A New Approach To Scheduling Parallel Programs
Using Task Duplication

Ishfag Ahmad and Yu-Kwong Kwok

Department of Computer Science
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract! the problem and system is increased. Even with an
In this paper, we explore the problem of scheduling efficient scheduling algorithm, it may happen that some
parallel programs using task duplication for message- processors are idle during different time periods because
passing multicomputers. Task duplication meansthe tasks assigned to them are waiting to receive some data
scheduling a parallel program by redundantly executing from the tasks assigned to some other processors. If these
some of the tasks on which other tasks of the programnidle time slots can be utilized effectively by identifying the
critically depend. This can reduce the start times of taskscritical tasks and redundantly allocating them in these
waiting for messages from tasks residing in other slots, the execution time of the parallel program can be
processors. There have been a few scheduling algorithméurther reduced. However, using duplication makes the
using task duplication. We discuss two such previouslyscheduling problem more difficult. The scheduling
reported algorithms and describe their differences, algorithm not only needs to observe the precedence
limitations and suitability for different environments. A constraints among tasks but also needs to recognize which
new algorithm is proposed which outperforms both of tasks to duplicate and how to fit them in the idle time slots.
these algorithms, and is more efficient for low as well as This paper is organized as follows. In Section 2, we
high values of communication-to-computation ratios. Thefirst describe the problem statement and present some
algorithm takes into account arbitrary computation and definitions used in our study. We also discuss two
communication costs. All three algorithms are tested bypreviously proposed scheduling algorithms in the same
scheduling some of the commonly encountered graplsection. In Section 3, we first outline the basic principles
structures. used in the design of our algorithm. We also describe our
1 Introduction proposed algorithm. Section 4 contains the experimental
Despite great architectural advances, theresults and performance comparisons. The last section

communication overhead in message-passing parallgfoncludes this paper. _
computers in general and in networked distributed system@ Problem Statement and Related Algorithms
in particular remains an inevitable penalty. Due to this In this section, we describe the problem statement
penalty, the speedup of a parallel program may be limitecthrough an introduction of a number of terminology
or may not scale very well with the size of the system. Thecommonly used for the scheduling problem. We also
interprocessor communication overhead occurs when twgresent some discussion on using duplication in the
tasks of a parallel program assigned to different processorscheduling problem. Two previously reported scheduling
have dependencies and they need to exchange data amoatporithms using duplication, as well as their
them [9]. Task duplication is one way of reducing the characteristics, are discussed at the end of this section.
interprocessor communication overhead which inturncan A parallel program can be represented by a directed
improve the total execution time [6]. Task duplication acyclic graph in which each node, denotedyepresents
means scheduling a parallel program by redundantlya task. The amount of computation required in a task is
allocating some of its tasks on which other tasks critically called thecomputation cosand is denoted bw(n). The
depend. This reduces the start times of waiting tasks whictedges in the parallel program graph correspond to the
can eventually improve the overall execution time of the communication messages and precedence constraints
whole program. Duplication based scheduling can beamong the tasks. A number is associated with each edge to
particularly useful for systems with high communication denote the amount of communication data from a task to
overhead such as a network of workstations. another. This number is called tbemmunication costnd

To effectively run a parallel program on an is denoted byc;. Here, the subscrigf indicates that the
architecture, the program needs to be scheduled in adirected edge emerges from the source nogdeand
efficient fashion. The scheduling problem can be incidents on the destination nodge The source node and
described as an allocation of a set of tasks onto a set afhe destination node of an edge is called plagentnode
processors, such that the total schedule length in terms adind thechild node, respectively. A node which does not
time is minimized. It is a well-known fact that the have parent node is called antry node whereas a node
scheduling problem in its many variants is NP-completewhich does not have child node is called exit node.
[2] and most of the solutions are based on heuristics [4] Clearly, the values ofv(n) andc; depend not only on the
[9], [10]. The complexity of the algorithm and the quality parallel program but also on the parameters of the
of the solution largely depend on the task graph structuraunderlying system. For example, even a small amount of
and the target machine model. The algorithm’s complexitycommunication data when routed over a very slow
should be within practical limits and it should be scalable network can result in a very high value @f. The
in that it should still generate a good solution if the size of communication-to-computation-ratio (CCRj a parallel
program is defined as its average communication cost
, i divided by its average computation cost on a given system.
1. This research was supported by Hong Kong's RGC grant The communication cost among two nodes assigned to the
under contract number HKUST179/93E. same processor is assumed to be zem.iff scheduled to

processod, ST(n, J)andFT(n, J)denote the start time and The BTDH algorithm is essentially an extension of the
finish time of n; on processod, respectively. It should be DSH algorithm. The complexity of both algorithms is
noted thaET(n, J)=ST(n, J) + w(n). After all nodes have O(n?). There are basically two differences between them.
been scheduled, the schedule length is defined asi) The BTDH algorithm does not indicate any
max{FT(n,J)} across all processors. preference as to which parent node to be considered
2.1 Fundamentals _ for duplication.

A node cannot start execution before it gathers all of i) The duplication process does not stop as long as the
the messages from its parent nodes. Thus, itis not possible idle time slot has not been overflown. That is, the
to determine the start time of a node before determiningthe ~ process does not stop even if the start time of the
start times of its parent nodes. This implies thatae candidate node is increased. .
cannot be scheduled until all of its parent nodes have been Despite its better performance, the BTDH algorithm
scheduledWhen all the parent nodes of a node have beerhas the following drawback. The algorithm may duplicate
scheduled, there is a constraint on its start time which issome parent nodes which will not reduce the start time of
due to the communication edges from its parent nodesa node. Thus, at later steps, when the algorithm considers
This is explained by the following definition the most important parent node — the one from which the
Definition 1: The communication-constrained earliest data sentarrives last, there may be no space in the idle time
start time, denoted by CEST(d), of a node non a slot to accommodate it.
processor J is defined as 3 The Proposed Algorithm

max k< p{ FT(n, MINPE(R)) +c;;} In this section, we describe our proposed scheduling

; Igorithm. We make two assumptions in our study. First
where @ has p parent nodes and, is the k-th parent a : y
node. The parent node that Mmaximizes the abovg‘xe assume that the processor network is fully-connected

P y) ; ith unlimited number of identical processors. Second,
Séggseﬂ%r;'\slﬁf&]eﬂthe Very-Important-Parent amd is each processor has dedicated hardware to deal with

Given the communication-constrained earliest start€ommunication so that communication can take place

time of a node on a processor, the following axiom governsSimultaneously with computation. Before describing the
the decision of wheliher the node can be sgchedule% on th Iggrlthm, we discuss some of the basic principles used in
its design.

processor. . o
Axiom I: A node ncan be scheduled to a processor J on 3-1 Design Principles

which the set of node$n,,n,} has been scheduled At each scheduling step, some nodes are more
iff there exists some k such that” important so they should be given higher priorities which

in turn means that they should be scheduled first.
ST(m,,,,J)-max FT(n,J), CEST(n J)} 2w(n) Determining node prioritie)s/ requires an attribute, which is
wherek = 0,...,m; ST(n_ ,J) = «; and given by the following definition.
FT(n,,J) = 0. Definition 2: A Critical Path (CP) of a task graph, is a set
- . L of nodes and edges, forming a path from an entry node to
Intuitively, the axiom implies that a node cannot be an exit node, of which the sum of computation cost and
schedule to a processor unless that processor has an |dﬁ%mmunicaﬁon cost is the maximum.
time slot large enough to accommodate the node. In case Proper scheduling of nodes on the CP can potentially
the node can be scheduled, Axiom Il given below generate efficient schedules. However, we need to

determines its actual start time. schedule the parent nodes of CPNs efficiently also. The
Axiom II: The earliest start time of;ron processor J, following definition explains a partitioning of nodes which
denoted by EST(nJ), is max CEST pJ), FT(n,, J)} can be used to assign accurate priorities to nodes.

where | is the minimum value of k satisfying the inequality pefinjtion 3: An In-Branch Node (IBN) is a node, which
in Axiom |. If there does not exist such |, EST@) is s not a CPN, and from which there is a path reaching a

defined aso . Critical Path Node (CPN). An Out-Branch Node (OBN) is
It should be noted that boBEST(p J) andEST(rp, J) a node, which is néither)a CPN nor an IBN. ()

are varying quantities; their values depend on the current Clearly, in order not to violate the precedence
state of scheduling. constraints among nodes, all IBNs of each CPN have to be
2.2 Related Algorithms _ S scheduled before the CPN is considered for scheduling.

Using duplication in static task scheduling is a The OBNs need to be scheduled in an efficent manner also.
relatively unexplored research topic. Kruatrachue andThe following definition gives a way to efficiently
Lewis [5] have proposed one such scheduling algorithm,schedule the OBNs.
called Duplication Scheduling Heuristic (DSHRAnother Definition 4: The OBN Binding is an ordering of OBNs
algorithm, called Bottom-up-Top-down Duplication sych that an OBN rhas a higher priority than another
Heuristic (BTDH) has been recently proposed by Chung oBN n if n's depth is larger than fs, under the
and Ranka [1]. , _constraint that the parent node of an OBN which is

In our opinion, the DSH algorithm has the following a|so an OBN, always has higher priority than n
deficiency. As it considers only the idle time slot between ~ The duplication technique used in our proposed
the finish time of the last node scheduled to a processog|gorithm is different from other algorithms. We duplicate
and the earliest start time of the candidate node (the onghe ancestor nodes of each CPN, which may be CPNs or
being considered for scheduling), the degree of duplicationgNs, in descending order of message arrival times. Thus,
is likely to be small. Thus, duplication may not always be the more important parent nodes are always duplicated
effective. first. In addition, we apply the duplication technique

recursively upward from the parent nodes so that the CPNhere is O(n) execution of Trace_Ancestor Thus, the
being considered can potentially start at the earliestCPFD algorithm is practical even for large task graphs.
possible time. The following rule formalizes the 3.3 An Application Example
duplication technique. In this section, we illustrate the effectiveness of the
Duplication Rule (DR): CPFD algorithm by showing its schedule for a randomly
Suppose that;ris being considered to schedule on processor J. generated task graph. For comparison, the schedules
The duplication node list (DNL) for;on processor J as well as produced by the DSH and BTDH algorithms are also
the EST(p J) are determined in the following steps. presented.

1) Determine EST(nJ). Both DSH and BTDH algorithms need a

2) IFEST(n, J) = « or VIP(n, J) does not exist or VIP(nJ) is . : :
)schedl(JrIFed)on J, then t(hqe s%art time @ttannot be rédL)Jced supplementary scheduling algorithm to determine the

by duplication. The duplication process stops at this step. Priorities of nodes. Itis shownin [1] that the Highest Level
3) Otherwise, insert VIP(n J) into DNL(n, J) provided First with Estimated Time (HLFET) scheduling algorithm

EST(, J) does not increase. If this VIP is not inserted, the [8] gives better results. The HLFET algorithm, which is an

duplication process terminates; otherwise, replageby extension of Hu's classic work [3], defines the priority of

VIP(n, J) and repeat the process from step 1). a node as the largest sum of computation costs among alll
3.2 The CPFD Algorithm the directed path from the node to an exit node in the task

The proposed algorithm, which applies duplication to graph. In what follows, we call the two algorithms as DSH/
schedule CPNs efficiently, is calle@ritical Path Fast HLFET and BTDH/HLFET, respectively, to indicate that
Duplication (CPFD) algorithm. The algorithm uses two they employ the HLFET algorithm to determine priorities
procedures:Attempt_Duplication and Trace_Ancestor of nodes.

They are described below. A schedule for the random task graph (Figure 1 (a))
Attempt_Duplication(r): without duplication is shown in Figure 1(b). The schedule
(1) min_EST« o, min_PE« NULL, min_DNL « NULL length is 301 time units. This schedule, which is generated
(2) Push onPE_Stack (i) an unused processor; (i) all by hand, is the best possible schedule without duplication.
@ Prﬁfgssgfsstt?ggﬁglﬂgtgetg%tliﬁéem nodes.of The lower bound is 246 time units, which is equal to the

whi _ sum of computation costs along the CP, cannot be
(g) JA‘— ltO?hOfBE—tStac" achieved in this case. Nodeg n,, ng, N, already start at the
geg 2 pEpSyT(ra,eJ) F mfm ESTthen e?trgest poss.iglebi[ime and they Eanrzjotl start earlier because
7) min_EST « EST(n, J), min_PE J, min_DNL « of the unavoidable communication delays.

DNL(n, J) o2

8) endif o —
9) end while
21%)) Duplicate nodes omin_PEaccording tanin_DNL
(11) Scheduley to min_PEwith ST(n, min_PE)~ min_EST

Attempt_Duplicatiorworks by constructing a stack of o U
candidate processors to find the one which gives the lower
bound start time of n. The complexity of e |
Attempt_Duplicationis determined as follows. Step 5is ([200 (55
the dominant step. This step tak@&n)time. There are at
mostO(p) execution of this stephus, the complexity of
Attempt_Duplications O(pen) oo™
Trace_Ancestor(p):
(1) while there exists unscheduled parent node db
(2) n, < an unscheduled parent nodenpf ® ®
3) T'?ace_Ancestorg)
(4) end while Figure 1: (a) A randomly generated task graph; (b) The best
(5) Attempt_Duplication(j) possible schedule without duplication (schedule length = 301).

Trace_Ancestoworks by recursively scheduling all
the parent nodes (and other ancestor nodes as well) before The schedule generated by DSH/HLFET is shown in
scheduling; itself. The complexity offrace_Ancestois Figure 2(a). The communication edges are not shown for
O(mpen)if there areO(m) unscheduled ancestor nodes. clarity. The schedule length is 275 time units. The problem
Based onAttempt_Duplicationand Trace_Ancestorthe with the DSH algorithm is revealed by the scheduling of

CPFD algorithm is formalized below. n,e. If no parent node is duplicated to PE 3, the start time

The CPFD Algorithm: of n,, will be at time 248. Thusn; is duplicated to

(1) Determine a CP. Break ties by selecting the one with aprocessor PE 3 and the start timerg§ reduces to 220.
larger sum of computation costs. However,n, is not duplicated to PE 3 because this would

(2) for each CPNy (start from the entry nodelp increase the start time of and hence that afi,, to time

(3) Trace_Ancestor(n 169 and time 242 respectively. Thus, according to the DSH

(4) end for algorithm,n, is not duplicated and the duplication process

(5) Perform OBN Binding . - .
(6) for each OBNn, (start from the one with the highest terminates at that point. On the other handp,ifis also

priority) do duplicated to PE 3, the start time of, n; andny, will be
(7) ~ Trace_Ancestor(h reduced dramatically. This can be seen from the schedule
(8) endfor— generated by BTDH/HLFET shown in Figure 2(b).
The complexity of the CPFD algorithm B(perf) as However, the schedule produced by BTDH/HLFET is still

Table I: A performance comparison of the three scheduling algorithms.

0 —
[The worst % degradation in schedule Tefgth—
[The maximum% improvement in schedule len
100 = [The average% improvement in schedule Tekgth
@ UMber of iMes it performs the sal
umbper or times It perrorms wor,
200 [NUMDET of iMes 1t performs better
- I | 1
20 o1 3 4 63 | 010 | 037 | 076
05 12 0 58 057 | 248 | None
0o — .
BTDH 1.0 16 2 52 162 | 419 | 033
compared &l 1s 5 0 55 | 217 | 689 | None
with O %o 22 1 7 | 279 | 78 | 1.39
100 |— DSH
® 50 26 0 44 6.19 | 17.74 | None
100 30 0 40 892 | 19.07 | None
00— 01 27 0 43 156 | 548 | None
CPED 05 39 0 31 266 | 6.40 | None
250 [compared 1.0 56 0 14 472 8.93 None
with & 15 54 0 16 6.07 | 12.83 [None
o[DSH (@]
2.0 52 0 18 7.35 | 13.63 | None
5.0 42 0 28 749 | 17.99 | None
100 — 10.0 45 0 25 10.47 | 20.54 | None
© 0.1 27 0 43 166 | 536 | None
CPFD 0.5 34 0 36 211 4.85 None
| compared 1.0 43 0 27 311 | 587 | None
200 with
@ 15 43 0 27 3.92 751 None
BTDH Q
250 — o 20 42 0 28 456 | 863 None
Figure 2: Schedules of the random task graph generated by (a) DSH/ 5.0 28 0 42 133 | 382 | None
HLFET (schedule length = 275); (b) BTDH/HLFET (schedule length = 10.0 28 0 42 191 | 531 | None
258); (c) CPFD (schedule length = 246).

randomly such that the average CCR of the graph
not the best. Consider the nodes assigned to PE 1corresponds to one of the seven values of CCR described

Although the parent nodes andn,, are duplicated to PE above.

1, the start time of is still not improved because it hasto 4.2 Relative Performance _

wait for the data frorm;. The noden; is not duplicated Table | summarizes the relative performance of the
since the time slot on PE 1 is not large enough toDSH, BTDH and CPFD algorithms in terms of the
accommodate it. The schedule produced by CPFD isschedule lengths produced for the suite of task graphs.
shown in Figure 2(c). The schedule length is 246 time unitsThere are three types of comparisons given in this table.
which is the best possible. All nodes are able to start at théirst, we use DSH as the reference and compare the
earliest possible times due to proper duplication. Theperformance of BTDH and CPFD relative to it. Next, we
problems with DSH and BTDH do not occur with the compare the performance of CPFD with BTDH. For each
CPFD algorithm. comparison, there are seven rows in the table, with each
4 Performance and Comparison row corresponding to results of running the scheduling

To test and compare the performance of the propose@gor'thms on 70 different task graphs for that value of

scheduling algorithm, we generated a suite of task graph eCr%rrIQﬁ Cgrs(';ft?rrlge S%%':&“ﬁ 'ng;cgﬁﬁhtr?é ?r? Tgﬁ;gt'\g?
Our objective is to compare the schedule lengths produce chedule lenaths of these 70 gra k?s For examble. when
by all three algorithms for various graph structures, 9 grapns. pe,

- o TDH is compared with DSH when CCR is equal to 0.1
different values of CCR and the task graph size in terms o . : g !
the number of nodes. he first row in the table indicates that BTDH generated a

4.1 Workload shorter schedule length on 3 graphs, generated a longer

. . chedule on 4 graphs while the schedule length on 63
We generated task graphs with seven different types OSraphs was the same for both algorithms. Similarly, the

structures: completely random graphs, in-tree graphs, OUtreyi three columns indicate the average percentage
tree graphs, fork-join graphs and task graphs correspond ty,5-6vement, maximum percentage improvement and
three parallel algorithms — Gaussian elimination, LU- 5erage percentage degradation in the schedule length
decomposition and Laplace Equation Solver. Within eachyqquced by BTDH over DSH. These numbers have been
type of graph structure, we chose seven values of CC'{aken across the schedule lengths of 70 graphs for each
which are 0.1, 0.5, 1.0, 1.5, 2.0, 5.0 and 10.0. For each 0{ 5y of CCR. An inspection of Table | reveals that BTDH
the seven values of CCR, we generated 10 different graphgerforms increasingly better than DSH for higher values of
with the number of nodes varying from 10 to 100 with an ccR. Also. BTDH yields better value of the average
increment of 10. This implies that for each value of CCR, ercéntage' improvement and maximum percentage
there are 70 graphs, and the total number of graphs is 49Gy5r6vements. However, there are occasional cases when

For each graph, the weights of the nodes and thesTpH performs worse than DSH. When CPFD is
communication edges are different and have been chosen

compared against DSH, it is immediately apparent that the
number of times it performs better is increased not only for
the larger values of CCR but also for smaller values of 2
CCR. The average improvement in the schedule varies:
from 1.56 to 10.47%. The CPFD algorithm also 3
outperforms BTDH for all values of CCR. The average 5
percentage improvement in the schedule length varie&

1.7

CIDSH/HLFET
COBTDH/HLFET
ECPFD

from 1.33 to 4.56%. There is no single case out of 490
tests, where CPFD performs worse than DSH or BTDH.

4.3 Absolute Performance
The results providing the

relative performance
described above are supplemented by the results showing
the performance of each algorithm with respect to the
lower bound on the schedule length. This bound, which is
the sum of the computation costs of the nodes on the CP,

(9]
N

Norma

10 20 80 40 50 60 70 80 90 100
Number of Nodes

Figure 4: Normalized schedule lengths for each
algorithm with respect to the lower bound.

provides a lower limit on the schedule length. The lower5 Conclusions

bound, however, may not be achievable with any

Using task duplication in scheduling can be useful

scheduling algorithm and the optimal schedule length mayespecially when the CCR of a parallel algorithm on a given
well exceed this bound. When scheduling the test graphssystem is high. This is usually the case in distributed
we observed the number of times each algorithm producedystems such as cluster of workstations. Both DSH and
a schedule length equal to the lower bound. The bar chart8 TDH algorithms produce good solutions with the latter
shown in Figure 4 indicate the number of times lower outperforming the former when CCR is very high.

50

40f----

30 CIDSH/HLFET
CIBTDH/HLFET

ECPFD

20

However, the basic principle in both the algorithms is

essentially the same, that is, to duplicate a parent task if it
improves start time of a node. The proposed CPFD
algorithm which uses a new technique tries to start every
tasks at the earliest possible time from the beginning of the
scheduling process. The proposed algorithm outperforms
both of these algorithms without performing worse in any

of the 490 test cases. Moreover, it consistently performs

Number of Times Lower Bound Reached

0.1 0.5 1 15 2 5 10 [1]
CCR

Figure 3: The Number of times lower bound on
the schedule length achieved with each algorithm.

[2]
bound was achieved with each algorithm for different
values of CCR. Again, there are 70 test cases for each CCR
value. As expected, lower bound is more likely to be [3]
achieved when the value of CCR is low. One noticeable
point is that DSH rarely reaches the lower bound if the
value of CCR is 1.0 or higher. In contrast, BTDH is still [4]
able to achieve lower bound in 10 out of 70 test cases. The
CPFD algorithm, on the other hand, performs much better
than both DSH and BTDH at lower as well as higher
values of CCR. The CPFD algorithm achieved lower 5]
bounds on all out-tree graphs. Figure 4 shows the average
normalized schedule lengths produced by each aIgorithrrE6
with the number of nodes in each graph varying from 10 to]
100. The normalized schedule length, which is defined a%
the actual schedule length divided by the lower bound,]
increases a little bit with the graph size. This is because the
proportion of nodes which are not on the critical path 8]
slightly increases as the graph size increases. Thus, th%
lower bound, which is determined by the CP, becomes less
likely to reach. The performance of the CPFD algorithms
is consistently superior than the other two algorithms for[g)
different graph sizes. Furthermore, the difference between

better at low as well as high values of CCR.
References

Y.C. Chung and S. Ranka, “Application and Performance
Analysis of a Compile-Time Optimization Approach for
List Scheduling Algorithms on Distributed-Memory
Multiprocessors,” Proc. osupercomputing’92Nov. 1992,
pp.512-521.

M.R. Gary and D.S. Johnso@omputers and Intractability:

A Guide to the Theory of NP-Completene$879, W.H.
Freeman and Company.

T.C. Hu, “Parallel Sequencing and Assembly Line
Problems,” Oper. Researchvol. 19, no. 6, Nov. 1961,
pp.841-848.

S.J. Kim and C. Browne, “A General Approach to Mapping
of Parallel Computations upon Multiprocessor
Architectures,” Proc. ofnt’l Conf. on Parallel Processig,
vol. 3, Aug. 1988, pp.1-8.

B. Kruatrachue and T.G. Lewis, “Grain Size Determination
for Parallel ProcessingfEEE SoftwareJan. 1988, pp.23-
32.

T.G.Lewis and H.EI-Rewini, Introduction to Parallel
Computing Prentice-Hall, 1992, New York.

C. Papadimitriou and M. Yannakakis, “Toward an
Architecture Independent Analysis of Parallel Algorithms,”
SIAM Journal of Computingol. 19, 1990, pp. 322-328.
C.V. Ramamoorthy, K.M. Chandy and M.J. Gonzalez,
“Optimal Scheduling Strategies in a Multiprocessor
System,”IEEE Trans. on Computersol. C-21, Feb. 1972,
pp.137-146.

V. Sarkar, Partitioning and Scheduling Parallel Programs
for Multiprocessors1989, MIT Press, Cambridge, MA.

the norma“zed SChedU|e Iength Of CPFD and the Othel’ thlO] G. S|h and E. Lee’ “Dec|ustering: A New Mumprocessor

algorithms tends to increase for larger graphs.

Scheduling Technique,JEEE Trans. on Parallel and
Distributed Systemwol. 4, no. 6, Jun. 1993, pp.625-637.

