
Amalysis, Evaluation, and Comparison of Algorithms for
Scheduling Task Graphs on Parallel Processors

Ishfaq Ahmad, Yu-Kwong Kwok
Department of Computer Science, The Hong Kong University of Science and Technology, Hong Kong.

Min-You Wu
Department of Computer Science, State University of New York at Buffalo, New York.

Abstract'
In this paper, we survey algorithms that allocate a

parallel program represented by an edge-weighted directed
acyclic graph (DAG), also called a task graph or macro-
dataflow graph, to a set of homogeneous processors, with
the objective of minimizing the completion time. We
analyze 21 such algorithms and classify them into four
groups. The first group includes algorithms that schedule
the DAG to a bounded number of processors directly.
These algorithms ;we called the bounded number of
processors (€3") scheduling algorithms. The algorithms
in the second group schedule the DAG to an unbounded
number of clusters and are called the unbounded number
of clusters (UNC) scheduling algorithms. The algorithms
in the third group schedule the DAG usingtask duplication
and are called the task duplication based (TDB) scheduling
algorithms. The algorithms in the fourth group perform
allocation and mapjping on arbitrary processor network
topologies. These algorithms are called the arbitrary
processor network (APN) scheduling algorithms. The
design philosophies and principles behind these
algorithms are discussed, and the performance of all of the
algorithms is evaluated and compared against each other
on a unified basis by using various scheduling parameters.
Keywords: Algorithms, Multiprocessors, Parallel
Processing, Software, Task Graphs.
1 Introduction

Given an edge-weighted directed acyclic graph
(DAG), also called al task graph or macro-dataflow graph,
the problem of scheduling it to a set of homogeneous
processors to minimize the completion time has intrigued
researchers since the: advent of parallel computers. Since,
the problem has been identified as NP-complete in its
general forms [IO], and polynomial time solutions are
known only in a few restricted cases [7], research effort in
this area has resulted in a myriad of heuristic algorithms
[5] , [21]. While each heuristic individually seems to be
efficient, a plethora of research has ensued a number of
questions: how effective are these algorithms? how
sensitive are they to various scheduling parameters? how
do they compare against each other on a unified basis?
what are the most effective performance measures? how to
classify various algorithms? . and what possible
improvements can be made for a better performance? In
this paper we try to answer some of these questions by
examining a number of recently proposed algorithms. We

1. This research was supported by the Hong Kong Research Grants
Council under contract number HKUST179/93E.

start by classifying these algorithms into the following
four groups:

Bounded Number of Processors (BNP) scheduling:
These algorithms schedule the DAG to a bounded
number of processors directly. The processors are
assumed to be fully-connected.

8 Unbounded Number of Clusters (UNC) scheduling:
These algorithms schedule the DAG to an unbounded
number of clusters. The processors are assumed to be
fully-connected. The technique employed by these
algorithms is also called clustering.

8 Task Duplication Based (TDB) scheduling: These
algorithms also schedule the DAG to an unbounded
number of clusters but employ task duplication
technique to further reduce the completion time.
Arbitrary Processor Network (APN) scheduling:
These algorithms perform scheduling and mapping on
the target architectures in which the processors are
connected via a network of arbitrary topology.
We discuss six BNP, five UNC, six TDB, and four

APN scheduling algorithms. We analyze their design
philosophies and characteristics, and assess their merits
and deficiencies. The rest of this paper is organized as
follows. In the next section, we describe the generic DAG
model and discuss its variations and suitability to different
situations. We describe the BNP scheduling algorithms in
Section 3, and the UNC algorithms in Section 4. Section 5
describes the TDB algorithms. The APN algorithms are
discussed in Section 6. The performance results and
comparisons are presented in Section 7, and Section 8
concludes the paper.
2 The DAG Model

The DAG is a generic model of a parallel program
consisting of a set of processes among which there are
dependencies. Each process is an indivisible unit of
execution, expressed by an atomic node. An atomic node
has one or more inputs. When all inputs are available, the
node is triggered to execute. After its execution, it
generates its outputs. In this model, a set of v nodes
{ n,, n2, . .., n,} are connected by a set of e directed edges,

each of which is denoted by (n i , nj) , where n, is called the
parent and nj is called the child. A node without parent is
called an entry node and a node without child is called an
exit node. The weight of a node, denoted by w (n i l , is
equal to the process execution time. Since each edge
corresponds to a message transfer from one process to
another, the weight of an edge, denoted by c (ni . n j) , is
equal to the message transmission time. Thus, c (ni , nj)

207
1087-4089/96 $5.00 0 1996 IEEE

becomes zero when n, and n, are scheduled to the same
processor because intraprocessor communication time is
negligible compared with the interprocessor
communication time.

NP Scheduling Algorithms
Most BNP scheduling algorithms are based on the list

scheduling technique [I], [12], [19], [21]. List scheduling
is a class of scheduling heuristics in which the nodes are
assigned priorities and placed in a list arranged in a
descending order of priority. The node with a higher
priority will be examined for scheduling before a node
with a lower priority. If more than one node has the same
priority, ties are broken using some method.

The two main attributes for assigning priority are the t-
leveE (top level) and 6-level (bottom level). The t-level of a
node n, is the length of the longest path from an entry node
to n, (excluding n,). Here, the length of a path is the sum of
all the node and edge weights along the path. The t-level of
n, highly correlates with n , ' ~ earliest start time, denoted by
Ts(n ,) , which is determined after n, is scheduled to a
processor. The b-level of a node n, is the length of the
longest path from node n, to an exit node: The b-level of a
node i s bounded by the length of the critical path. A
critical path (CP) of a DAG, is a path from an entry node
to an exit node, whose length is the maximum. It should be
noted that some BNP scheduling algorithms do not take
into account the edge weights in computing the b-level. To
distinguish such definition of b-level from the one we
described above, we call it the static b-level.

Different algorithms use the r-level and b-level in
different ways. Some algorithms assign a higher priority to
a node with a smaller t-level while some algorithms assign
a higher priority to a node with a larger b-level. Still some
algorithms assign a higher priority to a node with a larger
(b-level - e-level). In general, scheduling in a descending
order of 6-level tends to schedule critical path nodes first
while scheduling in an ascending order of t-level tends to
schedule nodes in a topological order. The composite
attribute (b-level - t-level) is a compromise between the
previous two cases. In the following, we discuss very
briefly six BNP scheduling algorithms. The detailed steps
ofthe algorithms are omitted due to space limitations.

HLFET Algorithm. The HLFET (Highest Level First
with Estimated Times) algorithm [l] is one of the simplest
list scheduling algorithms using static b-level as node

thm. The ISH (Insertion Scheduling
thm [14] uses a simple but effective idea

of inserting nodes into holes created by the partial
schedules.

CP Algorithm. The MCP (Modified Critical Path)
algorithm 1231 uses an attributedcalled ALAP time of a
node as node priority. The ALAP times of the nodes on the

Algorithm. The ETF (Earliest Time First)
algorithm [33 computes, at each step, the earliest start
times for all ready nodes and then selects the one with the

smallest start time, which is computed by examining the
start time of the node on all processors exhaustively.

DLS Algorithm. The DLS (Dynamic Level
Scheduling) algorithm [22] uses as node priority an
attribute called dynamic level (DL) which is the difference
between the static b-level of a node and its earliest start
time on a processor.

LAST Algorithm. The LAST algorithm [4] is not a list
scheduling algorithm, and its main god is to minimize the
overall communication.
4 UNC Scheduling Algorithms

The basic technique employed by the UNC scheduling
algorithms is called clustering [5], [l l] , [12]. At the
beginning of the scheduling process, each node is
considered as a cluster. In the subsequent steps, two
clusters are merged if the merging reduces the completion
time. This merging procedure continues until no cluster
can be merged. Usually, no backtracking is allowed in
order to avoid formidable time complexity.

The clustering strategy is particularly designed for
DAGS with non-zero edge weights. If all edge weights are
zero, the CP length of the original DAG gives the shortest
completion time. The clustering process is so designed that
when two clusters are merged and the weights of the edges
across the two clusters are zeroed, the new CP length of the
resulting DAG becomes shorter than the one before the
merging. An optimal clustering results in a number of
clusters such that the CP length of the clustered DAG
cannot be further reduced. At this point, the completion
time is minimized. In order to facilitate the subsequent
cluster mapping step, the secondary goal of the UNC
scheduling algorithms is to minimize the number of
clusters. In the following, we discuss five UNC scheduling
algorithms. In the discussion, we will use the term cluster
and processor interchangeably since in the UNC
scheduling algorithms, merging a single node cluster to
another cluster is analogous to scheduling a node to a
processor.

EZ Algorithm. The EZ (Edge-zeroing) algorithm [20]
selects clusters for merging based on edge weights. At
each step, the algorithm zeros the edge with the largest
weight.

LC Algorithm. The LC (Linear Clustering) algorithm
[13] iteratively merges nodes to form a single cluster based
on the CP. The merged nodes are removed and the merging
process repeats.

DSC Algorithm. The DSC (Dominant Sequence
Clustering) algorithm [24] is designed based on the
Dominanr Sequence @S) of a graph. The DS is the CP of
the partially scheduled DAG. A distinctive feature of the
algorithm is that in order to lower the time complexity, the
t-level of a node is computed incrementally and the b-level
does not change until the node is scheduled.

MD Algorithm. The MD (Mobility Directed)
algorithm [23] selects a node ni for scheduling based on an
attribute called the relative mobility, which is defined as:

If a node is on the current CP of the partially scheduled

208

Cur-CP-Length - (b-level (n i) + t-level (n i))

w (nil
DAG, the sum of its b-level and t-level is equal to the
current CP length. The MD algorithm scans from the
earliest idle time sEot on each cluster and schedules the
node into thefirst idle time slot that is large enough for the
node.

DCP Algorithm. The DCP (Dynamic Critical Path)
algorithm [151 is designed based on the value of mobility,
defined as: (Cur-CP-Length - (b-level (n i) + t-level (ni))) .
The DCP algorithm uses a lookahead strategy to find a
better cluster for a given node. In addition to computing
the value of T, (n i) on a cluster, the DCP algorithm also
computes the value of T, (n,) on the same cluster. Here, nc
is the child of ni that has the largest communication and is
called the critical child of ni. The DCP algorithm
schedules ni to the cluster that gives the minimum value of
the sum of these two attributes.
5 TDB Scheduling Algorithms

The TDB (Task Duplication Based) scheduling
algorithms described below assume the availability of an
unbounded number (of processors. The principal rationale
behind the TDB scheduling algorithms is to reduce the
communication overhead by redundantly allocating some
tasks to multiple processors. In duplication-based
scheduling, different strategies can be employed to select
ancestor nodes for (duplication. Some of the algorithms
duplicate only the direct predecessors whereas some other
algorithms try to duplicate all possible ancestors. There is
a trade-off between performance and time complexity of
the algorithm. In the following, we describe six TDB
scheduling algorithms.

PY Algorithm. The PY algorithm (named after
Papadimitriou and Yannakakis) [19] uses an attribute to
approximate the absolute achievable lower bound of the
start time of a node:. It is shown [19] that the schedule
length generated is within a factor of 2 from the optimal.

LWB Algorithm. We call the algorithm [8] the LWB
(Lower Bound) algorithm based on its main procedure: it
first determines the lower bound start time for each node,
and then identifies a set of critical edges in the DAG. The
paths containing the: critical edges are scheduled to the
same processor. It is shown in [8], the LWB algorithm can
generate optimal schedules for DAGS in which node
weights are strictly larger than any edge weight.

DSH Algorithm. The DSH (Duplication Scheduling
Heuristic) algorithm [14] considers each node in a
descending order of their priorities. The DSH algorithm
first determines the start time of the node on the processor
without duplication of any ancestor. Then, it considers the
duplication in the idlle time period from the finish time of
the last scheduled nolde on the processor and the start time
of the node currently under consideration.

BTDH Algorithm. The BTDH (Bottom-Up Top-
Down Duplication Heuristic) algorithm [6] is essentially
an extension of the DSH algorithm described above. The

~

209

major improvement of the BTDH algorithm over the DSH
algorithm is that the algorithm keeps on duplicating
ancestors of a node even if the duplication time slot is
totally used up in the hope that the start time will
eventually be minimized.

LCTD Algorithm. The LCTD algorithm [5] first
constructs linear clusters and then identifies the edges
among clusters that determines the completion time. It
tries to duplicate the parents corresponding to these edges
to the reduce the start times of some nodes in the clusters.

CPFD Algorithm. The CPFD (Critical Path Fast
Duplication) algorithm [2] is based on partitioning the
DAG into three categories: critical path nodes (CPN), in-
branch nodes (IBN) and out-branch nodes (OBN). An IBN
is a node from which there is a path reaching a CPN. An
OBN is a node which is neither a CPN nor an IBN. The
main strength of the CPFD algorithm is that it tries to start
each CPN as early as possible on a processor by
recursively duplicating the IBNs (and also other CPNs)
reaching it.

6 APN Scheduling Algorithm
The algorithms in this class take into account specific

architectural features such as the number of processors as
well as their interconnection topology. These algorithms
can schedule tasks on the processors and messages on the
network communication links. Scheduling of messages
may be dependent on the routing strategy used by the
underlying network. The mapping, including the temporal
dependencies, is therefore implicit - without going
through a separate clustering phase. There are not many
reported algorithms that belong to this class. In the
following, we discuss four such algorithms.

MH Algorithm. The MH (Mapping Heuristic)
algorithm [9] first assigns priorities by computing the
static b-levels of all nodes. A ready node list is then
initialized to contain all entry nodes ordered in decreasing
priorities. Each node is scheduled to a processor that gives
the smallest start time.

DLS Algorithm. The DLS (Dynamic Level
Scheduling) algorithm [22] described earlier can also be
used as an APN scheduling algorithm. To use it as a APN
scheduling algorithm, it requires the message routing
method to be supplied by the user.

BU Algorithm. The BU (Bottom-Up) algorithm [181
first finds out the CP of the DAG and then assigns all the
nodes on the CP to the same processor at once. Afterwards,
the algorithm assigns the remaining nodes in a reversed
topological order to the processors. The node assignment
is guided by a load-balancing processor selection heuristic
which attempts to balance the load across all given
processors.

BSA Algorithm. The BSA (Bubble Scheduling and
Allocation) algorithm [161 constructs a schedule
incrementally by first injecting all the nodes to the pivot
processor, defined as the processor with the highest
degree. Then, the algorithm tries to improve the start time

of each node (hence “bubbling” up nodes) by migrating it
to one of the adjacent processor of the pivot processor if
the migration can improve the start time of the node.
Essentially, after a node is migrated from pivot processor
to another processor, not only the node itself is “bubbled
up” but its successors as well. After all nodes on the pivot
processor are considered, select the next processor in the
processor list to be the new pivot processor. The process is
repeated by changing the pivot processor in a breadth first
order.
7 Performance Results and Comparison

In this section, we present the performance results and
comparisons of the scheduling algorithms of all four
classes described above. The algorithms were
implemented on a SUN SPARC IPX workstation. The
experimental results used a set of 250 random task graphs.
Our main rationale for selecting random graphs as a test
suite is that they contain as their subset a variety of graph
structures. This avoids any bias that an algorithm may have
towards a particular graph structure. Furthermore, random
graphs have indeed been used extensively in previous
studies on scheduling. For generating the complete set of
250 graphs, we varied three parameters: size,
communication-to-computation ratio (CCR) and
parallelism. The size of the graph was varied from 50 to
500 nodes with increments of 50. The weight of each node
was randomly selected from a uniform distribution with
mean equal to the specified average computation cost. The
weight of each edge was also randomly selected from a
uniform distribution with mean equal to the product of the
average computation cost and the CCR. Five different
values of CCR were selected: 0.1, 0.5, 1.0, 2.0 and 10.0.
The parallelism parameter determined the average number
of children nodes for each node. Five different values of
parallelism were chosen: 1, 2, 3, 4 and 5. The algorithms
were compared within their own class, although some
comparison of UNC and BNP algorithms was also carried
out. The comparisons were made using the following six
measures.

0 Normalized Schedule Length (NSL): Schedule
length is the prime performance measure of a
scheduling algorithm. The NSL of an algorithm is
obtained by dividing the schedule length produced by
the algorithm to the lower bound (defined as the sum
of weights of the nodes on the original critical-path). It
should be noted that the lower bound may not always
be possible to achieve, and the optimal schedule
length may be larger than this bound.
Pair-Wise and Global Comparisons: In the pair-
wise comparison, we measured the number of times an
algorithm produced better, worse or equal schedule
length compared to each other algorithm within the
same class. In the global comparison, an algorithm
was collectively compared with all other algorithms in
the same class.

est Solutions: For each of the 250 graphs, we simply
counted the number of times an algorithm produced

the shortest schedule length compared to other
algorithms.

7.1 Comparing the NSLs
The normalized schedule lengths (NSL) for all of the

algorithms are given in Figure 1. Each bar in this figure is
g 3.4, I
3 3.2
3 3 B 2.8

! 2’2

1 ::
60 1 0 0 3 5 0 200 250 300 360 400 490 600

U

Number Of N 4 - s

(a) BNP scheduling algorithms.

; 2.8 j mDSC f 2 5 I DCP

50 1 0 0 150 200 250 3 0 0 3 5 0 4 0 0 4 5 0 6 0 0
P
4. l a

Numbor d Nod-.

(b) TDB scheduling algorithms.

NumbrrotNodu

(c) UNC scheduling algorithms.
€ 2021 1

i62

3 ‘ Z
50 1 0 0 150 200 250 500 350 400 460 500

Numbrr d Nodr.

(d) APN scheduling algorithms.

Figure 1: The average normalized schedule lengths
produced by various scheduling algorithms.

the average of 25 tests cases with various values of CCR
and parallelism; the results showing the impact of CCR -
and hence granularity - and parallelism are not included
here due to space limitations. From Figure 1, we notice
that behavior of these algorithms was consistent in terms
of their relative performance for various number of nodes
in the graph. Out of the BNP scheduling algorithms, the
performance of the MCP algorithm was the best among all
the algorithms. The LAST algorithm was outperformed by
all other algorithms.

For the UNC scheduling algorithms, we can observe
that the DCP and MD algorithms performed significantly

210

better as compared to the rest of the algorithms. The values
of NSL for the DSC and LC algorithms were closed. The
E2 algorithm was outperformed by all other algorithms.
The relatively inferior performance of the EZ algorithm
indicates that clustering for the minimization of the
communication alone is not enough for reducing the
schedule length. This comparison also indicates that the
critical-path algorithms are superior as compared to other
algorithms.

For the TDB scheduling algorithms, we can observe
large variations in the performance of these algorithms.
For example, CPFD was significantly better than the other
algorithms. The performance of DSH and BTDH was
close but much better than PY, LCTD and LWB. The
NSLs produced by 1,WB were almost 50% larger than
those of CPFD. These results also indicate that although
the PY algorithm guarantees a schedule length within a
factor of 2 from the optimal, much shorter schedule lengths
are possible.

Although the BNP algorithms are designed for limited
number of processors (they take this number as a
parameter), we ran each algorithm with a very large
number of processors such that the number of processors
became virtually unlimited. From this experiment, we
noted the average number of processors used by these
algorithms for each graph size (the numbers of processors
used are omitted due to space limitations). In the next
experiment, we reduced the number processors to 50% of
that average. These results are shown in Figure 2. Here, no
significant differences in the NSLs as well as the relative
performance of these algorithms were observed. One
possible reason for thiis behavior is that the schedule length
is dominated by the scheduling of CP nodes. In the case of
a very large number (of processors, the non-CP nodes are
spread across many processors, while in the case of a fewer
number of processors, these nodes are packed together
without making much impact on the overall schedule
length.

Niumbrr o(Nodos

Figure 2: The average normalized schedule lengths produced by the
BNP scheduling algorithms for task graphs of various sizes given
only 50% of the average number of processors.

For the A€" scheduling algorithms, the target
architectures included an 8-node ring, an %node
hypercube, a 4 x 2 mesh, and 'an %node clique. The
average values of these NSLs across all topologies are also
depicted in Figure 1. One reason for the much larger NSLs
in these cases is that !he numbers of processors used were
much smaller. We deliberately used very small number of
processors to make ithe experiments more realistic. For

example, a 500-node task graph is scheduled to 8
processors'.

These results suggest that there can be substantial
difference in the performance of these algorithms. For
example, significant differences can be noticed between
the NSLs of BSA and BU. The performance of DLS was
relatively stable with respect to the graph size while MH
yielded fairly long schedule lengths for large graphs. As
can be noticed, the BSA algorithm performed admirably
well for large graphs. One of the main reasons for the
better performance of BSA is an efficient scheduling of
communication messages that can have a drastic impact on
the overall schedule length. In terms of the impact of the
topology, one can notice that all algorithms performed
better on the networks with more communication links.
7.2 Pair-Wise Comparison

Next, we present a pair-wise and a global comparison
among the algorithms by observing the number of times
each algorithm performed better, worse or the same
compared to every other algorithm in 250 test cases. This
comparison for the BNP scheduling algorithms is given in
a graphical form shown in Figure 3. Here, each box
compares two algorithms -the algorithm on the left side
and the algorithm on the top. Each box contains three
numbers preceded by '>', '-6 and '=' signs which indicate
the number of times the algorithm on the left performed
better, worse, and the same, respectively, compared to the
algorithm shown on the top. For example, the DLS
algorithm performed better than the MCP algorithm in 66
cases, worse in 162 cases and the same in 22 cases. For the
global comparison, an additional box ("ALL") for each
algorithm compares that algorithm with all other
algorithms combined. Based on these results, we rank
these BNP algorithms in the following order: MCP, ISH,
DLS, HLFET, ETF, and LAST. This ranking essentially
indicates the quality of scheduling based on how often an
algorithm performs better than the others. Note, however,
that a ranking of these algorithms based on NSLs shown in
Figure 1 is different: MCP, DLS, ETF, ISH, HLFET, and
LAST. This ranking indicates the quality of scheduling
based on the average performance of the algorithm. An
algorithm which outperforms other algorithms more
frequently but has a lower rank based on the average NSL
indicates that it produces long schedule lengths in some
cases.

The pair-wise and global comparison of UNC
scheduling algorithms is depicted in Figure 4. These
results clearly indicate that the DCP algorithm is better
than all other algorithms. Both DCP and MD outperformed
EZ and LC by a large margin while DSC was marginally
better than LC. Based on these results, we rank these UNC
algorithms in the following order: DCP, MD, DSC, LC,
and EZ. Interestingly, this ranking does not change using
the NSLs shown in Figure 1.

I . The number of processors used by a typical UNC algorithm is
very large -the LC algorithm, for instance, uses more than 100
processors for a 500-node task graph

211

Figure 3: A global comparison of the BNP scheduling
algorithms in terms of better, worse and equal performance.

t I

Figure 4: A companson of the UNC scheduling algonthms
i n terms of better, worse and equal performance.

In the pair-wise comparison for the TDB scheduling
algorithms, shown in Figure 5, we notice that CPFD was
better than all other algorithms by a large margin - it was
outperformed in only 5 cases. The unexpected result was
the comparison of the LWB algorithm compared to other
algorithms. Collectively, LWB was second only to the
CPFD algorithm but, as shown above in Figure 1, its
average performance was the worst. This is because it
generates optimal solutions in many cases when CCR is
small but becomes inefficient when CCR is larger than 1.
Based on the results of Figure 1, these algorithms can be
ranked in the order: CPFD, LWB, BTDH, DSH, LCTD
and PY. Based on the results of Figure 5, we make the
following ranking: CPFD, BTDH, DSH, PY, LCTD and

Figure 5 A global companson of the TDB scheduling
algonthms i n terms of better, worse and equal performance

I

[su)
Figure 6 A companson of the APN scheduling algonthms in
terms of better, worse and equal performance across all topologies

7.3 Best Performance
Table 1 shows the number of times each algorithm

yielded the best solution out of 250 test cases (for the AN€'
scheduling algorithms, there were 1000 test cases). For the
BNP scheduling algorithms, the MCP algorithm generated
the best solution for 129 times - which is more than 50%
of the number of test cases. In the category of the UNC
scheduling algorithms, the DCP algorithm generated the
best solution in about 90% of the cases. Similarly, in the
category of TDB algorithms, the CPFD algorithm
generated the best solution in almost all cases while, in the
category of the ANP algorithms, the BSA algorithm
generated the best solution in about 60% of the cases. The
LAST, EZ, PY, and BU algorithms did not yield the best
solut ion in any s i n g l e case.

BNP Alg. UNC AI& TDB Alg. APN Alg.

MCP 129 K P 225 CPFD 246 BSA 599
algorithms shown in Figure 6, BSA outperformed the other ISH 101 Dsc 30 LWB 94 DLS 244

HLFET7S MD 15 DSH 5 MH 59
DLS 64 LC 7 BTDH 5 BU 0

performed better than MH. The BU algorithm was El'F 18 E Z 0 L C T D 1
LAST 0 PY 0

LWB.
In the pair-wise comparison of the APN scheduling

three algorithms in a large number of cases while DLS

outperformed by all other algorithms. In terms of

BSA, DLS, MH, and BU.
performance, these algorithms can be ranked in the order: Table 1: The number of times an algorithm

produced the shortest schedule length.

212

8 Conclusions aind Future Work
Our study has revealed several important findings. For

both the BNP and UNC classes, algorithms emphasizing
the accurate scheduling of nodes on the critical-path are in
general better than the other algorithms. Dynamic critical-
path is better than static critical-path, as demonstrated by
both the DCP and D S C algorithms. Insertion is better than
non-insertion-for example, a simple algorithm such as
ISH employing insertion can yield dramatic performance.
Dynamic priority is in general better than static priority,
although it can cause substantial complexity gain - for
example the DLS and ETF algorithms have higher
complexities. However, this is not always true - one
exception, for example, is that the MCP algorithm using
static priorities perfcirms the best in the BNP class. A BNP
algorithm can be used as an UNC algorithm assuming
infinite number of processors. However, BNP algorithms
are designed for a bounded number of processors. BNP
algorithms usually use b-level, t-level, or combination of
both, as the criterion for selecting nodes to schedule. UNC
algorithms, on the other hand, usually use mobility as the
major criteria. An UNC algorithm can be used for a
bounded number of processors if the number of processors
is not smaller than the number of clusters generated.
Exploitation of other topological properties of the graph
such as the concept of critical child used by the DCP
algorithm can result in a dramatic improvement in
schedule lengths. Low complexity algorithms such as DSC
and LC can outperform some of the higher complexity
algorithms. The APN algorithms can be fairly complicated
because they take into account more parameters. Further
research is required in this area. The effects of topology
and routing strategy need to be determined.

A number of research prototypes have been designed
and implemented, showing good performance on a group
of carefully selected examples [9], [17]. The current
researches concentrate on further elaboration of various
techniques, such as reducing the scheduling complexities,
improving computation estimations, and incorporating
network topology and communication traffic.
References
[I] T.L. Adam, K. Clhandy and J. Dickson, “A Comparison of

List Scheduling for Parallel Processing Systems,”
Communications of the ACM, vol. 17, no. 12, pp. 685-690,
Dec. 1974.

[2] I. Ahmad and Y.K. Kwok, “A New Approach to Scheduling
Parallel Programs; Using Task Duplication,” Proc. of Int ’1
Con5 on Parallel Processing, vol. 11, pp. 47-5 1, Aug. 1994.

[3] J.J. Hwang, Y.C. Chow, F.D. Anger, and CY. Lee,
“Scheduling precedence graphs in systems with
interprocessor cornmunication times,” SIAM J. Comp., pp.

141 J. Baxter and J.H. Patel, “The LAST Algorithm: A
Heuristic-Based Static Task Allocation Algorithm,” Proc. of
Int’l Conference on Parallel Processing, vol. 11, pp. 217-
222, Aug. 1989.

[51 H. Chen, B. Shirazi and J. Marquis, “Performance
Evaluation of A Novel Scheduling Method: Linear
Clustering with Task Duplication,” Proc. of Int’l Conf on
Parallel and Dist,ributed Systems, pp. 270-275, Dec. 1993.

[6] Y.C. Chung and S . Ranka, “Application and Performance

244-257, Apr. 19139.

Analysis of a Compile-Time Optimization Approach for
List Scheduling Algorithms on Distributed-Memory
Multiprocessors,” Proc. of Supercomputing’92, pp. 5 12-
521, Nov. 1992.

[7] E.G. Coffman and R.L. Graham, “Optimal Scheduling for
Two-Processor Systems,” Acta Informatica, vol. 1, pp. 200-
213,1972.

[SI J.Y. Colin and P. Chretienne, “C.P.M. Scheduling with
Small Computation Delays and Task Duplication,”
Operations Research, pp. 680-684, 199 1.

[9] H. El-Rewini and T.G. Lewis, “Scheduling Parallel
Programs onto Arbitrary Target Machines,” Journal of
Parallel and Distributed Comuutinn. vol. 9. no. 2. QQ. 138- . - ...
153, Jun. 1990.

[lo] M.R. Gary and D.S. Johnson, Computers and Imractability:
A Guide to the Theorv of NP-Comnleteness. W.H. Freeman
and Company, 1979.- “

111 A. Gerasoulis and T. Yang, “A Comparison of Clustering
Heuristics for Scheduling DAG’S on multiprocessors,”
Journal of Parallel and Distributed Computing, vol. 16, no.
4, pp. 276-291, Dec. 1992.

121 A.A. Khan, C.L. McCreary and M.S. Jones, “A Comparison
of Multiprocessor Scheduling Heuristics,” Proc. of Int’l
Con5 on Parallel Processing, vol. 11, pp. 243-250, Aug.
1994.

131 S.J. Kim and J.C. Browne, “A General Approach to
Mapping of Parallel Computation upon Multiprocessor
Architectures,” Proc. of Int ’ 1 Conference on Parallel
Processing, vol. 11, pp. 1-8, Aug. 1988.

[141 B. Kruatrachue and T.G. Lewis, “Duplication Scheduling
Heuristics (DSH): A New Precedence Task Scheduler for
Parallel Processor Systems,” Technical Report, Oregon
State University, Corvallis, OR 97331, 1987.

[IS] Y.K. Kwok and I. Ahmad, “A Static Scheduling Algorithm
Using Dynamic Critical Path for Assigning Parallel
Algorithms Onto Multiprocessors,” Proc. of Inr’l Con$ on
Parallel Processing, vol. 11, pp. 155-159, Aug. 1994.

[16] Y.K. Kwok and 1. Ahmad, “Bubble Scheduling: A Quasi
Dynamic Algorithm for Static Allocation of Tasks to
Parallel Architectures,” to appear in Proc. of 7th IEEE
Symposium on Parallel and Distributed Processing, Oct.
1995.

[17] T.G. Lewis and H. El-Rewini, “Parallax: A Tool for Parallel
Program Scheduling,” IEEE Parallel and Distributed
Technology, May 1993, vol. 1, no. 2, pp. 64-76.

[18] N. Mehdiratta and K. Chose, “A Bottom-Up Approach to
Task Scheduling on Distributed Memory Multiprocessor,”
Proc. of Int ’I Con$ on Parallel Processing, vol. 11, pp. 15 1 -
154, Aug. 1994.

[19] C.H. Papadimitriou and M. Yannakakis, “Towards 2
Architecture-Independent Analysis of Parallel Algorithms,
SIAM J. of Comp., vol. 19, no. 2, pp. 322-328, Apr. 1990.

[20] V. Sarkar, Partitioning and Scheduling Parallel Programs
for Multiprocessors, MIT Press, Cambridge, MA, 1989.

[21] B. Shirazi, M. Wang and G. Pathak, “Analysis and
Evaluation of Heuristic Methods for Static Scheduling,”
Journal of Parallel and Distributed Computing, no. 10, pp.

[22] G.C. Sih and E.A. Lee, “A Compile-Time Sicheduling
Heuristic for Interconnection-Coxtrained Heterogeneous
Processor Architectures,” IEEE Trans, on Parallel and
Distributed Systems, vol. 4, no. 2, pp. 75-87, Feb. 1993.

[23] M.Y. Wu and D.D. Gajski, “Hypertool: A Programming
Aid for Message-Passing Systems,” IEEE Trans. on
Parallel and Distributed Systems, vol. 1, no. 3, pp. 330-343,
Jul. 1990.

[2] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel
Tasks on an Unbounded Number of Processors,” IEEE
Trans. on Parallel and Distributed Systems, vol. 5, no. 9, pp.
951-967, Sep. 1994.

222-232, 1990.

213

