
An Experimental Assessment of Express Parallel Programming Environment

Ishfaq Ahmad*, Min-You Wu**, Jaehyung Yang*** and Arif Ghafoor***

*Hong Kong University of Science and Technology, Hong Kong
*Department of Computer Science, State University of New York, Buffalo, N Y

***School of Electrical Engineering, Purdue University, West Lafayette, IN 47907
Abstract

This paper describes a performance evaluation study of Ex-
press programming environment on the iPSC1860 hypercube com-
puter. Express allows parallel programs to be developed in a com-
pletely portable fashion and is available on most commercially
available parallel computers as well as networks of workstations.
We have developed a set of benchmarks to make a comprehensive
performance assessment of the frequently used communication
primitives of Express on hypercube computers. A comparison
with the equivalent iPSCI860 primitives is also carried out. In ad-
dition, we have developed and benchmarked a suite of applica-
tions including three different versions of Gaussian elimination,
fast Fourier transform, and the N-body problem. These results help
us evaluate the performance of Express and judge its merits
against the extra overhead incurred due to portability, and can be
useful for designing new generations of portable programming en-
vironments. Furthermore, algorithm developers can benefit from
these results by using the times required by the basic communica-
tion primitives on the iPSC1860 system with and without Express,
and can automate performance estimation by using these timings.

1 Introduction
The lack of desired progress in software for parallel computers

might be attributed to the fact that there is no unified programming
model and that parallelism can be achieved with a variety of para-
digms. There also exists the problem of portability - it is distress-
ing to repeat the implementation work on a new machine. A few
noteworthy efforts have been made to deal with such issues. These
include PVM [14], Linda [l], PICL [6] and Express [12]. These
systems allow parallel programs to be developed using C or For-
tran by including their message-passing library routines.

Express from Parasoft Corporation is a software programming
environment for writing parallel programs for MIMD multiproc-
essors. Programs can be written using SPMD or pure MIMD par-
adigms for shared-memory and message passing multiprocessors
as well as distributed multicomputers. As illustrated in Figure 1,
Express provides a nunber of utilities. These include a communi-
cation system for communicating processes, mechanisms for data
sharing, reading files, debugging tools, and performance analyz-
ing tools. In addition, it has features such as automatic domain de-
composition library which can map physical domain of the prob-
lem onto the underlying topology of the parallel or distributed
computing system. The performance evaluation tools, using text
and graphics, can be effectively used to analyze the run-time per-
formance of the program.

Express has been implemented on a variety of machines in-
cluding Alliant, BBN Butterfly, nCUBE, Symult, Intel iPSC12 and
iPSC1860 hypercubes, Intel Paragon, Thinking Machine’s CM-5,
KSR- 1, and transputer arrays. The network version of Express al-
lows a network of workstations to be used as a virtual parallel ma-
chine. It has been implemented on DEC, HP, IBM/RS6000, SGI,

Figure 1 : Express utilities

Sun and PC’s. Reportedly, over 1000 sites world-wide use Ex-
press. From user’s stand point, Express is completely portable.
That is, a program written for one machine can run on any other
machine that has Express without any sort of modification in the
source code. The flexibility of Express makes it an attractive tool
set for developing and running parallel programs on different plat-
forms. Languages supported by Express include C and Fortran.

A key measure of the usefulness of programming tools like
Express is the execution speed of the basic primitives which are
frequently used in programs. Since Express provides portability
with a rich set of utility functions, the cost is larger overhead in-
curred due to the translation of high level primitives to the local
machine level functions. We have evaluated the performance of
some of the basic primitives of Express, running on the iPSC1860.
This performance is influenced not only by the implementation of
Express primitives but also by the underlying hardware of the two
systems. These performance results are important for a number of
reasons. In addition, these results can be useful for compiler writ-
ers for parallel processors. Algorithm developers can also benefit
from these results by understanding the overheads incurred by ba-
sic communication primitives on the iPSC1860 hypercube with
and without Express, and can automate performance estimation by
using these timings [151.

2 History and Overview of Express
The history of Express can be traced back to the CaltecWJPL

machines, including the first hypercubes (the Cosmic Cube and
Mark 11), developed in the early eighties [131. Initially, a so called
“operating system” known as CrOS (Crystalline Operating sys-
tem) consisting of a few message passing primitives was the only
support that was available to derive those machines [4]. The need
for efficient solutions of a number of scientific problems led to the
incorporation of a number of message passing primitives, such as
broadcast and concatenation, into CrOS. The advanced version of
this operating system, called CrOS 111, was implemented on the
Mark I11 hypercube [5] . To remove from the user the burden of
writing host programs, a system known as “c3po” was developed
which provided a shell based generic host program. A more so-

0-8186-6902-0195 $4.00 0 1995 IEEE
200

phisticated version of the system, called Cubix, allowed opening,
reading and writing files and interfacing with the user in a host-
free programming style. By the end of 1987, the group of research-
ers who developed these systems started Parasoft Corporation. Ex-
press, one of the commercial product of Parasoft Corporation is an
integrated software package developed as a result of their research
efforts at Caltech.

3 Test Environment
For performance evaluation, we used two commercially avail-

able parallel computers from Intel, the iPSC/860 at Caltech’s Con-
current Supercomputing Center. The operating system on nodes is
NX (Node executive) developed by Intel [7]. Details of the iPSC/
860 node architectures can be found in [9]. The summary of some
of the architectural features of the computer we used is given in
Table 1.

Some performance results showing the computational opera-
tions on the iPSC/860 can be found in [9]. All of our programs
have been written in Fortran. For communications tests, every
point in each test is the result of taking the average of a large
number of repetitions. For small data sizes, we have used 1000
repetitions to improve the accuracy, while for larger messages, the
number of repetitions has been varied from 100 to 200. The node
clock has a resolution of 1 microsecond.

Table 1 : Configurations of the iPSCl860 used in the experiments.

Number of nodes
Node CPU
Clock Frequency
Cache Memorylnode
Main Memorylnode 8 Mb
Express Version
iPSC Node OlS
Express Version 3.1

NX/2 (rel. 3.2)

4 Communication Performance
The basic communication tests include one-to-one communi-

cation among nearest neighbors, multi-hop communication, and
broadcast. The results of our benchmark programs for these tests
are provided in the following sections.

4.1 One-to-one Communication
For measuring the communication speed between two nodes,

we performed the standard echo test. In the echo test, the commu-
nication time between sending and receiving processors is meas-
ured by starting a clock at the sending processor and then invoking
the send and receive routines to send out a message and wait for a
reply. On the destination processor, receive and send routines are
used to echo this message back to the sending processor. This
process is repeated n number of times and the clock is then
stopped. The communication time is then taken as elapsed time di-
vided by 2n.

It is well known that on the iPSC/860 hypercube, there are two
different protocols used for sending small and large messages [2],
[3]. The time for one-to-one communication can be described by
the following equation.

Tsrorrup + B x Trransmission + h x d
where B is the message length in number of bytes, Tst is the

latency incurred due to the time required to set up the communica-
tion request, TfrUnSmlSSlOn is the transmission time for one byte, d

is the hop distance between the sending and receiving nodes and h
is the extra time for each traversing each hop. These parameters for
the iPSC/860, with Express and NX, are shown in Table 2 for
0 < B 5 100 and B > 100, respectively.

From Table 2, it can be seen that the start-up latency, Tsrarrup,
for sending small messages on the iPSC/860 is 62.5 microseconds
using NX and 80.05 microseconds using Express- a difference of

Table 2 : Communication parameters for node-to-node message passing

Small messages Large messages

sforfup 80.05 147.0

rronsmission 0.431 0.421 0.394 0.394
I I

I h I 10.12 1 10.0 I 30.38 I 29.29 I

18 microseconds. We also observe that the difference in
T,,onsmission of Express and NX is not very large. Using Express,
additional 0.12 microseconds account for each hop distance be-
tween two nodes. For messages of more than 100 bytes, the dif-
ference in TsfoTrUp using NX and Express is 13.5 microseconds.
Trransmission on the iPSC/860 is the same for NX and Express. The
difference in h for Express and NX on both systems is negligible.

Figure](a) shows the plots of times required for one-to-one
communication between directly connected processors for mes-
sage sizes ranging from 0 to 200 bytes. Inspection of these plots
reveals that Express is slower than NX by a factor of about 14 to
20%. Figure 1 (b) and Figure 1 (c) show the result for message siz-
es of 200 to IO00 bytes and IO00 to 16O00 bytes, respectively. Rel-
atively, the overhead of using Express is negligible and the spac-
ing between the plots of NX is constant. Figure 1 (d) illustrates
plots of times required for communication between nodes that are
at 2, 3, 4 and 5 hop distance. Using NX, the spacing of curves is
10 microseconds for messages of length up to 100 bytes and about
30 microseconds for messages of length greater than 100. As de-
scribed earlier, the amount of spacing is slightly larger for Express
(1 to 2%).

4.2 The Broadcast Operation
Broadcast is performed to do broadcasting operations among

the nodes and to and from the host node. It is used in various linear
algebra algorithms, matrix-vector multiplication, matrix-matrix
multiplication, LU-factorization, [8] etc. Figure 3(a) to Figure 3(d)
show the timings of broadcasting for various message sizes. The
number of nodes in this case has been chosen as 4. The inspection
of these figures indicates that, for small messages, Express is
about 10% slower than NX. For medium messages, compared to
NX, the broadcast operation of Express is again about 10% slower.
For very large messages, the difference is less than 1%. From Fig-
ure 3(d), we observe that the curves for Express are shifted a little
bit upwards compared to NX but are equally spaced implying that
extra overhead of Express’s broadcast primitive is not a function
of number of processors.

4.3 Global Communication
In global communication, all the nodes participate in some op-

eration. The reduction operations and concatenation operations are
two examples that require global communication. Global opera-

201

0 x) U I I o U&--, tm m ,110 100

Figure 2(a): Tim- for one-to-one communication for
small size messages with Express and NX primitives..

0.
I

f

Figure I(b): Times for one-to-one communication for
medium size messages with Express and NX primitives.

I . , . , , , , I
IC02 lorn ncca mb*ymo*,"mo I x m r 6 o w

Figure I(c): Times for one-to-one communication for large
size messages with Express and NX primitives.

0 76
I

Figure I(d): Times for one-to-one communication between nodes
at various bop distances (HD) with Express and NX primioves.

Figure 3(a): Times for broadcasting to 4
processors for small size messages.

Figure 2(b): Times for broadcasting
processors for medium size messages.

to 4

0 Icm xm smo 7- om0 llmo l p m 1-

y....p80.(W)

Figure 2(c): Times for broadcasting from one
processor to 4 processors for large size messages

Figure 2(d): Times for broadcasting from one processor to 8,
16 and 32 processors for medium size messages

202

tions for producing reduction across all the nodes are frequently
used in parallel programs. A reduction operation takes as input a
value in each processor and outputs a single value in every proc-
essor. There can be many types of reduction operations such as
add, prod, w, min, and, or , xor, etc. While NX provides dif-
ferent calls for each of such operations, Express has a unified func-
tion for performing reduction operations. The timing results for a
selected set of data points for global sum are provided in Table 3.
The data set includes times to perform these operations on 1 ,2 ,4 ,
and 26 words. The results are repeated for 8,16 and 32 processors.

Table 3 Times for global sum (milliseconds)

I I 26 I 1.819 I 1.045 I 1.829 I 1.107 I 1.823 I 1.101

1 I I 0.797 I 0.5Y7 I 0.809 1 0.606 I 0.811 I 0.598

5 Evaluation with an Application Benchmark Suite
In order to compare the performance of Express and NX sys-

tems with real applications, we have implemented an application
benchmark suite. The applications in the benchmark suite include
three different versions of Gaussian elimination, fast Fourier trans-
form and the N-body problem.These algorithms have been coded
using Express and NX primitives on the iPSCB60. We have ob-
tained the execution times of these programs on 1 ,2 ,4 ,8 , 16 and
32 nodes. The execution time of a program is taken as the maxi-
mum of all the nodes. The results are given in the following sec-
tions.

5.1 Gaussian Elimination (Row-block Partitioning)
The three versions of Gaussian elimination for solving linear

equations are based on partial pivoting algorithm. We have used
different techniques to partition the data across processors. As a
result, the algorithms used in these versions are quite different. In
this section, we present the results of the first version of Gaussian
elimination. In this version, the data has been partitioned in blocks
of rows, that is, an equal number of contiguous rows of the coeffi-
cient matrix are assigned to each processor.

The execution times of Gaussian elimination with row-block
partitioning using Express with various matrix sizes and number
of processors are shown in Table 5. The corresponding execution
times using NX are shown in the parenthesis. This table also indi-
cates the times for serial execution of Gaussian elimination using
one processor. As can be seen, the execution times for the Express
version exhibit gain in speedup if the number of processors are in-
creased from 1 to 16. The speedup is better if the matrix size is
large. However, the execution times start increasing if 32 proces-

sors are used. On the other hand, the NX version still yields some
speedup with 32 processors. Express performs poorly with large
number of processors. One can also observe that Express performs
better for larger data sizes. The poor performance of Express with
large number of processors is due to a number of factors. First, the
algorithm used in this implementation makes an extensive use of
broadcast operations for sending the pivot row to other processors.
Second, no optimizations are made in communication calls to ex-
ploit the hypercube topology. As a result, the algorithm uses a
number of global operations which are quite slow with Express.
Finally, for small matrices and large number of processors, the
grain sizes become small. Then the impact of large overhead in
Express makes it significantly slower than NX.

Table 4 Timings (seconds) for row-partitioned Gaussian elimination
The values in parenthesis are the execution times using NX.

5.2 Gaussian Elimination (Column-block Partitioning)
In this version of Gaussian elimination, the data is partitioned

across processors in terms of blocks of columns. Table 5 shows the
executions times for this algorithm. It can be noticed that the exe-
cution times in this case are significantly greater than those of the
row-block partitioning algorithms. This is due to the fact that in
the row-block partitioning algorithm, the determination of the piv-
oting row is done in parallel. On the other hand, column-block par-
titioning algorithm performs this step serially. Again, Express is
shown to perform well for large matrices if the number of proces-
sors is between 2 and 16, but performs poorly for 32 processors.
For smaller matrices, Express is 3 to 4 times slower than NX.

Table 5 Timings (seconds) for column-block partitioned Gaussian
elimination. The values in parenthesis are the execution times using NX.

5.3. Gaussian Elimination (Column-scatter
Partitioning)

In this version, the data is partitioned using cyclic distribution
of the columns of the coefficient matrix. The results are given in
Table 5 which indicate that this algorithm performs better than
column-block partitioning but worse than row-block partitioning.
This is due to the fact that column-scatter partitioning can balance
load well, and as a result improve performance. However, it re-
quires excessive exchanges of messages which can delay the exe-
cution. When the matrix size is small and the number of processors
is large, the benefit of load balancing is small compared to extra
cost of communication.

203

Table 6 Timings (seconds) for column-scattered partitioned Gaussian
elimination. The values in parenthesis are the execution times using NX.

5.4 Fast Fourier Transform
For the fast Fourier transform (m, we used the algorithm

given in [5] with modification. For N points, the algorithms’s
complexity is N (logN) . The two dimensional matrix is parti-
tioned across nodes in a row orientation style. The algorithm
works by transforming the rows first, then transposing the rows

‘with columns, transforming the columns and so on. We applied
vector communication and reduced repeated computation.

Table 7 shows the execution times for inputs ranging in size
from 2k to 64k using various number of processors. The perform-
ance differences between Express and NX are found to be very
small. This is due to the fact that FFT has a very regular commu-
nication pattem. Due to smaller number of communication opera-
tions, the problem granularity is large and the effect of extra over-
head of Express is substantially-low.

Table 7 Timings (seconds) for fast Fourier transform.

I

64k

3 2

I 18.989 (18.507) 12.271 (12.036) 8.768 (8.688) 16.956 (6.939) 16.078 (5.987)
18.822 (8.614) 15.738 (5.658) 14.1 15 (4.107) 13.325 (3.262) 12.904 (2.818)

The program for the N-body problem has been written using
the algorithm reported in [5]. The algorithm used in this program
is the simple O(2) algorithm and not the more optimized
O(N (logN)) approach. The execution times for this problem are
shown in Table 8 using various number of bodies and processors.
The difference in the performance of Express and NX is insignifi-
cant if small number of processors are used. For 32 processors, the
performance difference is large for small problem sizes but de-
creases as the problem size is increased.

6 Conclusions
In this paper, we have examined one such popular software,

known as Express, by benchmarking its basic primitives on the
iPSU860. For one-to-one communication, the difference between

the timings of Express and NX on the iPSU860 is negligible and
is only about 15 to 20 microseconds. The difference in the trans-
mission times of Express and NX is not very large and the main
difference lies in latencies. For most of the primitives, the relative
performance of Express, compared to NX, decreases if data size is
increased. In other words, the relative degradation in performance
becomes negligible for very large data sizes. However, if an algo-
rithm requires a large number of small messages, its execution
time with Express can be considerably higher as compared to NX.
Express also tends. to become slower with an increase in the
number of processors. In general, when programming with small
granularity, Express shows significantly worse performance, but
with large granularity, Express and NX will perform almost the
same. From the performance results on the benchmark suite, we
also notice that Express does not scale very well with the increase
in number of processors. However, considering its functionality
and advantages of portability, the overhead of Express appears not
too large and is affordable.

References
S. Ahuja, N. Carrier0 and D. Gelemter, “Linda and Friends,”
IEEE Computer, no. 8, August 1986,
S . Bokhari, “Communication Overhead on the Intel iPSU
860 Hypercube,” ICASE Interim Report 10 182055, NASA
Langley Research Center, Hampton, VA, May 1990.
T. H. Dunigan, “Performance of the Intel iPSU860 and
Ncube 6400 Hypercubes,” Parallel Computing, No. 17,

J. Flower and A. Kolawa, “A Packet History of Message
Passing Systems,” Parasoji Corporation, 1992.
G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.A.
Salmon, and D.A. Walker, Solving Problems on Concurrent
Processors, Volum I, Prentice Hall, 1988.
G.A. Geist, M.T. Heath, B.W. Peyton and P.H. Worley, A
UserS Guide to Picl. a Portable Instrumented
Communication Library, Technical Report ORNUIU-
11616, Oak Ridge National Laboratory, Oak Ridge, TN, Oct
1991.
Intel Corporation, iPSCL? and iPSC/860 Programmers
Reference Manual, June 1990.
S. L. Johnson and C.T. Ho, “Optimal Broadcasting and
Personalized Communication in hypercubes,” IEEE Tran. on
Computers, C-38, No. 9, Sept. 1989, pp. 1249-1268.
S.A. Moyer, “Performance of the iPSC/860 Node
Architecture,” Tech. Report IPC-TR-9 1-007, Institute of
Parallel Computations, University of Virginia, May 1991.

1991, North Holland, pp. 1285-1302.

[101 S.F. Nugent, ;‘The iPSU2 Direct-Connect Communications
Technology,” The Third Conference on Hypercube
Concurrent Computers and Applications, Vol. I, 1988, pp.

[1 11 Parasoft Corporation, Express, Fortran User’s Guide, 1990.
[121 Parasoft Corporation, Express Introductory Guide version

[13] C.L. Seitz, “The Cosmic Cube.” Communications of the

[141 V. Sunderam, “PVM: A Framework for Parallel Distributed
Computing,” Concurrency: Practice & Experience, Vol. 3,

[15] J. Yang, I. Ahmad and A. Ghafoor, “Estimation of Execution
Times on Heterogeneous Supercomputer Architectures,”
Int’l Conference on Parallel Procesing, 1993, pp. 1-219-226.

51-60.

3.2, 1992.

ACM, NO. 28, 1985, pp. 22-33.

NO. 4, Dec 1990, pp. 315-339.

204

