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Abstract

This paper provides new techniques for abstracting the stat
space of a Markov Decision Process (MDP). These tech-
nigues extend one of the recent minimization models, known
ase-reduction, to construct a partition space that has a smalle
number of states than the original MDP. As a result, learning
policies on the partition space should be faster than on the
original state space. The technique presented here extends
reduction to SMDPs by executing a policy instead of a sin-
gle action, and grouping all states which have a small dif-
ference in transition probabilities and reward functiomlemn

a given policy. When the reward structure is not known, a
two-phase method for state aggregation is introduced and a
theorem in this paper shows the solvability of tasks usimg th
two-phase method partitions. These partitions can bedurth
refined when the complete structure of reward is available.
Simulations of different state spaces show that the pglicie
in both MDP and this representation achieve similar results
and the total learning time in partition space in presenfed a
proach is much smaller than the total amount of time spent on
learning on the original state space.

I ntroduction

Markov decision processes (MDPs) are useful ways to
model stochastic environments, as there are well estalolish
algorithms to solve these models. Even though these algo-
rithms find an optimal solution for the model, they suffer
from the high time complexity when the number of decision
points is large(Parr 1998; Dietterich 2000). To address in-
creasingly complex problems a humber of approaches have
been used to design state space representations in order t
increase the efficiency of learning (Dean Thomas; Kaelbling
& Nicholson 1995; Dean & Robert 1997). Here particular
features are hand-designed based on the task domain an
the capabilities of the learning agent. In autonomous sys-
tems, however, this is generally a difficult task since it is
hard to anticipate which parts of the underlying physical
state are important for the given decision making problem.
Moreover, in hierarchical learning approaches the require
information might change over time as increasingly compe-
tent actions become available. The same can be observed
in biological systems where information about all muscle
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fibers is initially instrumental to generate strategiesdor
ordinated movement. However, as such strategies become
established and ready to be used, this low-level informatio
does no longer have to be consciously taken into account.
The methods presented here build on ¢hreduction tech-
nique developed by Dean et al.(Givan & Thomas 1995) to
derive representations in the form of state space parsition
that ensure that the utility of a policy learned in the redlice
state space is within a fixed bound of the optimal policy. The
presented methods here extenddireduction technique by
including policies as actions and thus using it to find ap-
proximate SMDP reductions. Furthermore it derives parti-
tions for individual actions and composes them into repre-
sentations for any given subset of the action space. This
is further extended by permitting the definition of two-phas
partitioning that is initially reward independent and catet

be refined once the reward function is known. In particular
the techniques described in the following subsectionsare t
extende-reduction(Thomas Dean & Leach 1997) by intro-
ducing the following methods:

e Temporal abstraction
e Action dependent decomposition
e Two-phase decomposition

Formalism

A Markov decision processesMDP) is a 4-tuple

(S, A, P, R) whereS is the set of states] is a set of actions
available in each state? is a transition probability func-
ion that assigns a valug¢ < p < 1 to each state-action
pair, andR is the reward function. A transition function is
amapP : S x Ax S — [0,1] and usually is denoted by

o (s'|s, a), which is the probability that executing actian

in states will lead to states’ . Similarly, a reward function
isamapR : S x A — R andR(s,a) denotes the reward
gained by executing actianin states.

Any policy defines a value function and the Bellman equa-
tion (Bellman 1957; Puterman 1994) creates a connection
between the value of each state and the value of other states
by:

V™ (s) = R(s,m(s) + 7Y P(s'|s,m(s))V7(s)



Previous Work

Definition 1 A partiton P = {By,...,, B,} of the state

State space reduction methods use the basic concepts of e5Pace of a MDP,M, has the property ot-approximate

MDP such as transition probabilities and reward function to

represent a large class of states with a single state of the

stochastic bisimulation homogeneity with respecfifofor
0 < e < 1if and only if for eachB;, B; € P, for each

abstract space. The most important issues that show the gen-? € A and for eachs, s € B;

erated abstraction is a valid approximate MDP are:

1. The difference between the transition function and rdwar
function in both models has to be a small value.

. For each policy on the original state space there must exis
a policy in the abstract model. And if a states not
reachable from state in the abstract model, then there
should not exist a policy that leads fromto s’ in the
original state space.

SMDPs

One of the approaches in treating temporal abstraction is to
use the theory of semi Markov decision processes (SMDPs).
The actions in SMDPs take a variable amount of time and
are intended to model temporally extended actions, repre-
sented as a sequence of primary actions.

Policies: A policy (option) in SMDPs is a tripleo; =

(I;, m;, 8;)(Boutillier & Hanks 1995), wherd; is an initi-
ation set,m; : S x A — [0,1] is a primary policy and

B; : S — [0,1] is a termination condition. When a policy
0; is executed, actions are chosen according;tantil the
policy terminates stochastically accordingto The initia-

tion set and termination condition of a policy limit the rang
over which the policy needs to be defined and determine its
termination. Given any set of multi-step actions, we con-
sider the policy over those actions. In this case we need to
generalize the definition of value function. The value of a
states under an SMDP policy® is defined as(Boutillier &
Goldszmidt 1994):

V™(s) = E | R(s,0) + Z F(s'|s,0)V™(s")
where S
F(s'|s,0) = iP(sHm =5 Am=k|s; = s,0)7" (1)
k=1
and

R(s',0) = E[rys1 + Y7tz + ¥Vregs + . |e(m, 5, 1)) (2)

ry denotes the reward at timeand ¢(7°, s, t) denotes the
event of an action under poliey’ initiated at timet and in
states.

e-reduction Method

Dean et al.(Thomas Dean & Leach 1997) introduced a fam-
ily of algorithms that take a MDP and a real valu@as an

|R(s,a) — R(s',a)] < ¢ 3)

and

Z P(s"]s,a) — Z P(s"]s' a)| <e

8" € B, s""€B;

(4)

Definition 2 The immediate reward partition is the parti-
tion in which two states, s’ are in the same block if they
have the same rewards.

Definition 3 The block B; of a partition P is sta-
ble(Thomas Dean & Leach 1997) with respect to bléik
if and only if for all actionsa € A and all statess, s’ € B;

equation 4 holds.

The model reduction algorithm first uses the immediate re-
ward partition as an initial partition and refines them by
checking the stability of each block of this partition until
there are no unstable blocks left. For example, when block
B; happens to be unstable with respect to bldek the
block B; will be replaced by a set of sub-blocks, , ..., B;,

such that eaclB; , is a maximal sub-block oB; that is
e-stable with respect td&;. Once the stable blocks of the
partition have been constructed, the transition and reward
function between blocks can be defined. The transition of
each block by definition is the interval with the bounds of
maximum and minimum probabilities of all possible transi-
tions from all states of a block to the states of another block

P(Bj|B;,a) =
. / !
min P(s |s,a),gé%>§ Z P(s'|s,a) (5)
s'eB; s'€B;
And similarly the reward for a block is:
R(Bj,a) = Lnggi R(S’a)’irel%)j R(s,a)} . (6)

Extension Toe-reduction Method

While thee-reduction technique permits the derivation of ap-
propriate state abstractions in the form of state spacé part
tions, it poses several problems when being applied in prac-
tice. First, it heavily relies on complete knowledge of the
reward structure of the problem. The goal of the original
technique is to obtain policies with similar utility. In man
practical problems, however, it is more important to achiev
the task goal than it is to do so in the optimal way. In other
words, correctly representing the connectivity and emsguri

input and compute a bounded parameter MDP where each the achievability of the task objective is often more impor-

closed interval has a scope less thanThe states in this
MDP correspond to blocks of a partition of the state space

in which the states in the same block have the same propri-

eties in terms of transitions and rewards.

tant than the precision in the value function. To reflect,this
the reduction technique can easily be extended to include
separate thresholdsand ¢ for the transition probabilities
and the reward function,respectively. This makes it more



flexible and permits emphasizing task achievement over the
utility of the learned policy. The second important stefhis t
capability of including the state abstraction technique in

a hierarchical learning scheme. This implies that it should
be able to efficiently deal with increasing action spaces tha
over time include more temporally extended actions in the
form of learned policies. To address this, the abstraction
method should change the representation as such hierarchi-
cal changes are made. To achieve this while still guarantee-
ing similar bounds on the quality of a policy learned on the
reduced state space, the basic technique has to be extended Figure 1: Grid world for example
to account for actions that perform multiple transitions on

the underlying state space. The final part of this secti@, di

cusses the space reduction when the reward function is not p|ock in the resulting partition can therefore be represent
available. In this situations, refinement can be done using py a vector over the options involved, where each entry indi-
transition probabilities. This method also shows thatwihen  ¢ates the index of the block within the corresponding single
is necessary to run different tasks in the same environment, 4¢tjon partition. Once the initial blocks are constructgd b
refinement by transition probabilities has to be performed the above algorithm, these blocks will be refined until they
only forthg_flrst task and_ can subseque_ntly be augmented by 5re staple according @ 6-method. Changes in the action
task specific reward refinement. In this way the presented get therefore do not require a recalculation of the individ-
methods can further reduce the time complexﬂy insituation 5] partitions but only changes in the length of the vectors
when multiple tasks have to be learned in the same environ- renresenting new states and a recalculation of the final re-

ment. finement step is required. This means that changes in the

. action set can be performed efficiently and a simple mech-
¢, 6-Reduction for SMDP anism can be provided to use the previously learned value
For a given MDP we construct the policies= (I;, m;, 3;) function even beyond the change of actions and to use it as

by defining sub-goals and finding the policies i that lead to a starting point for subsequent additional learning. This i

sub-goals from each state .The transition probability func particularly important if actions are added over time to-per

tion F'(s|s’,0;) and the reward functioR(s, 0;) for this mit refinement of the initially learned policy by permitting

state and policy can be computed with equations 1 and finer-grained decisions.

2. Discount and probabilities are folded here into a single

value. As can be seen here, calculation of this property is A Simple Example

significantly more complex than in the case of single step |n this example we assume a grid world with a mobile robot

actions. However, the transition probability is a pure func  which can perform four primitive deterministic actionsttje

tion of the option and can thus be completely pre-computed right, up and down. Rewards for actions that lead the agent

at the time at which the policy itself is learned. As aresult, to another cell are assumed to be -1. In order to construct

only the discounted reward estimate has to be re-computed an option we define a policy with each action. The termi-

for each new learning task.The transition and reward @iter  nation condition is hitting the wall and the policy repeats

for constructing a partition over policies can be refined by:  each action until it terminates. Figure 1 shows this scenari
|R(s,05) — R(s', 05)| < Figures_Z.a through 2.d show the possi_b_le partiti_ons for the

four options. LetB! be the blockj for partition: derived by
and actiono,. Then the cross product of these blocks is a vector

containing all possible combination of these blocks:
S F(ss,0i() = Y F(s")soi(s)) <8 9P

s'""€Bj s'""eB; ¢ = {B%vBIQ} X {leng} X {Bi’lnt} X {Bisz}
Action Dependent Decomposition of, 5-Reduction The intersection partition has the elements:
Let M be a SMDP withn different optionsO = B, = BINBiNBiNB)
{01,...,0,} and letPy,..., P, be thee, j-partitions cor- B, = BN BN BN B

responding to each action wheRe = {B},..., B"'} for
i € W = {ilo; € O}. Define® = P1 x P2x ... x P,
as the cross product of all partitions. Each elemerit bais
the form¢,; = (B @ BZ"(J‘)) whereg; is a function Figure 3 illustrates the intersection of the partitions eSé
with domain|®| and rangd., ..., m,. Each elemenp; € ® blocks form the initial blocks for the reduction technique.

' The result of refinement is illustrated in Figure 4.While-per
forming an action on each state, the result would be another
block instead of a state so each block of Figure 4 can be

considered a single state in the resulting BMDP.

corresponds to #; = Njc 4 By’ @) Given a particular sub-
set of options, a partition for the learning task can now be
derived as the set of all non-empty blocks resulting form the
intersection of the subsets for the participating optioAs.



777 7777 to learn an initial policy before the complete reward struc-
Z//;%%Z/%Z//z ture has been learned. While the utility of the policy le@ne
%g/ B %f%% pp?r: to rew?rd trr?fmertr)entI mlg?_ht nt?]t t?e Wltll‘l(;nba fllxed b(:jund

= of the one for the optimal policy that would be learned on
. Lpace, it can |
7. the complete state space, it can be shown that for a certain
%/f/’//}/ﬂ/ﬁ% subset of tasks the initial policy is able to achieve the task

e policy
%,W//f/% rall objective. After the reward structure has been determined,
2 ] il however, the final policy for all tasks will have thg) prop-

erty and thus be within a fixed bound of the optimal policy

on the full state space. Being able to compute an initial pol-
icy on the non reward refined state space here permits the
system to determine a policy that is useful for the task prior
to establishing a more optimal one after reward refinement.

Theorem 1 For any policyr for which the goalG can be

7 7
il ted as a conjunction of terminal sets (sub-godls) o
/// represen 1 conj of ub-g
A the available actions in the original MDP/, there is a pol-

Figure 2: Blocks for options a)Up b)Right c)Left d)Down icy e in the reduced MDR/4, that achieves if for each

state in)M for which there exists a path t@ , there exists
such a path for whictF(s;41|s¢, 7(s;)) > 6.

Proof The blocks of partitiond = {B;, ..., B,,} have the
following property
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Y Flslsi0i(s1) = > Fslsa,0i(s2))| <0
seB; seB;
For every policyr that fulfills the requirements of the propo-
Figure 3: Intersection of Blocks  Figure 4: Final Blocks  sition, there exists a policys in partition space such that for
eachn € XN | if there is a path of length from states, to
a goal state7, under policyr, then there is a path for block
Two-Phase Partitions B;, containings, to block B containingG, under policy

Environments usually do not provide all the necessary in-
formation, and the agent needs to determine these details by
itself. For example, itis common that an agent does not have
full information of the reward structure. In these situap
constructing the immediate reward partition is not possibl Z F(s'[s0,7(s0)) — Z F(s']s,m(s0))| <6

and the partitions for reduction have to be determined dif- s'€Ba s'€Bg

ferently, the algorithm introduced in this section drives-p thusVs € By, thenF (G|s,m(s0)) > F(G|so, m(s0)) — 6 >
titions in two different phases. This two-phase method con- 0. Define policyws such thatre(Bs,) = m(s0), then
structs the initial blocks by distinguishing terminal stfor F(Bg|Bs,, me(Bs,)) > 0.

available actions from non-terminal states and refines them Casek = n — 1. Assume for each path of length less than

ToH.
Casek = 1: if F(G|so,m(s9)) > ¢ then by condition (9)
forall s € By, ,

using the transition probabilities. (Asadi 2003). or equal ton — 1 that reaches staté from sy under policy
Definition 4 A subset”' of the state spac# , is called a 7, there is a path under poliey; in the partition space.
terminal set under action if P(s|s’,a) = 0forall s’ € C Casek = n: Each path that reaches withfrom s, under
ands ¢ C. policy = in n steps contains a path with — 1 steps, that
Definition 5 P(")(s|s’,a) denotes the probability of first  reachess from s; under policyr. By induction hypothesis,
visit to states from states’. That is, there is a policyre that leads taBg from B, . Now if s
n ' / is an element oB;, U B,, _,U,...,UBy, , the blocks al-
PO (sls',a) = Plsntn = slsnsn1 # 8055 7 5,0,5). ready chosen by paths with length less than or equall
Definition 6 For fixed statess and s’ , let F*(s|s’,a) = , then there is a policyts that leads toBg from B, un-
S PM(s]s',a). F*(s|s',a) is the probability of ever der policy 7 and the policyrs(Bs,) is already defined.
visiting states from states’ . Butif so ¢ Bs, UBs, _,U,...,UBs, then by induction hy-

Proposition 1 A states belongs to a terminal set with re-  POthesis it has only to be shown that there is a poiigy
S e T (ol o) that fulfills the induction hypothesis and which leads from
pect to actiom if F*(s|s’,a) = 1. h
- i i ] Bs, to By, such thatF'(Bs, |Bs,,m(s0)) > 0. By condi-
Proposition 1 shows a direct way to find the terminal sets, tjon (9)vs1, s2 € B,, we have Y oen. F(s|so, mi(s0)) —
i.e. the termination condition for each option. Once the ter ¢~ F(,S’|s W'(SO))| <5 thae ¢ ’
minal sets are constructed, the state space can be patition €8¢ o=
by transition probabilities. In situations where the reshiar F(Bs,|Bsy, ma(Bs,)) = > F(s'|s, m(s0))
formation is not available the two-phase method can be used s'€B.,
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Therefore the proposition holds and thus for every policy

with the goal defined as in the proposition there is a policy
that achieves the goal in the two-phase partition.
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Experimental Results

Experiment 1 In order to compare the model minimiza-
tion methods that are introduced in this paper, severad stat
spaces with different sizes have been examined with this
algorithm. These examples follow the pattern illustrated
in Figure 5. The underlying actions are left, right, up and nation states of the available actions are illustrated achol
down and they are successful with the probability 0.9 and in Figure 9. The actions for each state are multi-step ac-
return to the same state with the probability 0.1. In this tions. These actions terminate when they reach a sub-goal
experiment the primitive actions are extended by repeating in the same room.This experiment shows that, even though
them until they hit a wall. Figure 6 illustrates the final the run time ofe-reduction algorithm is lower than the run
blocks of the partition in this experiment and Figure 7 and time of the reward independent algorithm, after the firs tri
8, compare the running time of single phase reduction and the reward independent algorithm is much faster, as the tran
two-phase reduction. This comparison shows that the two sition partitioning for this algorithm is already done ireth
phase method takes longer than theeductions but the first trial and transition partitioning is not necessaneait
reward independent refinement part is faster than refinementis performed once. Figures 10 and 11 show the difference
in e-reductions and thus the two-phase method is more in run times for 6 different trials. For the first trial theusit
efficient if the reward refinement in done beforehand, as ation is similar to the previous experiment and the total run
indicated in the following experiment. time in e-reduction method is smaller than the total run time
of the two-phase method. Figure 12 illustrates the differen
between policies in this experiment.

Experiment 2 This experiment has been performed in or- When a different goal is located in the environment, the
der to compare the total partitioning time after the firsltri two-phase method does not need to refine the state space
In order to do so, the goal state has been situated in differen with the transition, as it has been done for the first task. On
positions and the run time efreduction algorithm and the  the other hand the-reduction method needs to redefine the
two-phase algorithm are investigated. initial blocks for each task. As a result the total run time

This environment consists of three grid worlds, each of after the first task in the two-phase method is significantly
these grid worlds consists of different rooms. The termi- smaller than the run time efreduction method.

Figure 8: Run time for two-phase method
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Conclusion

The results of the techniques described in this paper show
that even though the-reduction method introduces a fine
way of partitioning the state space, it can be improved sig-
nificantly by using temporal abstraction. While the apptoac
introduced here extends the applicability of reinforceten
learning techniques by providing state space abstractions
that permit more complex tasks to be learned, there are sit-
uations in which the reward information is not known. This
paper provides a solution for these situations by congideri
the terminal states and no-terminal state as initial blacks
stead of the immediate reward block, and proves that the par-
titioned space is solvable. The comparison between running
different tasks in the same environment shows the significan
reduction of time complexity in the two-phase method.
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