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Absrraci- Motion estimation plays an important role in the 
motion compensated video coding framework. Due to the 
high computational complexity of the exhaustive search, 
many sub-optimal fast search algorithms, aiming to achieve 
the best trade off between distortion and search speed, are 
proposed. We observe that distortion gradient of a search 
point on the block distortion surface (BDS) monotonously 
decreases with increasing distance from that point to the 
global minimum point. Based on this property, we propose a 
novel adaptive cross search (ACS) algorithm that can 
distribute the computation powers over the search Space 
efficiently. The simulation shows that ACS achieves 

competitive reconstrnction visual quality as well reduced 
computational complexity. 
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I. INTRODUCTION 
In a motion compensated video coding system, 

advantages of temporal correlation between successive 
frames are taken to achieve high compression ratio. The 

current frame is predicted by a reference frame. Only the 
prediction errors and motion vectors are encoded and 
transmitted. Motion estimation (ME), who aims at finding 
the motion between consecutive frames, plays an 
important role in motion compensated vide? coding 
framework. Among many ME algorithms, block matching 
ME (BMME), due to its simplicity, is widely adopted in 
many video compression standards, e.g. MPEG-4 [ 1 j and 
H.263 [2]. In BMME, a frame is divided into blocks, ME 
algorithm searches the best matching block in the 

reference frame and returns a motion vector that points to 
the matching block. 

Full search (FS) block matching algorithm exhaustively 
tests all candidates in the predefined search window, thus 
always guarantees an optimal solution. However, FS 
suffers from its extremely high computational complexity. 
Accordingly, fast and accurate BMMEs are highly desired 
to reduce the encoding delay while maintaining the visual 
quality. Many fast block matching algorithms are proposed. 
The three-step search (TSS) algorithm [3] is a popular fast 
ME due to its simplicity and regularity. It sub-samples the 
candidates within the search space uniformly. Based on the 

zero-biased distribution of motion vectors, the new 
three-step .search (NTSS) algorithm [6] adds 8 
neighborhood search points adjacent to the zero motion 
vector. Other fast BMMEs includes 2-D logarithmic search 

(LOGS) [4], cross search (CS) [SI, block-based gradient 
descent search (BBGDS) [7], diamond search (DS) [8], etc. 
These fast ME algorithms combine different search 
patterns and search strategies. They efficiently reduce the 
computational complexity and keep the seach accuracy 
close to FS. 

In this paper, we proposed an adaptive cross search 

(ACS) algorithm that can efficiently distribute the 
computation power in the search space,, 

11. OBSERVATION 
We define a block distortion surface (BDS) as a 2D 

scalar field which consists of the block distortion values of 
all the candidate motion vectors in the search space. The 
sum of absolute difference (SAD) is used to measure the 
block distortion, which is given by 
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where (u,v) is the candidate motion vector,f;(i,J) is the 

luminance value of pixel (i,j) at frame t .  

A typical BDS is depicted in figure 1. 

. ,i 
. :  

Distance 

Figure I .  Average BDS of “news” sequence 

News I Akiyo 1 Forman 1 Stefan I Silent 
By evaluating of a large number of BDSs of different 

test sequences, we have the following observations: 
1. The distortion of a search point monotonously increases 

with increasing distance from that search point to the 
global minimum point (GMP); 

2.When a search point is further from the GMP, the 
surface at that point is tlater, i.e., the gradient of 
distortion is smaller; when a search point is closer to the 
GMP, the surface at that point is steeper, i.e. the gradient 
of distortion is larger. 

The first observation is well known as the unimodal 
property of BDS. It has been widely adopted as a 

fundamental assumption of many fast BMMEs. 

We conclude the second observation as the property of 
distortion gradient as follows: 

On a BDS, The distortion gradient of a search point 
monotonously decreases with increasing distance from that 
search point to the GMP. 

The property is testified in table 1, which illustrates the 
average gradients versus the distance to the GMP by 
applying the FS algorithm to five popular video sequences. 
The column “distance” is the chess-board distance to the 
GMP. 

The above property is the fundamental assumption of 
the proposed ACS algorithm. With this property, one can 

estimate the distance from the current search point to the 

GMP. The regions with the higher gradient value have 
higher probabilities of finding the global minimum. 
Therefore, more computation powers should be allocated 
to these regions to refme the motion vector. Otherwise, a 
coarse search is employed to speed up the search process. 
In addition, based on the zero-bias property of the motion 
vector distribution [ 6 ] ,  the region around the zero motion 
vector has higher probability of finding the global 

minimum as well. Based on the above properties, we 
proposed a ME algorithm that employs different search 

patterns on different regions in order to distribute the 
computation over the search space efficiently. 

Table I .  Average gradient of distortion versus distance to the 

111. THE PROPOSED ALGORITHM 
The proposed ACS algorithm employs adaptive size 

cross search pattem. That a cross (+) shape is chosen is 

because of the fact that most of the motions in real-world 
video is along horizontal or vertical direction due to the 

camera panning and tilting. A cross pattern consists of 4 

points, (S,O), (0,-S), (-S,O), (O,S), 2 1 .  Factor S is used to 

adjust the size of the cross pattern. Figure 2 depicts cross 
patterns with scaling factor S=l and S=2. 

Due to the zero-biased motion vector distribution, the 
algorithm starts the search process with the smallest size 
cross pattern, i.e. S = l ,  and initially sets the center of the 
cross pattem at (0,O). During the searching process, factor 
S is adjusted according to the estimated gradient of 
distortion on the minimum distortion point (MDP) in 

previous step. The gradient of distortion is estimated by 
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MBDj - MBDj., 
grad = 

s, 
where i is the current step and i-l is the previous step. 

. ,  

MBD, is the minimum block distortion of step i. 

a) S=l b) S=2. 

Figure 2. Examples of adaptive size cross pattern. 

A small gradient means the current MDP probably is 
relatively far from the GMP. Thus, S is adjusted to a larger 
value in the next step. A large gradient means current MDP 
point is relatively close to the GMP, a smaller scaling 
factor should be chosen in the next step. A threshold Tis  
used in ACS, such that if the gradient of current MDP is 
large? than T, increase S, and vice versa. In our simulation, 
we assume that if the estimate distance to the GMP is less 
than 4, we reduce the size of the cross pattern, otherwise, 
we enlarge the search pattern. Thereby, T i s  set to be the 
mean of gradients with distance of 3 and 4 in table 1, i.e. T 
= 500. Scan be adjusted as follows, 

grad < T,and BDP is  not the .;{ L+‘ center of the cross pattern; (3) 

As expressed in equation (3), if the current MDP occurs 
at the center of the cross pattern, which means that the 
global minimum is within the area covered by the current 
search pattern, a smaller size pattern is chosen and the 
search window is set to S!., to avoid further evaluating the 
candidates which is estimated to be far from the global 
optimum. The searching process will be terminated when 
the current minimum occurs at the center of a cross pattern 
andSis  1. 

rnax(l,S,-, /2) athenvise. 

We summarize the ACS algorithm as follows: 
Step 1) Initially S=l. Point (0,O) and the cross pattern is 

tested. If the current MDP is located at the center 
of the cross, terminate the search. Or else, go to 

step 2 
Step 2) Compute the gradient of the current MDP by (2). 

Adjust S by (3) 

Step 3) Move the search center to the MDP. Check the 
cross pattern with size S. If the current MDP is 
located at the center, go to step 4, or else go to 
step 2 

Step4) If S=l, stop. Otherwise, set the search window 
size to S, then adjust S by (3) and go to step 2 

Compared with other fast BMME algorithm, the 
proposed algorithm has the following distinct features: 

First, unlike the algorithms which restrict the number of 
search steps so that only candidates within a fixed size 
search window are tested, ACS does not restrict the 
number of search steps. Thus, ACS is able to employ 
different sizes of search window. To this point of view, 
ACS is able to adapt to the maximum motion vector length 
of different video encoders. 

Second, most real-world sequences have a zero-biased 
motion vector distribution. For example, for the 
“salesman” sequence, nearly 80% blocks can be regarded 
as stationary and quasi-stationary [6]. ACS starts the 
search process with the smallest size cross pattern, thus for 
most low motion block, the search process can be 
terminated in early steps. 

Third, unlike the conventional fixed pattern ME whose 
search points are evenly distributed, by exploiting the 
properly of the BDS, the proposed algorithm will reduce 
the step size when the search points are getting close to the 
global minimum. The density of search points is larger in 
the area close to the global minimum and the zero point, 
than in the other areas. Therefore, the computations are 
distributed efficiently. 

Finally, in the implementation of ACS, the positions of 
tested search points are recorded to avoid the overlap 
computations. 

IV. EXPERIMENT RESULTS 
In our simulation, four test sequences are used. Among 

all the test sequences, “Akiyo” and “Mother-daughter” are 
slow motion talking head sequences, “news” contains a 
talking bead foreground and a fast motion dancing 
background, “foreman” contains fast motion and camera 
panning and zooming scenes. The set of test sequences 
covers the most common types of real-world videos. The 
test sequences and their sizes and lengths are listed in table 

916 



2. To be consistent with other BMMEs, the search window 
size is W=7, although ACS is not restricted to a fixed 
window size. The block size is 16x16. 

Sequence 

Table 2. Sequences used for simulation experiment 

Frame Frame 
size size 

Length Sequence Length 

Akiyo 

Akiyo I 352 I 300 I Foreman I 352 I 300 
xi88 x288 

Foreman News Mother-daughter 

The comparing BMME algorithms are TSS, NTSS, 4SS, 
BBGDS, DS and the proposed ACS algorithm. 
Computational complexity and visual distortion are 
compared. The computational complexity is measured by 
the average number of search points (NSP) per block 
required by the algorithm. The visual distortion is 

measured by the peak signal to noise ratio (PSNR). 
Table 3-4 compare ACS and the other fast BMMEs in 

terms of PSNR and average NSP per block. Figure 3-4 
show the per frame comparison of the average PSNR and 
the average NSP per block of “Akiyo” and “foreman”. 

The experiment results show that in terms of 
reconstruction image quality, the proposed ACS algorithm 
is marginally worse compared to the other search 
algorithms. However, ACS reduces the computational 
complexity substantially. Another comparison of trade-off 
between average distortion and computational complexity 
is performed, as shown in table 5 .  ACS ovenvhelms other 
search techniques in the computation cost comparison. 
Compared with other fast BMMEs, ACS computational 
complexity is 42% - 59% less, while keeping the visual 
quality drop less than 0.13dB. 

FS 
V. Conclusion 

In this paper, we propose an adaptive cross search (ACS) 
algorithm for motion estimation. By exploiting the 
distortion gradient property of the block distortion surface, 
the ACS adaptively adjusts the search pattern. The ACS 
algorithm concentrates the search points in the more 

important areas and pays less attention to less important 
area. By effectively distributing the computation powers 
over the search space, the ACS algorithm successfully 

42.94 31.22 36.72 40.40 

reduces the computational complexity while maintaining 
to a marginal distortion .level compared to the other 
popular sub-optimal fast motion estimation algorithms. 
ACS is a competitive algorithm among the existing fast 
BMMEs. 

4SS 
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Tabel 3. PSNR fdB) cornoarison 

42.86 30. 77 36.48 I 40.28 

DS 
ACS 

42.93 30. 85 36.51 40.29 

42.91 30. 70 36.42 40.21 

NTSS I 42.93 I 30.99 I 36.54 I 40.29 
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Akiyo Foreman News Mother-daughter PSNR decrease 
. . .  . . .  . . . .  

FS 203.28 203.28 203.28 203.28 (dB) 
. . .  . 

Complexity 

decrease 

TSS 23.21 23.33 23.21 23.29 FS 0.26 98% 

I 1 -  I I 

NTSS 15.92 

150 

a) “Akiyo” b) “Foreman” 

Figure 3. Per-frame PSNR comparison 

21. 5 1  16.56 18.00 TSS 0.02 79% 

a) “Akiyo” b) “Foreman” 

Figure 4. Per-frame Average NSP per block comparison 

4SS 15.85 18.91 16.18 16.85 NTSS 

918 

0.13 69% 

BBGDS 8.53 

DS 12.27 

ACS 4 9 8  

~ 

69% 

42% 

12.53 5.94 7.49 0.08 59% 

15. 77 9.29 10.21: 

17.30 12.81 13 58 BBGDS 


