
State Space Reduction For Hierarchical Reinforcement Learning

Mehran Asadi and Manfred Huber
Department of Computer Science and Engineering

University of Texas
Arlington, TX 76019

{asadi,huber}@cse.uta.edu

Abstract

This paper provides new techniques for abstracting the state
space of a Markov Decision Process (MDP). These tech-
niques extend one of the recent minimization models, known
asε-reduction, to construct a partition space that has a smaller
number of states than the original MDP. As a result, learning
policies on the partition space should be faster than on the
original state space. The technique presented here extends
reduction to SMDPs by executing a policy instead of a sin-
gle action, and grouping all states which have a small dif-
ference in transition probabilities and reward function under
a given policy. When the reward structure is not known, a
two-phase method for state aggregation is introduced and a
theorem in this paper shows the solvability of tasks using the
two-phase method partitions. These partitions can be further
refined when the complete structure of reward is available.
Simulations of different state spaces show that the policies
in both MDP and this representation achieve similar results
and the total learning time in partition space in presented ap-
proach is much smaller than the total amount of time spent on
learning on the original state space.

Introduction
Markov decision processes (MDPs) are useful ways to
model stochastic environments, as there are well established
algorithms to solve these models. Even though these algo-
rithms find an optimal solution for the model, they suffer
from the high time complexity when the number of decision
points is large(Parr 1998; Dietterich 2000). To address in-
creasingly complex problems a number of approaches have
been used to design state space representations in order to
increase the efficiency of learning (Dean Thomas; Kaelbling
& Nicholson 1995; Dean & Robert 1997). Here particular
features are hand-designed based on the task domain and
the capabilities of the learning agent. In autonomous sys-
tems, however, this is generally a difficult task since it is
hard to anticipate which parts of the underlying physical
state are important for the given decision making problem.
Moreover, in hierarchical learning approaches the required
information might change over time as increasingly compe-
tent actions become available. The same can be observed
in biological systems where information about all muscle

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

fibers is initially instrumental to generate strategies forco-
ordinated movement. However, as such strategies become
established and ready to be used, this low-level information
does no longer have to be consciously taken into account.
The methods presented here build on theε-reduction tech-
nique developed by Dean et al.(Givan & Thomas 1995) to
derive representations in the form of state space partitions
that ensure that the utility of a policy learned in the reduced
state space is within a fixed bound of the optimal policy. The
presented methods here extend theε-reduction technique by
including policies as actions and thus using it to find ap-
proximate SMDP reductions. Furthermore it derives parti-
tions for individual actions and composes them into repre-
sentations for any given subset of the action space. This
is further extended by permitting the definition of two-phase
partitioning that is initially reward independent and can later
be refined once the reward function is known. In particular
the techniques described in the following subsections are to
extendε-reduction(Thomas Dean & Leach 1997) by intro-
ducing the following methods:

• Temporal abstraction

• Action dependent decomposition

• Two-phase decomposition

Formalism
A Markov decision processes(MDP) is a 4-tuple
(S, A, P, R) whereS is the set of states,A is a set of actions
available in each state,P is a transition probability func-
tion that assigns a value0 ≤ p ≤ 1 to each state-action
pair, andR is the reward function. A transition function is
a mapP : S × A × S → [0, 1] and usually is denoted by
P (s′|s, a), which is the probability that executing actiona
in states will lead to states′ . Similarly, a reward function
is a mapR : S × A → < andR(s, a) denotes the reward
gained by executing actiona in states.
Any policy defines a value function and the Bellman equa-
tion (Bellman 1957; Puterman 1994) creates a connection
between the value of each state and the value of other states
by:

V π(s) = R(s, π(s)) + γ
∑

s
′

P (s′|s, π(s))V π(s′)

In Proceedings of the 17th International FLAIRS Conference, pp. 509-514, Miami Beach, FL © 2004 AAAI

Previous Work
State space reduction methods use the basic concepts of a
MDP such as transition probabilities and reward function to
represent a large class of states with a single state of the
abstract space.The most important issues that show the gen-
erated abstraction is a valid approximate MDP are:

1. The difference between the transition function and reward
function in both models has to be a small value.

2. For each policy on the original state space there must exist
a policy in the abstract model. And if a states is not
reachable from states′ in the abstract model, then there
should not exist a policy that leads froms to s′ in the
original state space.

SMDPs
One of the approaches in treating temporal abstraction is to
use the theory of semi Markov decision processes (SMDPs).
The actions in SMDPs take a variable amount of time and
are intended to model temporally extended actions, repre-
sented as a sequence of primary actions.

Policies: A policy (option) in SMDPs is a tripleoi =
(Ii, πi, βi)(Boutillier & Hanks 1995), whereIi is an initi-
ation set,πi : S × A −→ [0, 1] is a primary policy and
βi : S −→ [0, 1] is a termination condition. When a policy
oi is executed, actions are chosen according toπi until the
policy terminates stochastically according toβi. The initia-
tion set and termination condition of a policy limit the range
over which the policy needs to be defined and determine its
termination. Given any set of multi-step actions, we con-
sider the policy over those actions. In this case we need to
generalize the definition of value function. The value of a
states under an SMDP policyπo is defined as(Boutillier &
Goldszmidt 1994):

V π(s) = E

[
R(s, o) +

∑

s′

F (s′|s, o)V π(s′)

]

where

F (s′|s, o) =

∞∑

k=1

P (st+m = s′ ∧m = k|st = s, oi)γ
k (1)

and

R(s′, o) = E[rt+1 + γrt+2 + γ2rt+3 + ...|ε(πo, s, t)] (2)

rt denotes the reward at timet and ε(πo, s, t) denotes the
event of an action under policyπo initiated at timet and in
states.

ε-reduction Method
Dean et al.(Thomas Dean & Leach 1997) introduced a fam-
ily of algorithms that take a MDP and a real valueε as an
input and compute a bounded parameter MDP where each
closed interval has a scope less thanε. The states in this
MDP correspond to blocks of a partition of the state space
in which the states in the same block have the same propri-
eties in terms of transitions and rewards.

Definition 1 A partition P = {B1, ..., Bn} of the state
space of a MDP,M , has the property ofε-approximate
stochastic bisimulation homogeneity with respect toM for
0 ≤ ε ≤ 1 if and only if for eachBi, Bj ∈ P , for each
a ∈ A and for eachs, s′ ∈ Bi

|R(s, a) − R(s′, a)| ≤ ε (3)

and
∣∣∣∣∣∣

∑

s′′∈Bj

P (s′′|s, a) −
∑

s′′∈Bj

P (s′′|s′, a)

∣∣∣∣∣∣
≤ ε (4)

Definition 2 The immediate reward partition is the parti-
tion in which two statess, s′ are in the same block if they
have the same rewards.

Definition 3 The block Bi of a partition P is sta-
ble(Thomas Dean & Leach 1997) with respect to blockBj

if and only if for all actionsa ∈ A and all statess, s′ ∈ Bi

equation 4 holds.

The model reduction algorithm first uses the immediate re-
ward partition as an initial partition and refines them by
checking the stability of each block of this partition until
there are no unstable blocks left. For example, when block
Bi happens to be unstable with respect to blockBj , the
blockBi will be replaced by a set of sub-blocksBi1 , ..., Bik

such that eachBim
is a maximal sub-block ofBi that is

ε-stable with respect toBj . Once the stable blocks of the
partition have been constructed, the transition and reward
function between blocks can be defined. The transition of
each block by definition is the interval with the bounds of
maximum and minimum probabilities of all possible transi-
tions from all states of a block to the states of another block:

P̂ (Bj |Bi, a) =

min

s∈Bi

∑

s′∈Bj

P (s′|s, a), max
s∈Bi

∑

s′∈Bj

P (s′|s, a)

 . (5)

And similarly the reward for a block is:

R̂(Bj , a) =

[
min
s∈Bj

R(s, a), max
s∈Bj

R(s, a)

]
. (6)

Extension Toε-reduction Method
While theε-reduction technique permits the derivation of ap-
propriate state abstractions in the form of state space parti-
tions, it poses several problems when being applied in prac-
tice. First, it heavily relies on complete knowledge of the
reward structure of the problem. The goal of the original
technique is to obtain policies with similar utility. In many
practical problems, however, it is more important to achieve
the task goal than it is to do so in the optimal way. In other
words, correctly representing the connectivity and ensuring
the achievability of the task objective is often more impor-
tant than the precision in the value function. To reflect this,
the reduction technique can easily be extended to include
separate thresholdsε and δ for the transition probabilities
and the reward function,respectively. This makes it more

flexible and permits emphasizing task achievement over the
utility of the learned policy. The second important step is the
capability of including the state abstraction technique into
a hierarchical learning scheme. This implies that it should
be able to efficiently deal with increasing action spaces that
over time include more temporally extended actions in the
form of learned policies. To address this, the abstraction
method should change the representation as such hierarchi-
cal changes are made. To achieve this while still guarantee-
ing similar bounds on the quality of a policy learned on the
reduced state space, the basic technique has to be extended
to account for actions that perform multiple transitions on
the underlying state space. The final part of this section, dis-
cusses the space reduction when the reward function is not
available. In this situations, refinement can be done using
transition probabilities. This method also shows that whenit
is necessary to run different tasks in the same environment,
refinement by transition probabilities has to be performed
only for the first task and can subsequently be augmented by
task specific reward refinement. In this way the presented
methods can further reduce the time complexity in situations
when multiple tasks have to be learned in the same environ-
ment.

ε, δ-Reduction for SMDP
For a given MDP we construct the policiesoi = (Ii, πi, βi)
by defining sub-goals and finding the policies i that lead to
sub-goals from each state .The transition probability func-
tion F (s|s′, oi) and the reward functionR(s, oi) for this
state and policy can be computed with equations 1 and
2. Discount and probabilities are folded here into a single
value. As can be seen here, calculation of this property is
significantly more complex than in the case of single step
actions. However, the transition probability is a pure func-
tion of the option and can thus be completely pre-computed
at the time at which the policy itself is learned. As a result,
only the discounted reward estimate has to be re-computed
for each new learning task.The transition and reward criteria
for constructing a partition over policies can be refined by:

|R(s, oi) − R(s′, oi)| ≤ ε

and
∑

s′′∈Bj

F (s′′|s, oi(s)) −
∑

s′′∈Bj

F (s′′|s′, oi(s)) ≤ δ

Action Dependent Decomposition ofε, δ-Reduction
Let M be a SMDP with n different options O =
{o1, . . . , on} and letP1, . . . , Pn be theε, δ-partitions cor-
responding to each action wherePi = {B1

i , . . . , Bmi

i } for
i ∈ W = {i|oi ∈ O}. DefineΦ = P1 × P2 × . . . × Pn

as the cross product of all partitions. Each element ofΦ has
the formφj = (B

σ1(j)
1 , . . . , B

σn(j)
n) whereσi is a function

with domain|Φ| and range1, . . . , mi. Each elementφj ∈ Φ

corresponds to ãBj = ∩i∈AB
σi(j)
i . Given a particular sub-

set of options, a partition for the learning task can now be
derived as the set of all non-empty blocks resulting form the
intersection of the subsets for the participating options.A

Figure 1: Grid world for example

block in the resulting partition can therefore be represented
by a vector over the options involved, where each entry indi-
cates the index of the block within the corresponding single
action partition. Once the initial blocks are constructed by
the above algorithm, these blocks will be refined until they
are stable according toε, δ-method. Changes in the action
set therefore do not require a recalculation of the individ-
ual partitions but only changes in the length of the vectors
representing new states and a recalculation of the final re-
finement step is required. This means that changes in the
action set can be performed efficiently and a simple mech-
anism can be provided to use the previously learned value
function even beyond the change of actions and to use it as
a starting point for subsequent additional learning. This is
particularly important if actions are added over time to per-
mit refinement of the initially learned policy by permitting
finer-grained decisions.

A Simple Example
In this example we assume a grid world with a mobile robot
which can perform four primitive deterministic actions: left,
right, up and down. Rewards for actions that lead the agent
to another cell are assumed to be -1. In order to construct
an option we define a policy with each action. The termi-
nation condition is hitting the wall and the policy repeats
each action until it terminates. Figure 1 shows this scenario.
Figures 2.a through 2.d show the possible partitions for the
four options. LetBj

i be the blockj for partitioni derived by
actionoi. Then the cross product of these blocks is a vector
containing all possible combination of these blocks:

Φ = {B1
1 , B2

1} × {B1
2 , B2

2} × {B1
3 , B2

3} × {B1
4 , B2

4}

The intersection partition has the elements:

B̃1 = B1
1 ∩ B1

4 ∩ B1
2 ∩ B1

3

B̃2 = B2
1 ∩ B1

4 ∩ B1
2 ∩ B1

3

...

Figure 3 illustrates the intersection of the partitions. These
blocks form the initial blocks for the reduction technique.
The result of refinement is illustrated in Figure 4.While per-
forming an action on each state, the result would be another
block instead of a state so each block of Figure 4 can be
considered a single state in the resulting BMDP.

(a) (b)

(c) (d)
Figure 2: Blocks for options a)Up b)Right c)Left d)Down

Figure 3: Intersection of Blocks Figure 4: Final Blocks

Two-Phase Partitions
Environments usually do not provide all the necessary in-
formation, and the agent needs to determine these details by
itself. For example, it is common that an agent does not have
full information of the reward structure. In these situations,
constructing the immediate reward partition is not possible
and the partitions for reduction have to be determined dif-
ferently, the algorithm introduced in this section drives par-
titions in two different phases. This two-phase method con-
structs the initial blocks by distinguishing terminal states for
available actions from non-terminal states and refines them
using the transition probabilities. (Asadi 2003).
Definition 4 A subsetC of the state spaceS , is called a
terminal set under actiona if P (s|s′, a) = 0 for all s′ ∈ C
ands /∈ C.
Definition 5 P (n)(s|s′, a) denotes the probability of first
visit to states from states′. That is,

P (n)(s|s′, a) = P (sn+k = s|sn+k−1 6= s, ..., sk 6= s, a, s′).

Definition 6 For fixed statess and s′ , let F ∗(s|s′, a) =
∑

∞

n=1 P (n)(s|s′, a). F ∗(s|s′, a) is the probability of ever
visiting states from states′ .

Proposition 1 A states belongs to a terminal set with re-
spect to actiona if F ∗(s|s′, a) = 1.

Proposition 1 shows a direct way to find the terminal sets,
i.e. the termination condition for each option. Once the ter-
minal sets are constructed, the state space can be partitioned
by transition probabilities. In situations where the reward in-
formation is not available the two-phase method can be used

to learn an initial policy before the complete reward struc-
ture has been learned. While the utility of the policy learned
prior to reward refinement might not be within a fixed bound
of the one for the optimal policy that would be learned on
the complete state space, it can be shown that for a certain
subset of tasks the initial policy is able to achieve the task
objective. After the reward structure has been determined,
however, the final policy for all tasks will have theε, δ prop-
erty and thus be within a fixed bound of the optimal policy
on the full state space. Being able to compute an initial pol-
icy on the non reward refined state space here permits the
system to determine a policy that is useful for the task prior
to establishing a more optimal one after reward refinement.
Theorem 1 For any policyπ for which the goalG can be
represented as a conjunction of terminal sets (sub-goals) of
the available actions in the original MDPM , there is a pol-
icy πΦ in the reduced MDP,MΦ, that achievesG if for each
state inM for which there exists a path toG , there exists
such a path for whichF (st+1|st, π(st)) > δ.
Proof The blocks of partitionΦ = {B1, ..., Bn} have the
following property

∣

∣

∣

∣

∣

∣

∑

s∈Bj

F (s|s1, oi(s1)) −
∑

s∈Bj

F (s|s2, oi(s2))

∣

∣

∣

∣

∣

∣

≤ δ

For every policyπ that fulfills the requirements of the propo-
sition, there exists a policyπΦ in partition space such that for
eachn ∈ ℵ , if there is a path of lengthn from states0 to
a goal stateG, under policyπ, then there is a path for block
Bs0

containings0 to blockBG containingG, under policy
πΦ.
Casek = 1: if F (G|s0, π(s0)) > δ then by condition (9)
for all s ∈ Bs0

,
∣

∣

∣

∣

∣

∑

s′∈BG

F (s′|s0, π(s0)) −
∑

s′∈BG

F (s′|s, π(s0))

∣

∣

∣

∣

∣

≤ δ

thus∀s ∈ Bs0
thenF (G|s, π(s0)) > F (G|s0, π(s0))− δ >

0. Define policyπΦ such thatπΦ(Bs0
) = π(s0), then

F (BG|Bs0
, πΦ(Bs0

)) > 0.
Casek = n − 1: Assume for each path of length less than
or equal ton − 1 that reaches stateG from s0 under policy
π, there is a path under policyπΦ in the partition space.
Casek = n: Each path that reaches withG from s0 under
policy π in n steps contains a path withn − 1 steps, that
reachesG from s1 under policyπ. By induction hypothesis,
there is a policyπΦ that leads toBG from Bs1

. Now if s0

is an element ofBsn
∪ Bsn−1

∪, . . . ,∪Bs1
, the blocks al-

ready chosen by paths with length less than or equaln − 1
, then there is a policyπΦ that leads toBG from Bs0

un-
der policyπΦ and the policyπΦ(Bs0

) is already defined.
But if s0 /∈ Bsn

∪ Bsn−1
∪, ...,∪Bs1

then by induction hy-
pothesis it has only to be shown that there is a policyπΦ

that fulfills the induction hypothesis and which leads from
Bs0

to Bs1
such thatF (Bs1

|Bs0
, π(s0)) > 0. By condi-

tion (9)∀s1, s2 ∈ Bs0
we have|

∑

s′∈BG
F (s|s0, πi(s0))−

∑

s′∈BG
F (s′|s, πi(s0))| ≤ δ, thus

F (Bs1
|Bs0

, πΦ(Bs0
)) =

∑

s′∈Bs1

F (s′|s, π(s0))

Figure 5: The pattern for experiment 1

145

7 8

11 9

10 12

13

14 15

16

17
19

20

2122

2324

2526

27

28

2930

3233

35

36

37

3839

41

434244

4546

4748

4950515253

54

55 56 57 58

59 60

63 64 65

66 67

68

72

70 71

73

76

77

78

797481

80

82

83

84

85

86

8791

8892

96

97

97

99

89

9394

90

95

31

61

62

34 18 75 6

101
102

103

104

105106

107

109

108

110

40

111

112

113

114

115

116

117

118

119 2

Figure 6: Final block for experiment 1

≥ F (s′|s0, π(s0)) − δ > 0

Therefore the proposition holds and thus for every policy
with the goal defined as in the proposition there is a policy
that achieves the goal in the two-phase partition.2

Experimental Results
Experiment 1 In order to compare the model minimiza-
tion methods that are introduced in this paper, several state
spaces with different sizes have been examined with this
algorithm. These examples follow the pattern illustrated
in Figure 5. The underlying actions are left, right, up and
down and they are successful with the probability 0.9 and
return to the same state with the probability 0.1. In this
experiment the primitive actions are extended by repeating
them until they hit a wall. Figure 6 illustrates the final
blocks of the partition in this experiment and Figure 7 and
8, compare the running time of single phase reduction and
two-phase reduction. This comparison shows that the two
phase method takes longer than theε-reductions but the
reward independent refinement part is faster than refinement
in ε-reductions and thus the two-phase method is more
efficient if the reward refinement in done beforehand, as
indicated in the following experiment.

Experiment 2 This experiment has been performed in or-
der to compare the total partitioning time after the first trial.
In order to do so, the goal state has been situated in different
positions and the run time ofε-reduction algorithm and the
two-phase algorithm are investigated.

This environment consists of three grid worlds, each of
these grid worlds consists of different rooms. The termi-

0

2 x 10
5

T
im

e
 (

m
s
)

Total time
Partitioning and refinement time
Learning Time

900 1600 2100 3100 36002600
Number of states

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

Figure 7: Run time forε-reduction Method

0

1

2

3 x 10
5

T
im

e
 (

m
s
)

Total time
Partitioning and refinement time
Refinement time with reward
Learning Time

900 1600 2100 2600 3100 3600

Number of states

0.5

2.5

1.5

Figure 8: Run time for two-phase method

nation states of the available actions are illustrated in black
in Figure 9. The actions for each state are multi-step ac-
tions. These actions terminate when they reach a sub-goal
in the same room.This experiment shows that, even though
the run time ofε-reduction algorithm is lower than the run
time of the reward independent algorithm, after the first trial
the reward independent algorithm is much faster, as the tran-
sition partitioning for this algorithm is already done in the
first trial and transition partitioning is not necessary after it
is performed once. Figures 10 and 11 show the difference
in run times for 6 different trials. For the first trial the situ-
ation is similar to the previous experiment and the total run
time in ε-reduction method is smaller than the total run time
of the two-phase method. Figure 12 illustrates the different
between policies in this experiment.

When a different goal is located in the environment, the
two-phase method does not need to refine the state space
with the transition, as it has been done for the first task. On
the other hand theε-reduction method needs to redefine the
initial blocks for each task. As a result the total run time
after the first task in the two-phase method is significantly
smaller than the run time ofε-reduction method.

Figure 9: Scenario of the experiment 2

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

Number of Trials

T
im

e
 (

m
s
)

Total time
Partitioning and refinement time
Learning Time

Figure 10: Run time ofε-reduction for 5 trials

Conclusion
The results of the techniques described in this paper show
that even though theε-reduction method introduces a fine
way of partitioning the state space, it can be improved sig-
nificantly by using temporal abstraction. While the approach
introduced here extends the applicability of reinforcement
learning techniques by providing state space abstractions
that permit more complex tasks to be learned, there are sit-
uations in which the reward information is not known. This
paper provides a solution for these situations by considering
the terminal states and no-terminal state as initial blocksin-
stead of the immediate reward block, and proves that the par-
titioned space is solvable. The comparison between running
different tasks in the same environment shows the significant
reduction of time complexity in the two-phase method.

References
Asadi, M. 2003. State Space Reduction For Hierarchi-
cal Policy Formation. Masters thesis. University of Texas,
Arlington.

Bellman, R. 1957.Dynamic programming. Princton Uni-
versity Press.

Boutillier, Craig; Dearden, R., and Goldszmidt, M. 1994.
Exploiting structure in policy construction.In Proceedings
IJCAI 14.IJCAII:1104–1111.

1 2 3 4 5
0

200

400

600

800

1000

1200

Number of Tirals

T
im

e
 (

m
s
)

Total time
Partitioning and refinement time
Refinement time with reward
Learning Time

Figure 11: Run time of two-phase method for 5 trials

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

100

Number of Iterations
V

a
lu

e
 o

f
P

o
lic

y

Original state space
Partition space with transition, without reward
Partition space with transition and reward

Figure 12: Learning curve for experiment 2

Boutillier, Craig; Dean, T., and Hanks, S. 1995. Planning
under uncertainty: Structural assumptions and computa-
tional leverage. In Proceeding of Third European Work-
shop on Planning.
Dean, T., and Robert, G. 1997. Model minimization in
markov decision processes.In Proceeding AAAI-9776.
Dean Thomas; Kaelbling, Leslie; Kirman, j., and Nichol-
son, A. 1995. Planning under time constraints in stochastic
domains.Artifitial intelligence76:35–74.
Dietterich, T. G. 2000. An overview of maxq hierarchi-
cal reinforcement learning.Lecture Notes in Artificial In-
telligence, In Proceeding of 4th International Symposium,
SARA1864:26–44.
Givan, Robert; Leach, S., and Thomas, D. 1995. Bounded
parameter markov decision processes.Technical Report
CS-97-05 Brown university35–74.
Parr, R. E. 1998.Learning for Markov Decision Processes.
Doctoral dissertation. University of California, Berkeley.
Puterman, M. L. 1994.Markov decision processes. John
Wiley and Sons.
Thomas Dean, R. G., and Leach, S. 1997. Model reducion
techniques for computing approximately optimal solution
for markov decision process.In Proceedings of Thirteenth
Conference on Uncertainty in Artigicial Intelligence.

