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Abstract 

This paper describes a performance evaluation study of Ex- 
press programming environment on the iPSC1860 hypercube com- 
puter. Express allows parallel programs to be developed in a com- 
pletely portable fashion and is available on most commercially 
available parallel computers as well as networks of workstations. 
We have developed a set of benchmarks to make a comprehensive 
performance assessment of the frequently used communication 
primitives of Express on hypercube computers. A comparison 
with the equivalent iPSCI860 primitives is also carried out. In ad- 
dition, we have developed and benchmarked a suite of applica- 
tions including three different versions of Gaussian elimination, 
fast Fourier transform, and the N-body problem. These results help 
us evaluate the performance of Express and judge its merits 
against the extra overhead incurred due to portability, and can be 
useful for designing new generations of portable programming en- 
vironments. Furthermore, algorithm developers can benefit from 
these results by using the times required by the basic communica- 
tion primitives on the iPSC1860 system with and without Express, 
and can automate performance estimation by using these timings. 

1 Introduction 
The lack of desired progress in software for parallel computers 

might be attributed to the fact that there is no unified programming 
model and that parallelism can be achieved with a variety of para- 
digms. There also exists the problem of portability - it is distress- 
ing to repeat the implementation work on a new machine. A few 
noteworthy efforts have been made to deal with such issues. These 
include PVM [14], Linda [l], PICL [6] and Express [12]. These 
systems allow parallel programs to be developed using C or For- 
tran by including their message-passing library routines. 

Express from Parasoft Corporation is a software programming 
environment for writing parallel programs for MIMD multiproc- 
essors. Programs can be written using SPMD or pure MIMD par- 
adigms for shared-memory and message passing multiprocessors 
as well as distributed multicomputers. As illustrated in Figure 1, 
Express provides a nunber of utilities. These include a communi- 
cation system for communicating processes, mechanisms for data 
sharing, reading files, debugging tools, and performance analyz- 
ing tools. In addition, it has features such as automatic domain de- 
composition library which can map physical domain of the prob- 
lem onto the underlying topology of the parallel or distributed 
computing system. The performance evaluation tools, using text 
and graphics, can be effectively used to analyze the run-time per- 
formance of the program. 

Express has been implemented on a variety of machines in- 
cluding Alliant, BBN Butterfly, nCUBE, Symult, Intel iPSC12 and 
iPSC1860 hypercubes, Intel Paragon, Thinking Machine’s CM-5, 
KSR- 1, and transputer arrays. The network version of Express al- 
lows a network of workstations to be used as a virtual parallel ma- 
chine. It has been implemented on DEC, HP, IBM/RS6000, SGI, 

Figure 1 : Express utilities 

Sun and PC’s. Reportedly, over 1000 sites world-wide use Ex- 
press. From user’s stand point, Express is completely portable. 
That is, a program written for one machine can run on any other 
machine that has Express without any sort of modification in the 
source code. The flexibility of Express makes it an attractive tool 
set for developing and running parallel programs on different plat- 
forms. Languages supported by Express include C and Fortran. 

A key measure of the usefulness of programming tools like 
Express is the execution speed of the basic primitives which are 
frequently used in programs. Since Express provides portability 
with a rich set of utility functions, the cost is larger overhead in- 
curred due to the translation of high level primitives to the local 
machine level functions. We have evaluated the performance of 
some of the basic primitives of Express, running on the iPSC1860. 
This performance is influenced not only by the implementation of 
Express primitives but also by the underlying hardware of the two 
systems. These performance results are important for a number of 
reasons. In addition, these results can be useful for compiler writ- 
ers for parallel processors. Algorithm developers can also benefit 
from these results by understanding the overheads incurred by ba- 
sic communication primitives on the iPSC1860 hypercube with 
and without Express, and can automate performance estimation by 
using these timings [ 151. 

2 History and Overview of Express 
The history of Express can be traced back to the CaltecWJPL 

machines, including the first hypercubes (the Cosmic Cube and 
Mark 11), developed in the early eighties [ 131. Initially, a so called 
“operating system” known as CrOS (Crystalline Operating sys- 
tem) consisting of a few message passing primitives was the only 
support that was available to derive those machines [4]. The need 
for efficient solutions of a number of scientific problems led to the 
incorporation of a number of message passing primitives, such as 
broadcast and concatenation, into CrOS. The advanced version of 
this operating system, called CrOS 111, was implemented on the 
Mark I11 hypercube [ 5 ] .  To remove from the user the burden of 
writing host programs, a system known as “c3po” was developed 
which provided a shell based generic host program. A more so- 

0-8186-6902-0195 $4.00 0 1995 IEEE 
200 



phisticated version of the system, called Cubix, allowed opening, 
reading and writing files and interfacing with the user in a host- 
free programming style. By the end of 1987, the group of research- 
ers who developed these systems started Parasoft Corporation. Ex- 
press, one of the commercial product of Parasoft Corporation is an 
integrated software package developed as a result of their research 
efforts at Caltech. 

3 Test Environment 
For performance evaluation, we used two commercially avail- 

able parallel computers from Intel, the iPSC/860 at Caltech’s Con- 
current Supercomputing Center. The operating system on nodes is 
NX (Node executive) developed by Intel [7]. Details of the iPSC/ 
860 node architectures can be found in [9]. The summary of some 
of the architectural features of the computer we used is given in 
Table 1. 

Some performance results showing the computational opera- 
tions on the iPSC/860 can be found in [9]. All of our programs 
have been written in Fortran. For communications tests, every 
point in each test is the result of taking the average of a large 
number of repetitions. For small data sizes, we have used 1000 
repetitions to improve the accuracy, while for larger messages, the 
number of repetitions has been varied from 100 to 200. The node 
clock has a resolution of 1 microsecond. 

Table 1 : Configurations of the iPSCl860 used in the experiments. 

Number of nodes 
Node CPU 
Clock Frequency 
Cache Memorylnode 
Main Memorylnode 8 Mb 
Express Version 
iPSC Node OlS 
Express Version 3.1 

NX/2 (rel. 3.2) 

4 Communication Performance 
The basic communication tests include one-to-one communi- 

cation among nearest neighbors, multi-hop communication, and 
broadcast. The results of our benchmark programs for these tests 
are provided in the following sections. 

4.1 One-to-one Communication 
For measuring the communication speed between two nodes, 

we performed the standard echo test. In the echo test, the commu- 
nication time between sending and receiving processors is meas- 
ured by starting a clock at the sending processor and then invoking 
the send and receive routines to send out a message and wait for a 
reply. On the destination processor, receive and send routines are 
used to echo this message back to the sending processor. This 
process is repeated n number of times and the clock is then 
stopped. The communication time is then taken as elapsed time di- 
vided by 2n. 

It is well known that on the iPSC/860 hypercube, there are two 
different protocols used for sending small and large messages [2], 
[3]. The time for one-to-one communication can be described by 
the following equation. 

Tsrorrup + B x Trransmission + h x d 
where B is the message length in number of bytes, Tst is the 

latency incurred due to the time required to set up the communica- 
tion request, TfrUnSmlSSlOn is the transmission time for one byte, d 

is the hop distance between the sending and receiving nodes and h 
is the extra time for each traversing each hop. These parameters for 
the iPSC/860, with Express and NX, are shown in Table 2 for 
0 < B 5 100 and B > 100, respectively. 

From Table 2, it can be seen that the start-up latency, Tsrarrup, 
for sending small messages on the iPSC/860 is 62.5 microseconds 
using NX and 80.05 microseconds using Express- a difference of 

Table 2 : Communication parameters for node-to-node message passing 

Small messages Large messages 

sforfup 80.05 147.0 

rronsmission 0.431 0.421 0.394 0.394 
I I 

I h  I 10.12 1 10.0 I 30.38 I 29.29 I 

18 microseconds. We also observe that the difference in 
T,,onsmission of Express and NX is not very large. Using Express, 
additional 0.12 microseconds account for each hop distance be- 
tween two nodes. For messages of more than 100 bytes, the dif- 
ference in TsfoTrUp using NX and Express is 13.5 microseconds. 
Trransmission on the iPSC/860 is the same for NX and Express. The 
difference in h for Express and NX on both systems is negligible. 

Figure ](a) shows the plots of times required for one-to-one 
communication between directly connected processors for mes- 
sage sizes ranging from 0 to 200 bytes. Inspection of these plots 
reveals that Express is slower than NX by a factor of about 14 to 
20%. Figure 1 (b) and Figure 1 (c) show the result for message siz- 
es of 200 to IO00 bytes and IO00 to 16O00 bytes, respectively. Rel- 
atively, the overhead of using Express is negligible and the spac- 
ing between the plots of NX is constant. Figure 1 (d) illustrates 
plots of times required for communication between nodes that are 
at 2, 3, 4 and 5 hop distance. Using NX, the spacing of curves is 
10 microseconds for messages of length up to 100 bytes and about 
30 microseconds for messages of length greater than 100. As de- 
scribed earlier, the amount of spacing is slightly larger for Express 
( 1  to 2%). 

4.2 The Broadcast Operation 
Broadcast is performed to do broadcasting operations among 

the nodes and to and from the host node. It is used in various linear 
algebra algorithms, matrix-vector multiplication, matrix-matrix 
multiplication, LU-factorization, [8] etc. Figure 3(a) to Figure 3(d) 
show the timings of broadcasting for various message sizes. The 
number of nodes in this case has been chosen as 4. The inspection 
of these figures indicates that, for small messages, Express is 
about 10% slower than NX. For medium messages, compared to 
NX, the broadcast operation of Express is again about 10% slower. 
For very large messages, the difference is less than 1%. From Fig- 
ure 3(d), we observe that the curves for Express are shifted a little 
bit upwards compared to NX but are equally spaced implying that 
extra overhead of Express’s broadcast primitive is not a function 
of number of processors. 

4.3 Global Communication 
In global communication, all the nodes participate in some op- 

eration. The reduction operations and concatenation operations are 
two examples that require global communication. Global opera- 
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Figure 2(a): Tim- for one-to-one communication for 
small size messages with Express and NX primitives.. 
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Figure I(b): Times for one-to-one communication for 
medium size messages with Express and NX primitives. 
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Figure I(c): Times for one-to-one communication for large 
size messages with Express and NX primitives. 
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Figure I(d): Times for one-to-one communication between nodes 
at various bop distances (HD) with Express and NX primioves. 

Figure 3(a): Times for broadcasting to 4 
processors for small size messages. 

Figure 2(b): Times for broadcasting 
processors for medium size messages. 
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Figure 2(c): Times for broadcasting from one 
processor to 4 processors for large size messages 

Figure 2(d): Times for broadcasting from one processor to 8, 
16 and 32 processors for medium size messages 
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tions for producing reduction across all the nodes are frequently 
used in parallel programs. A reduction operation takes as input a 
value in each processor and outputs a single value in every proc- 
essor. There can be many types of reduction operations such as 
add, prod, w, min, and, or ,  xor, etc. While NX provides dif- 
ferent calls for each of such operations, Express has a unified func- 
tion for performing reduction operations. The timing results for a 
selected set of data points for global sum are provided in Table 3. 
The data set includes times to perform these operations on 1 ,2 ,4 ,  
and 26 words. The results are repeated for 8,16 and 32 processors. 

Table 3 Times for global sum (milliseconds) 

I I 26 I 1.819 I 1.045 I 1.829 I 1.107 I 1.823 I 1.101 

1 I I 0.797 I 0.5Y7 I 0.809 1 0.606 I 0.811 I 0.598 

5 Evaluation with an Application Benchmark Suite 
In order to compare the performance of Express and NX sys- 

tems with real applications, we have implemented an application 
benchmark suite. The applications in the benchmark suite include 
three different versions of Gaussian elimination, fast Fourier trans- 
form and the N-body problem.These algorithms have been coded 
using Express and NX primitives on the iPSCB60. We have ob- 
tained the execution times of these programs on 1 ,2 ,4 ,8 ,  16 and 
32 nodes. The execution time of a program is taken as the maxi- 
mum of all the nodes. The results are given in the following sec- 
tions. 

5.1 Gaussian Elimination (Row-block Partitioning) 
The three versions of Gaussian elimination for solving linear 

equations are based on partial pivoting algorithm. We have used 
different techniques to partition the data across processors. As a 
result, the algorithms used in these versions are quite different. In 
this section, we present the results of the first version of Gaussian 
elimination. In this version, the data has been partitioned in blocks 
of rows, that is, an equal number of contiguous rows of the coeffi- 
cient matrix are assigned to each processor. 

The execution times of Gaussian elimination with row-block 
partitioning using Express with various matrix sizes and number 
of processors are shown in Table 5. The corresponding execution 
times using NX are shown in the parenthesis. This table also indi- 
cates the times for serial execution of Gaussian elimination using 
one processor. As can be seen, the execution times for the Express 
version exhibit gain in speedup if the number of processors are in- 
creased from 1 to 16. The speedup is better if the matrix size is 
large. However, the execution times start increasing if 32 proces- 

sors are used. On the other hand, the NX version still yields some 
speedup with 32 processors. Express performs poorly with large 
number of processors. One can also observe that Express performs 
better for larger data sizes. The poor performance of Express with 
large number of processors is due to a number of factors. First, the 
algorithm used in this implementation makes an extensive use of 
broadcast operations for sending the pivot row to other processors. 
Second, no optimizations are made in communication calls to ex- 
ploit the hypercube topology. As a result, the algorithm uses a 
number of global operations which are quite slow with Express. 
Finally, for small matrices and large number of processors, the 
grain sizes become small. Then the impact of large overhead in 
Express makes it significantly slower than NX. 

Table 4 Timings (seconds) for row-partitioned Gaussian elimination 
The values in parenthesis are the execution times using NX. 

5.2 Gaussian Elimination (Column-block Partitioning) 
In this version of Gaussian elimination, the data is partitioned 

across processors in terms of blocks of columns. Table 5 shows the 
executions times for this algorithm. It can be noticed that the exe- 
cution times in this case are significantly greater than those of the 
row-block partitioning algorithms. This is due to the fact that in 
the row-block partitioning algorithm, the determination of the piv- 
oting row is done in parallel. On the other hand, column-block par- 
titioning algorithm performs this step serially. Again, Express is 
shown to perform well for large matrices if the number of proces- 
sors is between 2 and 16, but performs poorly for 32 processors. 
For smaller matrices, Express is 3 to 4 times slower than NX. 

Table 5 Timings (seconds) for column-block partitioned Gaussian 
elimination. The values in parenthesis are the execution times using NX. 

5.3. Gaussian Elimination (Column-scatter 
Partitioning) 

In this version, the data is partitioned using cyclic distribution 
of the columns of the coefficient matrix. The results are given in 
Table 5 which indicate that this algorithm performs better than 
column-block partitioning but worse than row-block partitioning. 
This is due to the fact that column-scatter partitioning can balance 
load well, and as a result improve performance. However, it re- 
quires excessive exchanges of messages which can delay the exe- 
cution. When the matrix size is small and the number of processors 
is large, the benefit of load balancing is small compared to extra 
cost of communication. 
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Table 6 Timings (seconds) for column-scattered partitioned Gaussian 
elimination. The values in parenthesis are the execution times using NX. 

5.4 Fast Fourier Transform 
For the fast Fourier transform (m, we used the algorithm 

given in [5] with modification. For N points, the algorithms’s 
complexity is N (logN) . The two dimensional matrix is parti- 
tioned across nodes in a row orientation style. The algorithm 
works by transforming the rows first, then transposing the rows 

‘with columns, transforming the columns and so on. We applied 
vector communication and reduced repeated computation. 

Table 7 shows the execution times for inputs ranging in size 
from 2k to 64k using various number of processors. The perform- 
ance differences between Express and NX are found to be very 
small. This is due to the fact that FFT has a very regular commu- 
nication pattem. Due to smaller number of communication opera- 
tions, the problem granularity is large and the effect of extra over- 
head of Express is substantially-low. 

Table 7 Timings (seconds) for fast Fourier transform. 

I 

64k 

3 2  

I 18.989 (18.507) 12.271 (12.036) 8.768 (8.688) 16.956 (6.939) 16.078 (5.987) 
18.822 (8.614) 15.738 (5.658) 14.1 15 (4.107) 13.325 (3.262) 12.904 (2.818) 

The program for the N-body problem has been written using 
the algorithm reported in [5]. The algorithm used in this program 
is the simple O( 2) algorithm and not the more optimized 
O( N (logN)) approach. The execution times for this problem are 
shown in Table 8 using various number of bodies and processors. 
The difference in the performance of Express and NX is insignifi- 
cant if small number of processors are used. For 32 processors, the 
performance difference is large for small problem sizes but de- 
creases as the problem size is increased. 

6 Conclusions 
In this paper, we have examined one such popular software, 

known as Express, by benchmarking its basic primitives on the 
iPSU860. For one-to-one communication, the difference between 

the timings of Express and NX on the iPSU860 is negligible and 
is only about 15 to 20 microseconds. The difference in the trans- 
mission times of Express and NX is not very large and the main 
difference lies in latencies. For most of the primitives, the relative 
performance of Express, compared to NX, decreases if data size is 
increased. In other words, the relative degradation in performance 
becomes negligible for very large data sizes. However, if an algo- 
rithm requires a large number of small messages, its execution 
time with Express can be considerably higher as compared to NX. 
Express also tends. to become slower with an increase in the 
number of processors. In general, when programming with small 
granularity, Express shows significantly worse performance, but 
with large granularity, Express and NX will perform almost the 
same. From the performance results on the benchmark suite, we 
also notice that Express does not scale very well with the increase 
in number of processors. However, considering its functionality 
and advantages of portability, the overhead of Express appears not 
too large and is affordable. 
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