conditions on α have to be fulfilled 
n  Too large values will cause instability 

n  Over-commitment to the new sample 

n  Too small values will not allow enough change to 
reach the optimal function 

n  Under-commitment to samples and thus non-vanishing 
influence of initial guess 

n  There is no fixed definition for too large and too 
small, but conditions:  

!t !"
t=1

"

#
! 2

t <"t=1

"

#
ç “Large enough” 

ç “Not too large” 
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Monte Carlo Solutions 
n  Monte Carlo simulation techniques allow to 

generate optimal policies and value 
functions from data without knowledge of 
the system model 
n  Policies take into account the uncertainty in the 

transitions 
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Partially Observable Markov 
Decision Process (POMDP) 

n  POMDPs include partial observability 
n  Again represents task with a reward function 

 <S, A, O, T, B, π, R> 
n  S={s(1),…,s(n)}: State set 
n  A={a(1),…,a(l)}: Action set 
n  O={o(1),…o(m)}: Observation set 
n  T: P(s(i) |s(j), a(k)) : Transition probability distribution 
n  B: P(o(i) | s(j)) : Observation probability distribution 
n  π: P(s(i)) : Prior state distribution 
n  R: R(s(i), a(j)): Reward function  

n  Markov Property: 
P(rt, st | st!1,at!1, st!1,..., s1) = P(rt, st | st!1,at!1)
P(ot | st,at,ot!1,st!1,..., s1) = P(ot | st )
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Sequential Decision Making in 
Partially Observable Systems 

 

n  State only exists inside the environment 
n  Inaccessible to the agent 

n  Observations are obtained by the agent 
n  Agent can try to infer state from observations 

Agent 

Environment 
st 

ot rt 
at 
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Sequential Decision Making in 
Partially Observable Systems 

n  Executions can be represented as sequences  
n  From the environments view:         

n  state / observation / action / reward   sequences 

n  From the agents view:  

         
n  observation / action / reward     sequences 

n  Agent has to make decisions based on 
knowledge extracted from the observations 

 

st st+1 st+2 
ot ot+1 ot+2 at at+1 rt rt+1 

! 0, o0,a0, r0,o1,...,ot,at, rt,...
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Partially Observable 
Markov Decision Processes 

n  Underlying system behaves as in MDP except 
n  In every state it emits a probabilistic observation 

n  For analysis simplifications made in the case 
of MDPs will be made   
n  Transition probabilities are independent of the 

reward probabilities 

n  Reward probabilities only depend on the state and 
are static 

n  Observations contain all obtainable information 
about state (i.e. reward does not add state info) 

T : P(si | sj,a)

R(s) = P(r | s)r
r!
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Designing POMDPs 

n  Design the MDP of the underlying system 
n  Ignore whether state attributes are observable  

n  Determine the set of observations and design 
the observation probabilities 
n  Ensure that observations only depend on state 

n  If that is not the case the state representation of the 
underlying MDP has to be augmented  

n  Design a reward function for the task 
n  Ensure that reward only depends on the state 
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Belief State 

n  In a POMDP the state is unknown 
n  Decisions have to be made based on the 

knowledge about the state that the agent can 
gather from observations  

n  Belief state is the state of the agent’s belief 
about the state it is in 
n  Belief state is a probability distribution over the 

state space 

  bt :bt (s) = P(st = s |! 0,o0,a0,...,at!1,ot )
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Belief State 

n  Belief state contains all information about the 
past of the system 

  

n  POMDP is Markov in terms of the belief state 

n  Belief state can be tracked and updated to 
maintain information 

  

P(st = s | bt!1,o0,a0,...,at!1,ot ) = P(st = s | bt!1,at!1,ot )
P(rt | bt,o0,a0, r0,...,at!1,ot ) = P(rt | bt )

bt (s ') = P(st = s ' | bt!1,at!1,ot )=
P(st = s ',ot | bt!1,at!1)

P(ot | bt!1,at!1)
=!P(st = s ',ot | bt!1,at!1) =!P(st = s ' | bt!1,at!1)P(ot | st = s ',bt!1,at!1)

=!P(ot | s ') P(s ' | s,at!1)bt!1(s)s"
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Decision Making in 
POMDPs 

n  Value-function based methods have to 
compute the value of a belief state 

n  System is Markov in terms of the belief state 
n  Belief-state MDP 

n  Can apply any MDP learning method on this space 
n  Belief state space is continuous (thus infinite) 

n  Need a function approximator 

V ! (b) , Q(b,a)

A, b{ },Tb,R !!!,!!!P(b ' | b,a) =
P(o | b,a) b '!!b,!a,!o

0 otherwise

"
#
$

%$

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!R(b) = b(s)R(s)
s&
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Value Function Approaches 
for POMDPs 

n  Q-function on finite horizon POMDPs is locally 
linear in terms of the belief state 

n  Compute set of value vectors, q 
n  Number of vectors grows exponentially with the duration 

of policies 

n  Different algorithms have been used to compute 
the locally linear function 

n  Exact value iteration 

n  Approximate systems with finite vector sets  

Q(b,a) =maxq!La q(s)b(s)
s"
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Value Function Approaches 
for POMDPs 

n  The simplest approximate model is linear 

 
n  Approaches differ in the way they estimate the 

values q(s,a) 
n  QMDP computes q(s,a) assuming full observability 

n  Use value iteration to compute q(s,a)=Q*(s,a) 

n  Replicated Q-learning uses the assumption that 
parameter values independently predict 

n  Linear Q-learning treats states separately 

Q(b,a) = q(s,a)b(s)
s!

qt+1(s,a) = qt (s,a)+! r +!maxc Qt (b ',c)! q(s,a)( )

qt+1(s,a) = qt (s,a)+! r +!maxc Qt (b ',c)!Qt (b,a)( )



© Manfred Huber 2015 43 

Value Function Approaches 
for POMDPs 

n  The linear approximation limits the degree to 
which the optimal value function and thus 
policy can be computed 
n  In addition, QMDP strictly over-estimates the value 

n  Assumes state information will be known in the next step 

n  Will not take actions that only remove state uncertainty 

n  Better approximations can be maintained by 
building more complex approximate 
representations 
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Value Function Approaches 
for POMDPs 

n  POMDP can be approximated using completely 
sampling-based  (Monte Carlo POMDP) 
n  Compute (track) Belief state using a particle filter 

n  Represent Value function (Q-function) as linear 
function over support points in belief state space  

 
n  Representation as a set SP of Q-values over belief states 

n  Weights represent similarity of the two Belief states 
n  E.g. KL-Divergence of the two distributions 

n  Often simplified using only k most similar elements of SP 

Q(b,a) = wb,b '

wb,b"b"!SP"
Q(b ',a)

b '!SP"

KL(b || b ') = b(s)ld b(s)
b '(s)s!
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Value Function Approaches 
for POMDPs 

n  Monte Carlo POMDP 
n  Update sampled Belief state Q-values based on 

current samples 
n  Belief state value for state sample b can be updated 

using sampled value iteration 
n  For each action sample observations according to P(o|b,a) and 

compute the corresponding future belief state b’ 
n  Compute update  

n  Distribute update over support points according to weight 

n  If few elements in SP are similar, add b to SP 

!Q(b,a) = R(b)+! maxa '
1
wb ',b"b""SP#

wb ',b"Qt (b ',a ')b""SP#b '#
$

%

&
&

'

(

)
)*Qt (b,a)
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Policy Approaches for 
POMDPs 

n  Policy improvement approaches can be 
applied using the same value function 
approximations 
n  Working with exact locally linear value function is 

difficult since in each iteration new coefficients 
have to be computed 

n  Approximate representations are more efficient for 
policy improvement 

n  Usually maximization of the policy (and thus EM) is not 
possible. 
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Policy Approaches for 
POMDPs 

n  The representation of the Belief state in terms 
of a probability distribution over states is 
difficult to handle for policy approaches 
n  Alternative representation of Belief state in terms 

of an observation/action sequence 
n  Each complete observation/action sequence represents a 

unique Belief state 

n  Sampled representation of value function in terms 
of set of observation/action/reward histories  

h = o0,a0,...,ok !!!!!!bh

hr = o0,a0, r0,...,ok
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Policy Approaches for 
POMDPs 

n  Value function of a policy is weighted sum 
over value of histories 

n  Policy improvement by finding what changes to 
the policy would improve the value function 

n  Value of a modified policy can be estimated from the 
same samples using importance sampling 

n  Can compute gradient of the value estimate with respect 
to probabilistic policy parameters 

V !(o0,a0,...,ok ) =
1

{h : prefixk (h) = o0,a0,...,ok}
! l"krl

(h)

l=k

#

$
h:prefixk (h)=o0 ,a0 ,...,ok

$

V ! ' (o0,a0,...,ok ) =
1

P(h |! ')
P(h |!(h) )h:prefixk (h)=o0 ,a0 ,...,ok

"
P(h |! ')
P(h |!(h) )

! l#krl
(h)

l=k

$

"
h:prefixk (h)=o0 ,a0 ,...,ok

"
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Policy Approaches for 
POMDPs 

n  Probability of a history is a function of the 
transition probabilities, observation 
probabilities, and policy 

n  Value function only depends on policy parameters 

n  Gradient of value function only depends on value at the 
current policy and the derivative of the policy 

V !(o0,a0,...,ok ) =
1
P(a0,...,al |!)
P(a0,...,al |!

(h) )h:prefixk (h)=o0 ,a0 ,...,ok

"
P(a0,...,al |!)
P(a0,...,al |!

(h) )
! l#krl

(h)

l=k

$

"
h:prefixk (h)=o0 ,a0 ,...,ok

"

P(h |!) = P(o0,...,ok |!,T,B,a0,...,ak"1)P(a0,...,ak"1 |!)

!!!!!!!!!!!!!= P(o0,...,ok |!,T,B,a0,...,ak"1) !(h0..t,at )t=0

k"1
#
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Policy Approaches for 
POMDPs 

n  To perform policy improvement the policy has 
to be parameterized 
n  Often as a probabilistic Softmax policy 

n  Allows for gradient calculation based on histories 

n  Results in effective algorithms to locally 
improve policies 
n  Has local minima based on policy parameterization 

!(b,a,v) = e
vixi (b,a)i"

e
vixi (b,c)i"

c"
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Markov Decision Processes 
n  Partially Observable Markov Decision Processes 

are a very general means to model uncertainty in 
sequential processes involving decisions 
n  Extend Hidden Markov Models with actions and tasks  

n  Tasks are represented with reward functions 

n  Utility characterizes action selection under uncertainty 
n  Outcomes as well as observations can be uncertain 

n  Provides a powerful framework to model process 
uncertainty and uncertainty in decisions 
n  Efficient algorithms for the fully observable case 

n  Approximation approaches for partially observable case 


