A Parallel Approach for Multiprocessor Scheduling

Ishfaq Ahmad and Yu-Kwong Kwok

Department of Computer Science
The Hong Kong University of Science and Technology, Hong Kong

Abstract!

The objective of this research is to propose a low-
complexity static scheduling and allocation algorithm for
message-passing architectures by considering factors
such as communication delays, link contention, message
routing and network topology. As opposed to the
conventional list-scheduling approach, our technique
works by first serializing the tas/cp graph and “injecting”
all the tasks to one processor. The parallel tasks are then
‘bubbled up' to other processors and are inserted at
appropriate time slots. The edges among the tasks are
also scheduled by treating communication links between
the processors as resources. The proposed approach rakes
into account the link contention and underlying
communication routing strategy, and can self-adjust on
regular as well as arbitrary network topologies. To reduce
the complexity, our scheduling algorithm is itself
purallelized. To our knowledge, this is the first attempt in
designing a parallel algorithm for scheduling. The
proposed approach implemented on an iPSC/860
hypercube, while vielding a high speedup in its execution,
performs considerably better under a wide range of
parameters including the task graph size, communication-
to-computation ratio, and the target system topology.
Comparisons are made with two other approaches.

1 Introduction

Scheduling of parallel programs represented by
directed acyclic graphs (DAG) is an NP-complete problem
in its general forms [4]. As a result, there has been a
considerable research effort in designing efficient heuristic
algorithms. Various heuristics using techniques such as list
scheduling {61, [8], [11]. [12]. critical path methods |1],
121, [8], [10], clustering [S], [9], [11], [14], etc.. have been
proposed showing satisfactory performance. From a
practical standpoint, however, there are two fundamental
issues that need to be addressed: (i) does the heuristic make
realistic assumptions and is it sophisticated enough to
capture the architectural details of the system? and (ii)
does the complexity of the heuristic permit it to be
practically used for scheduling large task graphs?

The tirst question relates to the assumptions made by
the scheduling algorithm about the program tasks and
architecture models. Earlier scheduling heuristics 1], (2],
{7] made simplifying assumptions such as equal times for
all the nodes in the task graph, and ignoring the
communication delays among tasks. The second question
which is related to the complexity of the heuristic is an
important consideration. In order to be of practical use, a
scheduling algorithm must have low complexity. Most
previous algorithms are evaluated by applying them on
ta-k graphs with a small number of nodes. In practice, a
scheduling algorithm may be required to schedule task
graphs with hundreds or thousands of nodes. Since most

i. This research was supported by Hong Kong Research Grants
Council under contract nurmber HKUSTI79/93E.

1063-7133/95 $4.00 © 1995 IEEE

algorithms have complexity of O(N?) to O(N%), scheduling
of graphs with a large number of nodes can take hours on
a serial machine (for example, see Table 3 in Section 3).

In this paper, we present an algorithm that uses realistic
assumptions such as arbitrary communication and
computation costs in the task graph, performs scheduling
and mapping, and takes into account link contention and
communication routing strategy. There have been a few
algorithms which meet all of the scheduling and mapping
objectives mentioned above. Two such reported
algorithms are the MH (Mapping Heuristic) proposed in
[3], and the DL.S (Dynamic Level Scheduling) proposed in
[13].

The proposed algorithm can be used for any network
topology and can adjust itself accordingly. The main
teature of the proposed algorithm is that it is itself a
parallel algorithm.

2 The Proposed Approach

For the purpose of presenting the philosophy behind it,
we first describe its serial version which is based on a new
technique that eventually leads to the parallel algorithm.

2.1 The Serial Algorithm

Before describing the serial BSA algorithm, we define
some attributes and symbols which will be used in the
subsequent discussion.

A parallel program can be represented by a directed
acyclic graph G = (V, E), where V is the set of nodes
representing tasks and E is the set of edges representing
communication messages (|V = v and |E| = ¢).
Associated with each node n, is a number indicating the
amount of computation required, denoted by w(n,).
Associated with each edge is a number indicating the
amount of communication data from one task 1o another,
denoted by c;. A node on the critical path is called Critical
Path Node (CPN). An In-Branch node (IBN) is a node,
which is not a CPN, and from which there is a path
reaching a CPN. An Out-Branch Node (OBN) is a node,
which is neither a CPN nor an IBN. The communication-
to-computation-ratio (CCR) of a parallel program is
defined as its average communication cost divided by its
average computation cost on a given system. If node n, is
scheduled to processor J, ST(n, J) and FT{n, J) denote the
start time and finish time of »; on processor J, respectively.
It should be noted that FT(n, J) = ST(n, J) + w(n,). After
all the nodes have been scheduled, the schedule length is
defined as max, {FT(n,)} across all processors. The
goal of a scheduling algorithm is to minimize the schedule
length for a given task graph.

Some additional attributes used in the BSA algorithm
are described below.

* EMST: the earliest start time of a message on a link.
This is computed for the message by scanning through
the link to find the earliest idle time slot that can
accommodate it.

289

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 |IEEE

* DAT: the earliest possible data available time of a
node. This is computed for the node by determining
the maximum EMST among all the messages from its
parent node.

« ST the earliest possible start time of a node. This is
computed for the node by taking the larger value
among its DAT and the earliest large enough idle time
slot on the processor.

* VIP: the very important parent of a node. It is a parent
node that sends the data that arrives last.

* Proc: the processor holding a node.

For scheduling, we can construct an order of
scheduling nodes in which the CPNs always get higher
priorities. The rationale is that the CPNs are the nodes that
potentially determine the final schedule length and should
be considered for scheduling first so that they can occupy
earlier time slots in the processors. We call this ordering
method the CPN-first ordering. It is described below.

1) Beginning from the entry node of the CP, consider
one CPN at a time. If all the IBNs reaching it have
been scheduled, schedule the CPN to the most
suitable processor; otherwise first schedule all the
IBNs reaching it.

2) After all CPNs as well as IBNs are considered, the
OBNs can be scheduled in topological order.

The BSA algorithm is then formalized below.

The BSA Algorithm:

()
(2)
(3)
)
(2)
()
(7)

Load processor topology and input task graph
Build_processor_list()
Serial_injection()
while Processor_list_not_empty do
Pivot_TPE « first processor of Processor_list
tor each n; on Pivor_TPE do
it ST(n; , Pivot TPE) > DAT(n, Pivot_TPE) or
Proc(VIP(n;)) # Pivot_TPE then

(&) for each adjacent processor TPE' do

() Determine DAT(n, TPE’)

(10) Determine ST(n, TPE’)

(i) end for

(12) if there exisis TPE" such that ST(n;, TPE’) < ST(n,
Pivot_TPE) and migrating n; will not delay the ST of
any of its succeeding CPN then

(i3) Migrate n; from Pivot_TPE 1o TPE"’

(4) Update start times of nodes and messages

(I5) else it ST(n, TPE’) 2 ST(n, Pivot_TPE) and
Proc(VIP(n)) = TPE' and migrating n; will not
delay the ST of any of its succeeding CPN then

(16) Migrate n; from Pivor_TPE 10 TPE’

(17) Update start times of nodes iind messages

118) end if

(i9) end if

(20) end for

(21) end while

The BSA algorithm constructs a processor list in a
breadth-first order from the processor having the highest
degree (i.e., the one with the largest number of links). This
processor is called the Pivot_TPE (pivot target processor).
The BSA algorithm then constructs a schedule
incrementally by first injecting all the nodes to the pivot
processor. Then, it tries to improve the start time of each
node (hence “bubbling” up nodes) by migrating it to the
adjacent processors of the pivot processor if the migration
can improve the start time of the node. After a node is
migrated from the Pivor_TPE to another processor, not
only is the node itself “‘bubbled up” but its successors is
also moved with it. This is because after a node is

290

migrated, the space occupied by it on the Pivot_TPE is
released which can be used for its successor nodes on the
Pivot_TPE. If a node can start at its DAT but its VIP is not
resident on the pivot processor, it is still a candidate to be
transferred. This is because if it can be transferred to the
processor accommodating its V/P, its start time may
further reduce. After all the nodes on the pivot processor
are considered, the algorithm selects the next processor in
the processor list to be the new pivot processor. This
process is repeated until all the processors in the processor
list have been considered.

The time complexity of the BSA algorithm is derived
as follows. Build_processor_list() takes O (p?) time
whereas Serial_injection() takes O (v?) time. Thus, the
dominant step is the while loop from step (4) to step (21).
In this loop, it takes O (e) time to compute the ST and DAT
values of the node on each adjacent processor. If migration
is done, it also takes O(e) time. Since there are O (v)
nodes on the Pivot_TPE and O (p) adjacent processor,
each iteration of the while loop takes O (pev) time. Thus,
the BSA algorithm takes O (p2ev) time.

2.2 The Parallel Algorithm

In this section, we describe the proposed Parallel BSA
(PBSA) algorithm. In the following, we will call the
processors which execute the PBSA algorithm the physical
processing elements (PPEs) in order to distinguish them
from the target processing elements (TPEs) to which the
task graph is to be scheduled.

In the PBSA algorithm, we first partition the task graph
according to the number of PPEs available. This is done
after the serial injection process. Each partition of the task
graph is then scheduled to the target system independently.
After all the partitions are scheduled, the independently
developed schedules are concatenated. The PBSA
algorithm is written in a host-node programming style. The
host PPE is responsible for all pre-scheduling and post-
scheduling house keeping work. This includes the serial
injection process, the task graph partitioning process, the
concatenation of partial schedules and resolving any
conflicts in partial schedules. All of the parallel PPEs
concurrently schedule the partitions of the task graph
assigned to them.

Due to the dependencies between the nodes of two
adjacent partitions, each PPE needs the information about
such dependencies in the scheduling process. For example,
each node must know the finish time of a parent node
belonging to another partition, called the remote parent
node (RPN), so that it can determine its own earliest start
time. In order to enable all the nodes in different partitions
to know the finish times of their RPNs. a global
information exchange among the PPEs is required.
However, this can generate excessive amount of
communication overhead. In the PBSA algorithm, only
estimated information is available to each PPE so that
inter-PPE communication is minimized. These estimates
are given in the following definitions.

Definition 1: The earliest possible start time (EPST) of a

node is the largest sum of computation costs from an’entry
node to the node but not including the node itself.
Definition 2: The latest possible start time (LPST) of a
node is the sum of computation costs from the first node in
the serial injection ordering to the node but not including
the node itself.

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

It is obvious that no node can start earlier than its
EPST, and no node can be scheduled to start later than its
LPST. An RPN can be scheduled to start at any time
between the two extremes. Thus, the problem is to pick an
accurate estimate for a parent node’s start time from all
values between the two extremes. Our approach is to take
EPST for a parent node if it is a CPN; otherwise, the
estimated start time will be EPST plus a fraction of the
difference between LPST and EPST. The size of the
fraction is determined by the relative importance of the
parent node over a CPN. We formalize this in the
following definition.

Definition 3: The estimated start time (EST) of an RPN is

iven by oEPST+ (1-a)LPST, where o is the
importance factor and is equal to I if the RPN is a CPN;
otherwise, it is equal to the length of the longest path from
an entry node through the RPN to an exit node divided by
the length of the CF. Here, length of a path is the sum of
the computation and communication costs along the path.

From the above definition, the importance factor o is
always bounded above by 1. We measure the relative
importance of an RPN by examining the length of the
longest path passing through it, which may consist of large
communication costs, large computation costs or both.
Such a long path can potentially determine the schedule
length. Therefore, the nodes lying on it are likely to be
scheduled to the same TPE and as a result, to be scheduled
at their EPSTs.

Given the estimated start time of an RPN, we still need
to know on which TPE the RPN is scheduled. This is
essential in determining the DAT of a node to be scheduled
and, in turn, in choosing the most suitable TPE for the
node. To estimate it, if the RPN is a CPN, then we assume
that it will be scheduled to the same TPE as the highest
level CPN in the local partition; otherwise, we just
randomly pick one TPE to be the one to which the RPN is
scheduled. We call this TPE of an RPN the estimated TPE
(ETPE). It should be noted that both EST and ETPE of any
RPN can be statically determined by the host program after
the graph partitioning process. Using the above methods to
obtain the estimated information about the RPNs of a
partition, the node program of PBSA is formalized below.

PBSA_Node():

(f)
(2)

Receive the target processor network from PBSA_Host().
Receive graph partition together with the RPN's
information (i.e., estimated start times and TPEs) from
PBSA_Host().

Apply the serial BSA algorithm to the graph partition. For
every RPN, its EST and ETPE are used for determining the
DAT of a node to be scheduled in the local partition.

Send the resulting sub-schedule to PBSA_Host().

Suppose that there are: m nodes in the local partition of
PBSA_Node(). As step (3) in PBSA_Node() is the
dominant step, the complexity of° PBSA_Node() is
O (pe’m) , where ¢’ is the number c¢f edges in the local
partition.

After all the PBSA_Node() processes finish, the host
program constructs the resulting schedule from all the sub-
schedules by resolving the conflicts among them.
Essentially, the host program concatenates the one sub-
schedule after another in such a way that the resulting
schedule is as short as possible. Since the serial part of the
PBSA algorithm should not dominate. two methods are
used in the host program for the concatenation of sub-

(3)

(4)

291

schedules.

First, for every sub-schedule, the earliest node among
all the TPEs is determined. Call this node the leader node
and the TPE to which the leader node is scheduled the
leader TPE. The leader node, together with all its
succeeding nodes on the leader TPE, are concatenated to a
TPE of the previous sub-schedule such that the start time
of the leader node is as early as possible. Such TPE is
called the leader TPE image. Then, the nodes on the
neighboring TPEs of the leader TPE are concatenated to a
neighbor TPE of the leader TPE image in the previous sub-
schedule. This is done to all other remaining TPEs in a
breadth-first order. In the concatenation process, nodes
may need to be pushed down because of the scheduling of
the inter-partition communication messages.

Second, after a current sub-schedule is merged with the
previous sub-schedule, all exit nodes in the current sub-
schedule (i.e., the nodes with no successors in the current
graph partition) are considered for re-scheduling. For
every such exit node, all the TPEs are examined and the
node will be re-scheduled to the one which allows the
minimum start time.

We formalize these methods in the following host
program procedure Concat_Schedules().

Concat_Schedules():

(1) for every pair of adjacent sub-schedules, do
(2} Determine the earliest node in the latter sub-schedule.
Call this the leader node. Call its TPE the leader TPE.

(3) Concatenate all nodes, which are scheduled on the same
TPE as the leader node, to a TPE in the former sub-
schedule so that the leader node can start as early as
possible.
Concatenate the nodes on all other TPEs io the TPEs of
the former sub-schedule in a breadth-first order
beginning from the neighbors of the leader TPE.
Re-schedule the exit nodes in the latter sub-schedule so
that they can start as early as possible.
Walk through the whole concatenated schedule to resolve
any conflict between the actual start times and the
estimated start times.
(7) end for

Suppose that there are at most m nodes in every sub-
schedule. The complexity of Concat_Schedules() is then
O (Pm?) , where P is the number of PPEs (i.e., the number
of sub-schedules). This is because steps (2) and (5) take
O (m) time; while steps (3), (4) and (6) take O (m?) time.
With Concat_Schedules(), the PBSA algorithm can then
be formalized below.

PBSA_Host():

(1) Load processor network topology and input task graph.

(2) Serial_injection()

(3) Partition the task graph into equal sized sets uccording to
the number of PPEs available. Determine the ESTs and
ETPEs for every RPNs in all partitions.
Broadcast the processor network
PBSA_Node().

Send the particular graph partition together with the
corresponding ESTs and ETPEs to each PBSA_Node().
Wait until all PBSA_Node() finish.

Concat_Schedules()

If there are P PPEs, the maximum size » of each

partition will then be [v/P]. The dominant steps in

PBSA_Host() are steps (6) and (7). As described above,

step (6) takes O (pZe’m) and step (7) takes O (Pm?) . The

(4)

(5)

(6)

(4)
(5)

(6)
(7)

topology to all

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

complexity of PBSA_Huost() is O (p*e’m + Pm?) .

3 Performance Results

In this section, we present the experimental results and
performance comparisons. We implemented both the BSA
and PBSA algorithms as well as the MH [3] and the DLS
algorithms [13]. The parallel PBSA algorithms was
implemented on an iPSC/860 hypercube at Syracuse
University. The three serial algorithms were also
implemented on a single processor of the iPSC/860.

We first compared the performance of the BSA
algorithm with the MH and DLS algorithms, and then
compared the BSA and PBSA algorithms. Two
performance parameters were used: the schedule length
produced by the algorithm, and the running time of the
algorithm.

The workload for the testing purpose consisted of
random graphs of various sizes. We selected 3 values of
(C'CR which were 0.1, 1.0, and 10.0. The weights on the
nodes and edges were generated randomly such that the
average value of CCR corresponded to 0.1, 1.0 or 10.0.

In our first experiment, we compared the schedules
produced by the MH, DLS and BSA algorithms for a 500-
node random task graph. Eleven different target system
topologies ~ were seclected representing various
combinations of processors and communication links.
These results are shown in Table | for 3 different values of
CCR. For each value of CCR, there are 3 columns. The
tirst column shows the ratios of the schedule lengths
produced by the MH algorithm to those of the DLS
algorithm, the second column shows the ratios of the
schedule lengths produced by the BSA algorithm to those
of the DLS algorithm, and the third column shows the
ratios of the schedule lengths produced by the BSA
algorithm to those of the MH algorithm.

Table ! A relative comparison of MH, DLS and BSA algorithms for o
500-node rundom task graph on various topalogies
CCR =03

CCR = Lo CCR =100

MH/ BSA/ BSA/ MH/ BSA’ BSA/ MH/ BSA/ BSA/

Topology DLS IM$ MH DLS DLS MH DLS DILS MH
Ixl 100 095 D94 092 090 098 291 072 076
Ix2 085 067 073 083 0764 087 108 091 086
4 node fully conn. 105 198 194 082 08 105 D62 wed 116
& node hypercube 132 071 065 099 084 089 281 (Led 077
4 x 2 mesh 149 047 D6l 079 077 096 273 w7y 099
t node ring 110 065 0163 099 097 098 268 (165 0.9
t node fully conn. 092 om0 097 092 091 099 278 09% L1
In node hypercube 137 068 063 080 08" 1.06 083 162 065
< % 4 torus 135 A8 063 089 06t 073 071 070 098
16 node ring 087 060 06l 1.26 970 070 .62 .62 1.02
1o node fully conn. gag 0K9 094 089 091 104 L0 (081 084

Out of the 66 comparisons shown in this table, there
were only 6 cases in which BSA performed worse than
MH (these are indicated by the ratios greater than). No
case of BSA performing worse than DLS was observed.
The schedule lengths produced by BSA were about 60-
70% of those of DLS in most cases. IDLS was shown to be
in general better than MH when CCR was low while MH
performed better than DLS when CCR was high. The
proposed BSA algorithm was better than both the MH and
LS algorithms in general when CCR was low and in
particular when CCR was high.

Next, we considered relatively larger task graphs by
varying the number of nodes from 200 to 2000 with

increments of 200. Here, two topologies were chosen: a 2
by 2 mesh and a 4 by 4 mesh. The results provided in Table
2 are the ratios of schedule lengths by MH to those of DLS,
ratios of schedule lengths by BSA to those of DLS and
ratios of schedule lengths by BSA to those of MH. As can
be noticed from this table, there was no effect of task graph
size on the relative performance of the three algorithms,
and BSA is shown to be better than both the MH and DLS
algorithms.

Table 2: A relative comparison of the schedule lengths produced by MH, DLS und

BSA algorithms for random task graphs of various sizes on two topologies.

2 x 2 mesh 4 x 4 mesh

) MH/ BSA/ BSA/ MH/ BSA/ BSA/
Graphs Size DLS DLS MH DLS DLS MH

200 093 080 084 086 078 087
400 088 079 087 0.87 079 088
600 087 078 087 093 079 084
800 091 079 084 0.88 078 0.85
1000 0.88 080 0.87 0.84 078 085
1200 088 079 087 0.8 078 087
1400 091 078 084 0.8% 080 087
1600 088 080 087 0.9% 080 084
1800 089 079 0.85 091 079 085
2000 088 078 085 0.89 078 085

For the same set of experiments, the running times of
the DLS, MH and BSA algorithms are provided in Table
3. This table provides the exact times (in seconds) for
running these serial algorithms on a single node of the
iPSC/860 hypercube. As can be seen from this table, the
running times of these algorithms approached thousands of
seconds for large task graphs when the number of nodes
was more than 800. The running times were also higher for
4 by 4 mesh as compared to those of 2 by 2 mesh. The
results indicate that MH was about 30% faster than DLS,
BSA was about 20% faster than DLS and roughly 40%
slower than MH.

Table 3: Running times (in seconds) of MH. DLS and BSA algorithms
for rundom task graphs of various sizes on two topologies

2 x 2 mesh 4 x 4 mesh

Graphs Size DLS ~ MH BSA DIS MH BSA
200 1ne 7.1 43 139 &1 10.9
400 1589 933 126.1 1827 1125 1461
600 2225 1250 1712 2582 1533 017
800 5633 33829 4282 3986 3735 4789
Lo00 16177 9084 12444 15842 9854 12474
1200 17812 10744 14137 1809.0 10317 14133
1400 3139.7 1888.7 14529 33160 21222 26528
1600 68349 44096 5512.0 71394 43408 57115
1800 814K 47383 63177 8339.0 46827 bdld.b
2000 94087 57626 72944 10002.7 61555 76944

Table 4: The ratios of the schedule lengths produced by the PBSA algorithm
to those of the BSA algorithm for various graph sizes on two topologies.

2x 2 mesh 4 x 4 mesh

. § 2 4 8 16 2 4 & 16
GraphsSize ppgs PPEs PPEs PPEs PPEs PPEs PPis PPEs

200 198 110 113 116 107 1.09 10+ 112
400 110 111 113 113 109 111 1H 112
600 1.07 107 108 110 Los L1 L1v 113
800 109 112 115 117 109 L1 11s 113
1000 107 108 L1 112 107 107 17 1.09
1200 106 1.07 109 110 107 108 104 1.10
1400 106 109 112 112 108 110 1100 113
1600 109 110 113 114 106 108 110 113
1800 167 107 109 112 105 108 110 112
2000 106 107 109 111 109 110 11, 1.14

Next, we examine the performance of the proposed
parallel PBSA algorithm by making a comparison with the

292

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

BSA algorithm. The results shown in Table 4 are the ratios
of the schedule lengths produced by the PBSA algorithm
to the schedule lengths produced by the BSA algorithm.
This was done by running the PBSA algorithm on 2, 4, 8
and 16 processors on the iPSC/860 and taking ratios of the
schedule lengths produced by it to those of BSA running
on one processor. The slight deterioration in performance
of PBSA is primarily due to the simple procedure of
merging the partial schedules. However, it can be noticed
that, in more than half of the cases, the schedule lengths
produced by PBSA were within 10% of those produced by
BSA. The topology of the target architecture did not seem
to have any bearing on this observation.

The performance of PBSA was also compared with
MH and DLS, for which the results are not provided here
due to lack of space. There was no single case in which
PBSA performed worse than either MH or DLS. Using
smaller number of PPEs, the schedule lengths generated by
PBSA were roughly 90% of those produced by MH and
about 80% of those produced by DLS. Using a larger
number of PPEs, the schedule lengths produced by PBSA
slightly increased due to some inaccuracy in the global
information exchange.

The speedup in the running times of PBSA over BSA
using 2, 4, 8 and 16 processors with various sizes of task
graphs are plotted in Figure 1, when target topologies were
2 by 2 mesh and 4 by 4 mesh, respectively. Note that these
speedups were obtained by comparing the running times of
parallel PBSA with the serial BSA and not comparing
parallel PBSA with serial PBSA (by running it on one
processor). The plots indicate that the parallel PBSA on 2
processors was about 6 to 10 times faster than the serial
BSA. By using more PPEs, the speedup increased almost
linearly. With 16 PPEs, the speedup was sometimes more
than 50. Due to the availability of only 16-node hypercube,
we could test our algorithm on at most 16 PPEs. But we
expect the speedup to further increase on 32 and 64 PPEs.

4 Conclusions

We presented a scheduling approach that drastically
reduces the running time of the algorithm through
parallelization. Comparisons with two related algorithms
indicated that our proposed serial and parallel algorithms
perform better under a wide range of parameters. We have
observed substantial speedup when the parallel algorithm
is implemented on the iPSC/860 hypercube. Some
degradation in the performance of PBSA as compared to
the serial BSA is due to the estimation of the start times of
nodes assigned to other PPEs. Further improvement may
be possible by dealing with this problem through better
information exchange.

References

|1 T.L. Adam, K. Chandy, and J. Dickson. “A Comparison of
List Scheduling for Parallel Processin, steims,”
%o%munications of the ACM, vol. |7, pp. %5—650, Dec.

2]
{31

E.G. Coffman, Computer and Job-Shop Scheduling Theory,
Wiley, New York, 1976.

H. E[-Rewini and T. Lewis, “Scheduling Parallel Programs
onto Arbitrary Target Machines,” Journal of Parallel and
]Dgi[s)t(;ibuted omputing, vol. 9, no. 2, pp. 138-153. Jun.

M.R..Gary and D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W .H. Freeman
and Company, 1979.

[4]

293

so |- *
> PE=2 *—
PEnd -
PE=8 -0
prys YE =16
o x
=
e
Q
8 [o
2 2
©
w
* .
- E l
20 |
,,,,, - s s ©
-~ g .
o i ..
0L e ' - . R
L ——— -
e i I S
N s . " " "
200 400 600 800 1000 1200 1400 1600 1800 2000
Number ol Tasks
—— v
X
50 P E
PE=2 o ”
PE=4 ~—- *
PEz8 O ;
PE=16 x e ®
40| g
[=9
=
o x
L
Q a0}
(=N N -
w . a.
a
20 | - = @ q
Lo
5 } -
- e -
10 DU O
. e .. — —
— ~ e
0 L n 2 L " " .
200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Tasks

Figure |: (Upper) The speedup in the running times of
PBSA over BSA for a 2 x 2 mesh target architecture;
(lower) target architecture is a 4 x 4 mesh.

[51 A. Gerasoulis and T. Yang, “A Comparison of Cluslering
Heuristics for Scheduling DAG’s on multiprocessors,
Journal of Parallel and Distributed Computing. vol. 16, no.
p. 276-291, Dec. 1992.

Hochbaum and D.B. Shmoys, “Using Dual
Approximation Algorithms for Scheduling Problems:
Theoretical and Practical Results,” Journal of the ACM,
34(1), Elp 144-162, Jan. 1987.

T.C. Hu. “Parallel Sequencing and Assembly Line
Problems,” Oper. Research. vol. 19, no. 6, pp. 841-848,
Nov. 1961.
H. Kasahara and S. Narita, “Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel Processing,”
Ilggf Trans. on Computers, vol. C-33, pp. 1023-1029, Nov.
A.A. Khan, C.L. McCreary and M.S. Jones, A Comparison
of Multiprocessor Scheduling Heuristics.” Proc. of Int’l
gsogf on Farallel Processing, Aug. 1994, vol. [I, pp. 243-
[10] W.H. Kohler, A Preliminary Evaluation of the Critical Path
Method for Scheduling Tasks on Multiprocessor Systems,”
IIE%’ Trans. on Computers, vol. C-24, pp. 1235-1238, Dec.

[6]

(71

(8]

19]

975.

| 11] V. Sarkar, Partitioning and Scheduling Parallcl Programs
Jor Multiprocessors, MIT Press, Cambridge, MA, 1989,

[12] B. Shirazi, M. Wang and G. Pathak, “Analysis and
Evaluation of Heuristic Methods for Static Scheduling,”
Journal of Parallel and Distributed Computing. no. 10, pp.
222-232,1990.

[13] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling
Heuristic for Interconnection-Constrained Heterogeneous
Processor Architectures,” IEEE Trans. on Parallel and
Distributed Systems, vol. 4, no. 2, pp. 75-87, Feb. 1993,

[14] T. Yang and A. Gerasoulis, “A Fast Static Schedulin
Algorithm for DAGs on a unbounded Number o
Processors,” proceedings of Supercomputing'91, pp. 633-
642, Nov. 1991.

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 |IEEE

