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Abstract 
In this paper, we present the modeling and implementa- 

tion of a grand-challenge problem in the jield oj scientific 
computation: the Primitive-Equation Numerical Ocean Cir- 
culation Model. We present the mathematical formulation 
of the model and propose a scheme for its parallel imple- 
mentation. Optimization8 are made through collective com- 
munications and various partitioning schemes. In our ex- 
periments using up to 100 processors on the Intel Paragon 
parallel computer, the proposed strategy yields an encour- 
aging speedup and exhibits a sustained scalability with in- 
creasing both the problem and machine sizes. We consider 
barotropic continental shelj waves in a periodic channel as 
a test problem. The model has numerous applications in 
environmental studies and ocean sciences. 

1 Introduction 

Massively parallel processors (MPP) are becoming a use- 
ful and practical tool for studying a wide range of pre- 
viously unsolved problems. A. class of these problems in- 
cludes three-dimensional time-dependent numerical models 
for studying various physical world phenomena. Tradition- 
ally, these problems have been solved on vector supercom- 
puters consisting of a few processors. However, the recent 
trend of scalable design for the modern MPPs has generated 
a new wave. 

Scalability determines whether an application is feasible 
on a larger parallel computer without sacrificing efficiency. 
Practically, a program can be made large enough to operate 
efficiently on a scalable computer with a given granularity. 
However, scaling a problem may produce no better results 
because of the non-productive message-passing calls and 
synchronization among processors. The scalability prop- 
erty of distributed-memory multicomputers which belong 
to a class of MPPs has made it possible to study large-scale 
numerical models related to real-world problems, most of 
which are classified as the so-called grand-challenge prob- 
lems. Although distributed-memory parallel computers are 
harder to program than their shared-memory counterparts, 
the advantage of scalability means that a sustained perfor- 
mance is possible while increasing both the problem and 
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machine sizes. This provides new hopes for environmental 
problems such as prediction of weather, climate and global 
changes, and ocean sciences. 

The objecti.ve of this paper is to present the state of our 
on-going project for studying the ocean circulation. For this 
purpose, we have developed and implemented an ocean cir- 
culation model on the Intel Paragon. The model is fully 
operational and is intended to be a vehicle for environmen- 
tal studies. 

This paper is organized as follows. Section 2 introduces 
the primitive-equation numerical ocean circulation model 
calculated through a second-order finite-difference approx- 
imation numerical scheme. Section 3 briefly describes the 
architecture and the programming environment of the Intel 
Paragon parJle1 computer. Section 4 presents our imple- 
mentation scheme for the ocean model. Section 5 examines 
the experimental results of the proposed scheme and makes 
some constructive inferences about the effectiveness of the 
implementatio:n. Section 6 gives some conclusions and dis- 
cusses some possible extensions to our work. 

2 The MFodel 

Like other branches of geophysical fluid dynamics, ana- 
lytical solutions to most ocean dynamics problems are not 
readily obtainable because the problems are nonlinear [7]. 
Historically, three-dimensional time-dependent numerical 
models for ocean circulation are based on the numerical 
approximations to the governing partial differential equa- 
tions of the ocean dynamics and thermodynamics. Both 
horizontal and vertical gradients are explicitly represented 
by various finite-difference methods. The classical model 
of Bryan [3] is the very first of this kind. Over the last 
30 years, this <approach has been applied to various ocean 
numerical models for either basin-scale, regional-scale, or 
coastal oceans. Due to the explicit nature of the model, 
different physical processes can be included in a relatively 
straight-forward manner. Continuous improvements made 
by many researchers have demonstrated the flexibility and 
usefulness of this approach. In fact, most of the ocean cir- 
culation numerical models currently being used belong to 
this class. 
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Because of the long-term nature of the stable stratifi- 
cation in the large-scale ocean, theoreticians simplify the 
ocean into layers when they try to understand the funda- 
mental mechanisms to drive the ocean circulation. Few 
numerical models have been built based on this analytic 
method; for example, see [2]. Even though this approach is 
conceptually easier than the previous one to be understood, 
methods to solve the technical difficulty in representing the 
mixed layer just beneath the ocean surface have only re- 
cently been tested [a]. Numerical models for coastal ocean 
employ mainly the geometric vertical coordinate with a ver- 
tical coordinate transformation to accommodate the bot- 
tom topography which is considered important and neces- 
sary. Some recent developments have been included in [13]. 

The numerical model used in this study is based on a 
combination of a finite-difference scheme in horizontal di- 
rections and a spectral scheme in the vertical direction. The 
basic model is described in Haidvogel et al. [12]. In fact, 
they discussed six different examples in channel, coastal, 
and basin-scale oceans. Obviously, the vertical specifica- 
tion of spectral modes determines the vertical resolution. 
A transformation algorithm [15] has been developed to 
overcome this restriction. The model has been applied to 
coastal studies, such as coastal trapped waves [18], shelf- 
break fronts [9], [lo], eastern boundary current [14], bottom 
density front [6], coastal up-welling and down-welling [16]. 
Isolated topography in ocean is another interesting topic. 
Studies of flow over isolated sea-mount were conducted in 
[1], [4], [5], and [ll]. An investigation of wind forcing over 
a circular bank was carried out in [8]. The water mass 
and circulation in the polar region have strong impacts in 
the change of our climate through the thermohaline circula- 
tion between polar, mid-latitude, and tropical oceans. The 
formations of the wintertime dense water and summertime 
halocline water have been reported in [15]. 

Table 1. List of symbols used in the Ocean Circulation Model. 

Coriolis parameter 
gravitational acceleration 
bottom topographic height 
scale factors in the horizontal curvilinear 
coordinate transformation time 
time 
horizontally averaged vortiaty 
total forcing terms in equation (1) 
total forcing terms in equation (2) 
horizontal components of velocity 
vertical velocity in a-coordinate 
Cartesian coordinate 
horizont,ally transformed r-coordinate 
horizontally transformed y-coordinate 
vertically transformed +-coordinate 
dynamic pressure (pressure/density) 
density 
viscous coefficient for momentum 
diffusive coefficient for density 
vertically averaging stream-function 
vertical velocity in o-coordinate 

The model is based on a set of primitive equations in 
time and in the three-dimensional Euclidean space. Ta- 
ble 1 includes the list of symbols and their meanings used 
in describing the model. The equations of motion are de- 
rived from the principle of the conservation of momentum 

with approximation of the hydrostatic balance in the verti- 
cal direction and are given below. 

(a) 

(3) 

By the assumption of incompressibility, conservation of 
mass gives the continuity equation, 

The equation of density can be obtained from the con- 
servation of thermal energy, 

Because there is an unknown contribution to the depth- 
averaged component of the pressure field arising due to the 
rigid lid, the vertically averaged stream-function is intro- 
duced by equations (6) and (7) 

a* h - = -u - 
81 0 

(6) n 

a$’ 
G (7) 

With the aid of the vertically integrated continuity equa- 
tion, equation (8) requires horizontal non-divergence. 

(8) 

Moreover, a horizontal vorticity equation may be ob- 
tained by vertically integrating equations (1) and (2). The 
result is shown as 

a,=m at = {$[(p+$[(~)~]} (9) 
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where R, and R, are the vertical averages of R, and R,. 
Under the definition of the vertically averaged vorticity, 

P = .5(I)-;(E) (10) 

a non-separable elliptic partial differential equation for the 
stream-function can be derived 

There are a total of seven partial differential equations 
(PDEs), equation (l), (2), (3), (4), (5), (9) and (ll), which 
form a complete set of governing equations. We name Equa- 
tion (l), (a), (3), (4), (5), (9) and (11) as u-Equation, 
PEquation, phi-Equation, W-Equation, rho-Equation, p 
Equation, and p&Equation, respectively. Four of these 
equations, u-Equation, u-Equation, @Equation and rhe 
Equation, are mixed hyperbolic-parabolic PDEs, while psi- 
Equation is an elliptic PDE and the rest are vertical ordi- 
nary differential equations. The dependent variables to be 
solved are the three components of velocity (21, V, and a), 
density (p), dynamic pressure (d), vertically averaged vor- 
ticity (q), and vertically averaged stream-function ($). For 
this version of the model, the lateral boundary is assumed 
to be periodic, and both top and bottom boundaries are 
rigid, In particular, model can be forced by either imposed 
wind stresses or thermal fluxes. Initial conditions are easily 
supplied prior to run. 

The PDEs of the model are approximated by various 
numerical schemes. In the vertical direction, the scheme is 
pseudo-spectral and the basis set is a modified set of Cheby- 
sheu poZynomi&. Not only are the Chebyshev polynomials 
accurate in the computational sense, but they also give high 
resolution near both top and b’ottom boundaries. 

For the model equations in the horizontal plane, 
a method based on the tradlitional second-order finite- 
difference method with the Ara.kawa-C grid is employed [i’]. 
For each partial differential term, say am, where m is a 
function of z, y and z, if we want to differentiate it along 
z-direction, we take the difference between m(x f Ax, y, z) 
and m(x, y, z) as a result of am at (2, y, 2). Note that 
Az is a constant value. It d.epends on how we set the 
grid on the function. Usually, Ax is equal to the width 
of each fringe. Lastly, time-;stepping is carried out us- 
ing a predictor-corrector technique based on the leapfrog- 
trapezoidal scheme. 

3 Overview of the 1:ntel Paragon 

The Paragon XP/S from Intel Corporation is a 
distributed-memory multiple instruction stream multiple 
data stream (MIMD) machine in which the nodes are 
connected through a fast 2-dimensional mesh network. 
Each node operating at a clock speed of 50 MHz is a 
self-contained computer board with a 75-MFLOPS Intel 
iSSO/XP processor and 32 MB alf main memory. The system 
consists of three types of nodes: compute nodes, which are 
used for the execution of parallel programs; service nodes, 

which olifer capabilities of a UNIX system, including compil- 
ers and progratm development tools; and I/O nodes, which 
provide interfaces to mass storage and LANs. 

We can think of the nodes of the Intel Para.gon as physi- 
cally separate computers, but all the nodes function identi- 
cally. Each nolde can also run different programs. To obtain 
a better performance from the system, users can program 
several nodes to cooperate on a single application. 

Paragon Mesh Routing Chips (MRCs), connected by 
high-speed channels, are the basis of the communication 
network, where nodes may be attached. There are two in- 
dependent channels - one for each direction - between any 
two neighboring nodes. The channels are 16 bits wide and 
have a bandwidth of 175 Mbps. The MRCs can route mes- 
sages autonomously and are independent of the attached 
nodes. In order to avoid deadlocks, communication uses 
deterministic wormhole routing. Messages are sent first in 
the horizontal direction and then in the vertical direction. 
The pipelined nature of the wormhole routing allows the 
usable bandwidth to be nearly independent of the distance 
between any two communicating nodes. 

The Intel Paragon provides a flexible programming en- 
vironment for developing parallel programs [17]. The 
Paragon’s operating system is called Paragon OSF/l, which 
provides an OSF/l-compatible application interface. The 
NX library is designed for message-passing among cooperat- 
ing nodes. While support is provided for both synchronous 
and asynchronmous messages as well as interrupt-producing 
messages, glob’al operations such as global sum etc. are 
also available. For our experiments, we have used a 140- 
node Paragon at the Hong Kong University of Science and 
Technology. 

4 Parallel Implementation 

In this section, we describe our implementation scheme 
for the ocean circulation model. The computational flow 
and dependencies among the equations of the ocean model 
are shown in Figure 1. Here each solid box represents a 
major computational function of various equations; equa- 
tion numbers a.re described in Section 2. Some of the solid 
boxes show calculations for only a part of the equation, and 
others for the entire equation. RHS and LHS denote the 
right-hand-side and the left-hand-side of each equation, re- 
spectively. PAR and SEQ indicate the corresponding com- 
putation to be executed in parallel and sequential fashion, 
respectively. E,ach dashed box indicates that data commu- 
nication and synchronization need to be performed to sat- 
isfy the data dtependencies between computational phases. 

The fundamental principle behind an efficient implemen- 
tation of such a model is to find the portion of the code 
which can be parallelized and partition it into smaller exe- 
cution pieces. The parallel part may be executed with the 
smaller amount of program execution times by using more 
processors, implying a finer granularity of the problem. The 
data communication can play an important role in affecting 
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Figure 1. Computational flow of the parallelized ocean model. 

the performance of the program - especially when the gran- 
ularity is small - since all partial results need to be sent to 
the shared variables during each time step. Clearly when 
the problem granularity is coarse, communication overhead 
is smaller but the degree of parallelism is reduced. 

Theoretically, any of the three spatial dimensions can 
be partitioned into sub-domains, each of which can be ex- 
ecuted independently by one of the processors. However, 
because of the usage of the pseudo-spectral scheme in the 
vertical direction, partitioning in the vertical direction be- 
comes highly cumbersome. Thus, the entire computation 
domain has been partitioned in the both horizontal direc- 
tions. Given a data block with dimensions 1 by m  by n 
along 5, y, and z directions respectively, indices start from 
1 to 1 along x-direction, from 1 to m  along y-direction, from 
0 to n - 1 along z-direction, respectively. Under the pro- 
posed scheme, data can be partitioned along either z  or y  
direction, or both. 

The majority of the sequential code comes from the cal- 
culation of the horizontal stream-function solved by a non- 
separable elliptic PDE, psi-Equation, as mentioned in Sec- 
tion 2. This elliptic solver was provided by Dr. John Adams 
of the National Center for Atmospheric Research, and is not 
yet readily parallelizable. 

The general algorithm for the parallelization of each sin- 
gle block of the computational function for all equations is 
shown as follows: 

Parallel algorithm for a single computational block 

for k from 0 to n - 1 

for j from y-start to y-stop 
for i from z-start to z-stop 

perform numerical computations 

end-for i 

end-for j 

end-for k 

According to the algorithm, each node requires to store 
only a subset of the whole data with dimension from ~start 
to z-stop along x-direction, from y-start to y-stop along y 
direction, from 0 to n- 1 along z-direction, where each node 
has its own set of x-start, x-stop, y-start, and y-stop. 

Since most of the computations require data from the 
boundary of neighboring processors in the entire three- 
dimensional domain, such kind of data partitioning in- 
volves substantial amount of data communication of dif- 
ferent types among processors for computing the data at 
the domain boundaries. 

To minimize the communication overheads during com- 
putation, we examined the portion of data required dur- 
ing different computations. Our implementation strategy 
also includes collective communication, by grouping differ- 
ent types of data into combined messages as much as pos- 
sible. This means the updates are done once during each 
time step and therefore communication overhead is drasti- 
cally reduced. 

The peripheral data around a local partition may be re- 
quired for calculation, but this data is stored into the local 
memories of the neighboring processors. Hence, data com- 
munication is required to receive the relevant data from the 
neighboring nodes in order to perform the correct computa- 
tion. To further reduce the amount of communication, we 
examined the computational path in details to decide which 
part of the data communication could be eliminated. Ac- 
cording to our analysis, there are only five major variables, 
U, ‘u, p, 4 and R, that are modified in each iteration using 
some data not present locally. Figure 2 shows, for each 
such variable, the portion of the data within the bound- 
aries to be required for computation and updated for each 
iteration. 

In the ocean model, as mentioned above, the majority of 
the sequential code comes from the calculation of the ellipti- 
cal PDE stream-function. At present, it is not clear how to 
execute this equation in parallel. Also, referring to Figure 
1 and the equations in Section 2, solving equations (l), (2) 
and (5) in parallel will not cause any conflict. Figure 3 de- 
picts the task graph, indicating the dependencies and par- 
allelism among various equations, for the ocean circulation 
model. Thus, it is possible to exploit functional parallelism 
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by solving multiple equations simultaneously and by using 
data parallelism within each equation. However, in order 
to extract meaningful improvements from such a scheme, 
a further careful analysis of the communication overhead 
is required. Moreover, a parallelization strategy for the se- 
rial elliptical solver would be required. Currently, we are 
exploring these possibilities. 
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Figure 3. Task graph for the Ocean Circulation Model. 

5 Experimental Results 

In our experiments, we considered barotropic continen- 
tal shelf waves in a periodic channel as a test problem. Such 
waves are solutions of a simplified linear version of the non- 
linear primitive-equation ocean circulation model described 
in Section 2. To obtain the numerical solution, the imposed 
wave amplitude was small so that the nonlinear terms be- 
came negligible. The vertical structure was represented by 
the barotropic mode and the first four vertical baroclinic 
modes in the Chebyshev wavenumber space, although only 
the barotropic mode was actually necessary. The time step 
was chosen to be 0.01 of the wave period, and the bottom 
topography varied exponentially across the channel. Fur- 
thermore, the total number of time steps for each run was 
chosen to be 50. 

The horizontal grid sizes of the numerical model for 
both z and y directions were chosen to be (1 x m), where 
1, m E {21,41,61}. The verticd dimension of the grid was 
kept fixed as 5 points. Hence, there were altogether 6 com- 
binations for the problem grid. The parallel code was run 
on the Intel Paragon with 1, i!, 4, 8, 16, 32, 64 and 100 
processors, corresponding to 48 test cases using the 6 grids. 
For determining the effect of data partitioning in the two 
horizontal dimensions, the processors were used in various 
combinations of two-dimensional meshes. For those exper- 
iments, a total of 36 processor configurations were used, 
and therefore, using 6 grids, the number of test cases cor- 
responded to 196. 

In order to collect timing data about the program ex- 
ecution, software timers were placed within several parts 
of the code to measure the elapsed time for each relevant 
section of the program code. To raise the accuracy of the 
result obtained, the same set of experiment was performed 
a total of 12 times. 

The results are provided in four sets. The first set pro- 
vides the measured total elapsed times, speedups, the serial 
times, and the average communication overhead, for each 
of the 48 test cases (6 grids and 8 processor configurations). 
The second set includes the results showing the fraction of 
time spent on ,various equations. The third set consists of 
the plots showing the impact of data partitioning in the two 
horizontal directions for 196 test cases (6 grid and 36 pro- 
cessor configurations). The fourth set includes a template 
showing the states of the ocean at different times. 

Table 2. EilaDsed times fin seconds) for various arids. 

kid size 

21x21 

41x21 

41x41 

61x21 

61x41 
61x61 

-. 

Number of nodes 
-1 2 4 8 16 32 64 100 - 

55.8.2 29.69 15.82 9.20 5.83 4.79 4.35 4.61 

112.81 58.59 31.15 17.57 20.82 7.64 6.78 6.69 

229.115 119.34 62.17 34.71 20.38 14.,X1 11.lJ5 10.27 

170.6.7 88.53 47.40 26.66 16.61 12.06 lfJ.23 9.71) 

345.51 182.63 94.89 53.21 31.65 22.50 17.61 16.21 

521.2:; 272.92 143.10 79.53 47.33 33.39 25.97 23.01 

- 

We first examine the first set of experiments. Table 2 
shows the total elapsed times for the 6 grid sizes using 1, 
2, 4, 8, 16, 32, 64 and 100 processors. The processor grid 
configurations in these cases were 1x1, 2x1, 2x2, 4x2, 4x4, 
8x4, 8x8, and 119x10. As can be seen, for each grid size, the 
total elapsed time was steadily decreased with an increase 
in the number of processors. One can also be noticed - 
comparing the top and bottom entries in the first column - 
that the serial t:ime was increased 9 times when the problem 
size was increased 9 times (from 21x21 to 61x61). However, 
this ratio starts decreasing as the number of processors was 
increased gradually. For example, this ratio was approxi- 
mately 8 when .the number of processors was 16. This ratio 
dropped to 7, 6 and then 5 when the number of processors 
was 32, 64 and 100, respectively. 

Table 3. Soeeduos for various arids. 

21x21 

41x21 

41x41 

61x21 
61x41 
61x61 

1.,X1 1.88 3.53 6.07 9.57 11.66 12.84 12.11 
I 

1.*1 1.93 3.62 6.42 10.43 14.69 16.64 16.87 

I.*1 1.92 3.69 6.M) 11.24 16.37 20.74 22.31 

101 1.93 3.6fJ 6.40 10.28 14.15 16.68 1759 

1.m 1.89 3.64 6.49 10.92 15.36 19.62 21.32 

I.,81 1.91 3.65 6.55 11.01 15.61 20.07 22.65 

The corresponding values of speedup for the same set 
of experiments are shown in Table 3. These values are 
quite encouraging and one can notice an increasing trend 
in speedup with increasing number of processors. The in- 
crease in speedup was very rapid up to 64 processors after 
which the amount of improvement became smaller. This 
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is despite the fact that, while the parallel times for the 
other components became smaller, there was a substantial 
amount of serial computations in the elliptical solver which 
was proved to be the bottleneck. 

Table 4. Serial times (in set) for various grids. 

Grid size Number of nodes 
1 2 4 6 16 32 64 100 

21x21 0.82 0.81 0.82 0.82 0.82 0.81 0.83 "85 

41x21 2.22 2.22 2.22 2.23 2.26 227 2.24 2.28 

41x41 4.41 4.41 4.42 4.42 4.42 4 47 4 4.5 4.42 

61x21 4.36 4.36 4.37 4.37 4.38 4.46 4.46 4.54 

61x41 8.67 8.83 8.67 8.68 8.69 8.84 8.85 9.m 

61x61 12.89 12.87 12.87 1288 13.22 LS.lZ 1336 1335 

We also calculated separately the times for the serial 
part. These times are provided in Table 4. The serial times 
were almost constant for a fixed grid size. However, one 
can also observe that the fraction of the serial component 
became much larger for large grids - for example, the serial 
time increased by a factor ranging from 15.7 to 16.2 when 
the grid size was increased from 21x21 to 61x61. While the 
parallel part steadily decreased, this notorious serial part 
remained the main hurdle in improving the speedup fur- 
ther. For example, using 100 processors, the serial fraction 
constituted more than 58% of the total running time. 

Table 5. Average communication overheads (in set) for various grids. 

Grid size 
2 

Number of nodes 
4 0 16 32 64 100 

21x21 0.20 0.64 0.60 0.68 1.30 1.77 2.18 

41x21 0.21 083 0.74 0.76 0.99 1.84 224 

41x41 0.35 1.07 1.M 0.83 I.15 1.77 2.20 

61x21 0.23 1.06 0.85 1.03 1.43 2.22 2.44 

61x41 1.27 1.38 1.18 1.00 1.88 2.26 2.54 

61x61 0.58 1.76 1.36 1.41 2.80 3.32 3.11 

The times spent on communication are given in Table 5. 
These times represent the sum of all communication over- 
heads incurred by the processors performing the parallel 
computation. The values in this table were determined by 
taking the averages across all processors except the pro- 
cessor 0 which was performing the serial part. Clearly, 
the communication times increased with an increase in the 
problem size and the number of processors. Comparing 
these value in this table with the total elapsed times shown 
earlier in Table 2, we can notice that the fraction of com- 
munication overheads out of the total elapsed times was as 
large as 0.47 (for the 21x21 grid using 100 processors) but 
decreased when the problem size is large (61x61 grid using 
100 processors). 

The results for the next set of experiments are given 
in Figure 4, Figure 5, and Figure 6. In each of these fig- 
ures, we provide four plots. The first three plots show the 
fraction of the time spent on the three most computation- 
ally intensive equations, using a variable number of proces- 
sors. These equations are u-Equation, *Equation and rho- 
Equation. The fourth plot shows the fraction of the time 

o- 
0 M 1w Ol---;6---1 0 1w 

ntir Of mds* “umber Of cods* 

Figure 4. Distributions of elapsed times on the Paragon for 21x21 grid. 

spent on all equations (serial as well as parallel). This time 
was taken across the processor 0 which executed the parallel 
computation - like all other nodes - and also executed the 
serial elliptical PDE solver. In other words, this fraction 
includes the time for computing u-Equation, Y-Equation, 
rho-Equation, and all other equations. The fraction of the 
communication and synchronization time is thus simply 1 
minus this fraction. An inspection of Figure 4 reveals that 
the fraction for all three equations as well as the cumula- 
tive Equation component dropped rapidly as the number of 
processors was increased. 

One reason for the increased communication and syn- 
chronization overhead was that the problem size was fixed 
and therefore granularity decreased with increasing num- 
ber of processors. The excessive amount of this overhead, 
however, was largely due to the fact that all nodes needed 
to send the relevant data to a single processor before the 
execution of the serial equation. Similarly, the processor 0 
needed to send all of the relevant computed results back to 
all other processors upon the computation of that equation. 
Since this indeed induced a contention on the processor 0 
as well as a large amount of communication data, the per- 
formance of the parallel program deteriorated rapidly. 

Figure 5. Distributions of elapsed times on the Paragon for 41x41 grid. 

From Figure 5 and Figure 6, where we used 41x41 and 
61x61 grid sizes, we can notice a similar trend. In par- 
ticular, we can observe that the three compute-intensive 
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equations yielded the same fraction of time as in the case 
of Figure 4 (when the data size was 21x21). This implies 
that these equations were proplerly parallelized. We can also 
notice that the fraction of the cumulative Equation Com- 
ponent was larger when the grid size was increased. This 
confirms with the earlier results which indicated that the 
larger problem sizes exhibited better speedup and smaller 
communication and synchronixation overheads. 

I 
5 

I 
““nlb2f ix&s 

100 OS- 0 
““Inbe% rrcdsa 

1w 

Figure 6. Distributions of elapsed times on the Paragon for 61x61 grid. 

The third set of results show the effect of partitioning 
in the two horizontal dimensions. For this purpose, as 
mentioned earlier, we used 36 configurations for processor 
meshes, ranging from linear arrays to rectangles - such as 
4x2, 2x4, 6x2, 2x6, 8x2, 2x8, 10x2 and 2x10 - to perfect 
squares - such as 2x2, 4x4, 6x6, 8x8 and 10x10. These 
results for 6 different grid sizes are illustrated through 3- 
dimensional plots in Figure 7. From this figure, we can 
see that speedups for partitioning in pdirection in general 
outperformed those in z-direction. This is particularly true 
when the grid was square. However, when the grid was 
large in the *dimension such as 61x21, this was not always 
the case. This is perhaps due to the nature of some of 
the computationally-intensive (equations which require less 
communication in the y-dimemion. However, in almost all 
cases, we observed that partitioning in both dimensions was 
better than partitioning in just one direction. For example, 
when the grid size was 61x61, the speedup using a 4x4 pro- 
cessor grid was 11.013. On the other hand, the speedup 
was 10.294 using 8x2 processor grid and was 10.604 using 
2x8 processor grid. Similar observations can be made about 
other cases. 

Our fourth set of result (Figure 8) is a template showing 
the state of the ocean at different times. The state of the 
ocean is described by observing the horizontal velocity com- 
ponents (u, V) and the vertically averaging stream-function 
($). The grid size in this case was 61x61. In order to ob- 
serve these variables, we set tlhe vertical velocity (0) and 
density (p) and dynamic pressure (4) equal to 0. This was 
done to remove the effect of the height. Observations were 
made at time steps 0, 10, 20, 30, 40 and 50. This figure 
indicates the smooth movements of variables at different 
times. 

(a) Speedupfor 21x21 grid. (b) Speedupfor4lx21 grid. 

(c) Speedupfor41x41 grid. (d) Speedupfor61x21grid. 

(e) Speedupfor 61x41 grid. (f) Speedup for 61x61 grid. 

Figure 7. Speedup plots for various grids. 

6 Conclusions 

In this paper, we described the parallel implementation 
of a grand-challenge problem, the Primitive-Equation Nu- 
merical Ocean Circulation Model, on the Intel Paragon. 
In our experiments, we considered barotropic continental 
shelf waves in at periodic channel as a test, problem. Results 
show that the problem scaled very well and yielded a good 
speedup despite a large fraction of the serial computation. 

While reasonable speedup was obtained by partitioning 
the domain in either direction, it is better to have an evenly- 
partitioned processor mesh in order to minimize the relative 
wastage in both mesh directions. This is because for a 
sufficiently large problem size, it is possible to obtain a 
further improvmements in speedup by partitioning in both 
dimensions wlhen the number of nodes is very large, say, 
100. 

There are several possible extensions to our work some 
of which are listed below: 

l devise a scheme to parallelize t!he elliptical PDE 
solver; 
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(a) Horizontal (b) Horizontal 
velocity corn- velocity com- 
ponent 21 at ponent v  at 
time step 0. time step 10. 

(c) Horizontal 
velocity COIU- 

ponent u at 
time step 20. 

(d) Horizontal (e) Horizontal (f) Horizontal 
velocity com- velocity com- velocity com- 
ponent 21 at ponent 2, at ponent v  at 
time step 30. time step 40. time step 50. 

Figure 6. States of the horizontal velocity component 21 at differenttimes. 

exploit control parallelism in addition to the data 
parallelism; 
heterogeneous scheduling techniques may be em- 
ployed to run the serial part on a fast workstation 
while the fine-grained computations are executed on 
the parallel processors; 
obtain further improvement by possibly partitioning 
the domain in the z-direction. 

The model has numerous applications. The water mass 
and circulation in the polar region have strong impact in the 
change of our climate through the circulation between po- 
lar, mid-latitude, and tropical oceans. The model can also 
be used for various other studies, such as coastal trapped 
waves, shelf-break fronts, eastern boundary current, bottom 
density front, coastal up-welling and down-welling, and iso- 
lated topography. 
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