Reasoning with Uncertainty

Probability

© Manfred Huber 2015

Probability

 Bayesian probabilities summarize the effects of uncertainty on the state of knowledge

- Probabilities represent the values of statistics
 - P(o) = (# of times of outcome o) / (# of outcomes)
- All types of uncertainty are incorporated into a single number

P(H | E)

Probabilities follow a set of strict axioms

Probability

 Random variables define the entities of probability theory

- Propositional random variables:
 - E.g.: IsRed, Earthquake
- Multivalued random variables:
 - E.g.: Color, Weather
- Potentially Real-Valued
 - E.g.: Height, Weight

Axioms of Probability

- Probability follows a fixed set of rules
 - Propositional random variables:

- P(T) = 1 , P(F) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

$$P(A \land B) = P(A) P(B|A)$$

•
$$\sum_{x \in Values(X)} P(X=x) = 1$$

Probability Syntax

- Unconditional or prior probabilities represent the state of knowledge before new observations or evidence
 - P(H)
- A probability distribution gives values for all possible assignments to a random variable
- A joint probability distribution gives values for all possible assignments to all random variables

Conditional Probability

- Conditional probabilities represent the probability after certain observations or facts have been considered
 - P(H/E) is the posterior probability of H after evidence E is taken into account
 - Bayes rule allows to derive posterior probabilities from prior probabilities
 - P(H | E) = P(E | H) P(H)/P(E)

Conditional Probability

- Probability calculations can be conditioned by conditioning all terms
 - Often it is easier to find conditional probabilities
- Conditions can be removed by marginalization
 - $P(H) = \sum_{E} P(H|E) P(E)$

Joint Distributions

- A joint distribution defines the probability values for all possible assignments to all random variables
 - Exponential in the number of random variables
 - Conditional probabilities can be computed from a joint probability distribution

• $P(A|B) = P(A \land B)/P(B)$

Inference

 Inference in probabilistic representation involves the computation of (conditional) probabilities from the available information

Most frequently the computation of a posterior probability *P(H/E)* form a prior probability *P(H)* and new evidence *E*

Probabilistic Inference

Benefits:

- Precise quantitative measure of uncertainty
- Inference can be automated

Problems:

- Worst case time complexity:
 - O(dⁿ):d = arity, n = #of random variables
- Worst case space complexity: