
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE 2004

 1

Abstract—This paper addresses the problem of fine-grained data

replication on a set of Internet sites using the N+1st price auction.
Specifically, we present an adaptive auction mechanism for
replication of objects in a distributed system. The mechanism is
adaptive in the sense that it changes the replica schema of the objects
by continuously moving the schema towards an optimal one, while
ensuring object concurrency control. The mechanism is
experimentally evaluated against three well-known techniques from
the literature: greedy, branch and bound, and genetic algorithms. The
experimental results reveal that the proposed approach outperforms
the three techniques in both the execution time and solution quality.

Keywords—Data replication, auctions, static allocation, pricing.

I. INTRODUCTION
INE-GRAINED (object based) replica schemas determine
how many replicas of each objects are created, and to
which sites they are assigned. These schemas critically

affect the performance of the distributed computing system
(e.g. the Internet), since reading an object locally is less costly
than reading it remotely [9]. Therefore, in a read intensive
network an extensive replica schema is required. On the other
hand, an update of an object is written to all, and therefore, in
a write intensive network a constricted replica schema is
required. In essence replica schemas are strongly dependent
upon the read and write patterns for each object [3]. Recently,
a few approaches on replicating data objects over the Internet
have been proposed in [1], [6], [7], [8] and [10]. The majority
of the work related to data replication on the Internet employs
the coarse-grained (site based) replication. As the Internet
grows and the limitations of caching become more obvious,
the importance of fine-grained replication, i.e., duplicating
highly popular data objects, is likely to increase [8].

In this paper, the replica schemas are established in a
static fashion. The aim is to identify a replica schema that
effectively minimizes the object transfer cost. We propose a
novel technique based on the N+1st price auction, where the
players compete for memory space at sites so that replicas can
be placed. This approach is compared against three well-
known techniques from the literature: branch and bound [7],
greedy [10], and genetic algorithms [8]. Experimental results
reveal that this simple and intuitive approach outperforms the
three techniques in both execution time and solution quality.

Samee Ullah Khan is with the Department of Computer Science and

Engineering, University of Texas at Arlington, TX 76019 USA (phone: 817-
272-3607; fax: 817-272-3784; e-mail: sakhan@cse.uta.edu).

Ishfaq Ahmad is with the Department of Computer Science and
Engineering, University of Texas at Arlington, TX 76019 USA (e-mail:
iahmad@cse.uta.edu).

II. PROBLEM FORMULATION
Consider a distributed system comprising M sites, with each

site having its own processing power, memory (primary
storage) and media (secondary storage). Let Si and si be the
name and the total storage capacity (in simple data units e.g.
blocks), respectively, of site i where 1 ≤ i ≤ M. The M sites of
the system are connected by a communication network. A link
between two sites Si and Sj (if it exists) has a positive integer
c(i,j) associated with it, giving the communication cost for
transferring a data unit between sites Si and Sj. If the two sites
are not directly connected by a communication link then the
above cost is given by the sum of the costs of all the links in a
chosen path from site Si to the site Sj. Without the loss of
generality we assume that c(i,j) = c(j,i). This is a common
assumption (e.g. see [7], [8], and [10]). Let there be N objects,
each identifiable by a unique name Ok and size in simple data
unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i be the total number

of reads and writes, respectively, initiated from Si for Ok
during a certain time period. Our replication policy assumes
the existence of one primary copy for each object in the
network. Let Pk, be the site which holds the primary copy of
Ok, i.e., the only copy in the network that cannot be de-
allocated, hence referred to as primary site of the k-th object.
Each primary site Pk, contains information about the whole
replication scheme Rk of Ok. This can be done by maintaining
a list of the sites where the k-th object is replicated at, called
from now on the replicators of Ok. Moreover, every site Si
stores a two-field record for each object. The first field is its
primary site Pk and the second the nearest neighborhood site
NNk

i of site Si which holds a replica of object k. In other
words, NNk

i is the site for which the reads from Si for Ok, if
served there, would incur the minimum possible
communication cost. It is possible that NNk

i = Si, if Si is a
replicator or the primary site of Ok. Another possibility is that

N+1st Price Auction Based Replica Schemas
Samee Ullah Khan and Ishfaq Ahmad

F

TABLE I
NOTATIONS AND THEIR MEANINGS

Symbol Meaning
M Total number of sites in the network.
N Total number of objects to be replicated.
Ok k-th object.
ok Size of object k.
Si i-th site.
si Size of site i.
rk

i Number of reads for object k from site i.
Rk

i Aggregate read cost of rk
i.

wk
i Number of writes for object k from site i.

Wk
i Aggregate write cost of wk

i.
NNk

i Nearest neighbor of site i holding object k.
c(i,j) Communication cost between sites i and j.
Pk Primary site of the k-th object.
Rk Replication schema of object k.
Coverall Total overall data transfer cost.

INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE 2004

 2

NNk
i = Pk, if the primary site is the closest one holding a

replica of Ok. When a site Si reads an object, it does so by
addressing the request to the corresponding NNk

i. For the
updates we assume that every site can update every object.
Updates of an object Ok are performed by sending the updated
version to its primary site Pk, which afterwards broadcasts it to
every site in its replication scheme Rk.

For the DRP under consideration, we are interested in
minimizing the total Replication Cost (RC) (or the total
network transfer cost) due to object movement, since the
communication cost of control messages has minor impact to
the overall performance of the system. There are two
components affecting RC. The first component of RC is due
to the read requests. Let Rk

i denote the total RC, due to Sis’
reading requests for object Ok, addressed to the nearest site
NNk

i. This cost is given by the following equation:
),(i

kk
i

k
i
k NNicorR = (1)

Where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second

component of RC is the cost arising due to the writes. Let Wk
i

be the total RC, due to Sis’ writing requests for object Ok,
addressed to the primary site Pk. This cost is given by the
following equation:

)),(),((
),(

∑
≠∈∀

+=
ijkRj

i
kkk

i
k

i
k jNNcPicowW (2

)
Here, we made the indirect assumption that in order to

perform a write we need to ship the whole updated version of
the object. This of course is not always the case, as we can
move only the updated parts of it (modeling such policies can
also be done using our framework). The cumulative RC,
denoted as Coverall, due to reads and writes is given by:

∑ ∑= =
+= M

i
N
k

i
k

i
koverall WRC 1 1)((3)

Let Xik = 1 if Si holds a replica of object Ok, and 0
otherwise. Xiks define an M×N replication matrix, named X,
with boolean elements. Equation 3 is now refined to:

∑∑
∑= =

=

++

=−
=

M

i

N

k kk
M
x

i
kikkk

i
k

jkk
i
kik

PicowXPicow

XjicorX
X

1 1 1),()()],(

}1|),(min{)[1((4)

Sites which are not the replicators of object Ok create RC
equal to the communication cost of their reads from the
nearest replicator, plus that of sending their writes to the
primary site of Ok . Sites belonging to the replication scheme
of Ok, are associated with the cost of sending/receiving all the
updated versions of it. Using the above formulation, the Data
Replication Problem (DRP) can be defined as:
Find the assignment of 0,1 values in the X matrix that
minimizes Coverall, subject to the storage capacity constraint:
∑ = ≤≤∀≤N

k ikik MisoX1)1(, and subject to the primary copies
policy:)1(1 NkX kkP ≤≤∀= .

In the generalized case, DRP is essentially a constraint
optimization problem, reducible to the Knapsack problem, and
without the storage constraint, to the minimum k-median
problem [8].

III. N+1ST PRICE AUCTION AND ITS APPLICATION
In the auction setup each primary copy of an object k is a

player. A player k can perform the necessary computations on
its strategy set by using the site Pk’s (where it resides)

processor. At each given instance a (sub)-auction takes place
at a particular site i chosen in a round robin fashion from the
set of M sites. These auctions are performed continuously
throughout the system’s life, making it a self evolving and self
repairing system. However, for simulation purposes (“cold”
network [8]) we discrete the continuum solely for the reason
to observe the solution quality.

Each player k competes through bidding for memory at a
site i. Many would argue that memory constraints are no
longer important due to the reduced costs of memory chips.
However, replicated objects (just as cached objects) reside in
the memory (primary storage) and not in the media (secondary
storage) [9]. Thus, there will always be a need to give priority
to objects that have higher access (read and write) demands.
Moreover, memory space regardless of being primary or
secondary is limited.

Each player k’s strategy is to place a replica at a site i, so
that it maximizes its (the object’s) benefit function. The
benefit function gives more weight to the objects that incur
reduced RC in the system:

∑ =
−−= M

x
i

kkk
x
k

i
k

i
k WSPiCowRB 1)),(((5

)
The above value represents the expected benefit (in RC

terms), if Ok is replicated at Si. This benefit is computed using
the difference between the read and update cost. Negative
values of Bk

i mean that replicating Ok, is inefficient from the
“local view” of Si (although it might reduce the global RC due
to bringing the object closer to other servers). The pseudo-

code for the N+1st price auction is given in Figure I.
To present our algorithm, we maintain a list Li at each

server. The list contains all the objects that can be replicated at
Si (i.e., the remaining storage capacity bi is sufficient and the
benefit value is positive). We also maintain a list LS
containing all servers that can replicate an object. In other
words, Si∈LS if and only if Li ≠ NULL. The auction
mechanism performs in steps. In each step a server Si is
chosen from LS in a round-robin fashion. Each player k∈O

N+1st Price Auction Mechanism
Initialize:
01 LS, Li.
02 WHILE LS ≠ NULL DO
03 SELECT Si∈LS /*Round-robin fashion */
04 FOR each k∈O DO
05 Bk = compute (Bk

i); /*compute the benefit*/
06 Report Bk to Si which stores in array B;
07 END FOR
08 WHILE bi ≥ 0
09 Bk = argmaxk(B); /*Choose the best offer*/
10 Extract the info from Bk such as Ok and ok;
11 bi = bi-ok; /*Calculate available space and termination condition*/
12 Payment = Bk; /* Maintain N+1st price */
13 IF bi < 0 THEN EXIT WHILE ELSE
14 Li = Li - Ok; /*Update the list*/
15 Update NNi

OMAX /*Update the nearest neighbor list*/
16 IF Li = NULL THEN SEND info to M to update LS = LS - Si;
17 Replicate Ok;
18 END WHILE
19 Si asks all successful bidders to pay Bk
20 END WHILE

FIGURE I
PSEUDO-CODE FOR N+1ST PRICE AUCTION MECHANISM

INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE 2004

 3

calculates the benefit function of object. The set O represents
the collection of players that are legible for participation. A
player k is legible if and only if the benefit function value
obtained for site Si is the maximum of among all the other
benefit function values for sites other than i, i.e., Si ≥ S-i. This
is done in order to suppress mediocre bids, which, in turn
improves computational complexity. It is to be noted that in
each step Li together with the corresponding nearest server
value NNk

i, are updated accordingly.
The worst case execution time of the algorithm is when

each server has sufficient capacity to store all objects and the
update ratios are low enough so that no object incurs negative
benefit value. In that case, the while-loop (02) performs M
iterations. The time complexity for each iteration is governed
by the for-loop in (04) and the while loop in (08) (O(N2) in
total). Hence, we conclude that the worst case running time of
the algorithm is O(MN2).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
We performed experiments on a 440MHz Ultra 10 machine

with 512MB memory. The experimental evaluations were
targeted to benchmark the placement policies. The solution
quality in all cases, was measured according to the RC

percentage that was saved under the replication scheme found
by the algorithms, compared to the initial one, i.e., when only
primary copies exist.

To establish diversity in our experimental setups, the
network connectively was changed considerably. In this
paper, we only present the results that were obtained using a
maximum of 500 sites. We used existing topology generator
toolkits and also self generated networks. Table II summarizes
the various techniques used to gather forty-five various
topologies. All the results reported, represent the average
performance over all the topologies.

To evaluate our proposed technique on realistic traffic
patterns, we used the access logs collected at the Soccer
World Cup 1998 website [2]. Each experimental setup was
evaluated thirteen times, i.e., Friday (24 hours) logs from May
1, 1998 to July 24, 1998. Thus, each experimental setup in
fact represents an average of the 585 (13×45) data set points.
To process the logs, we wrote a script that returned: only those
objects which were present in all the logs (2000 in our case),
the total number of requests from a particular client for an
object, the average and the variance of the object size. From
this log we choose the top five hundred clients (maximum

experimental setup), which were randomly mapped to one of
the nodes of the topologies. The primary replicas’ original site
was mimicked by choosing random locations. The capacities
of the sites C% were generated randomly with range from
Total Primary Object Sizes/2 to 1.5×Total Primary Object
Sizes. The variance in the object size collected from the access
logs helped to instill enough diversity to benchmark object
updates. The updates were randomly pushed onto different
sites, and the total system update load was measured in terms
of the percentage update requests U% compared that to the
initial network with no updates.

For comparison, we selected three various types of replica
placement techniques. To provide a fair comparison, the
assumptions and system parameters were kept the same in all
the approaches. We chose 1) from [7] the efficient branch-
and-bound based technique (Aε-Star), 2) from [8] the genetic
algorithm based technique (GRA) which showed excellent

adaptability against skewed workload, 3) from [10] the
famous greedy approach (Greedy). Due to space limitations,
details for a specific technique are left as a reading exercise.

Table III (best times shown in bold) shows the algorithm
execution times. The number of sites was kept constant at 500,
and the number of objects was varied from 1350 to 2000.

With maximum load (2000 objects and 500 sites), the
proposed technique NPAM saved approximately 50 seconds
of termination time then the second fastest algorithm
(Greedy).

Superiority of execution time comes at the cost of loss in
solution quality. However, NPAM showed high solution
quality. First, we observe the effects of system capacity
increase. An increase in the storage capacity means that a
large number of objects can be replicated. Replicating an
object that is already extensively replicated, is unlikely to
result in significant traffic savings as only a small portion of
the servers will be affected overall. Moreover, since objects
are not equally read intensive, increase in the storage capacity
would have a great impact at the beginning (initial increase in

TABLE II
OVERVIEW OF TOPOLOGIES

Topology Mathematical Representation
SGRG [7]
(12 topologies)

Randomized layout with node degree (d*) and Euclidian
distance (d) between nodes as parameters.

GT-ITM PR [2]
(5 topologies)

Randomized layout with edges added between the
randomly located vertices with a probability (p).

GT-ITM W [2]
(9 topologies)

P(u,v)=αe-d/(βL)

SGFCGUD [7]
(5 topologies)

Fully connected graph with uniform link distances (d).

SGFCGRD [7]
(5 topologies)

Fully connected graph with random link distances (d).

SGRGLND [7]
(9 topologies)

Random layout with link distance having a lognormal
distribution [4].

TABLE III
RUNNING TIME IN SECONDS

Problem Size Greedy GRA Aε-Star NPAM
M= 500, N= 1350 81.69 117.60 110.46 90.09
M= 500, N= 1400 98.28 127.89 127.89 95.34
M= 500, N= 1450 122.43 139.02 139.02 98.91
M= 500, N= 1500 134.61 148.47 155.40 104.37
M= 500, N= 1550 146.58 168.84 169.47 105.63
M= 500, N= 2000 152.25 177.66 189.21 108.57

Capacity of Sites

R
C

 S
av

in
gs

10% 14% 18% 22% 26% 30% 34% 38%
20%
24%
28%
32%
36%
40%
44%
48%
52%
56%
60%
64%
68%
72%
76%
80%
84%
88%
92%
96%

100%

Legend
Greedy
GRA
Aε-Star
NPAM

FIGURE II

RC SAVINGS VERSUS SYSTEM CAPACITY (N=2000, M=500, U=5%)

INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE 2004

 4

capacity), but has little effect after a certain point, where the
most beneficial ones are already replicated. This is observable
in Figure II, which shows the performance of the algorithms.
Greedy and NPAM showed an immediate initial increase (the
point after which further replicating objects is inefficient) in
its RC savings, but afterward showed a near constant
performance. GRA although performed the worst, but
observably gained the most RC savings (35%) followed by
Greedy with 29%. Further experiments with various update
ratios (5%, 10%, and 20%) showed similar plot trends. It is

also noteworthy (plots not shown in this paper due to space
restrictions) that the increase in capacity from 10% to 17%,
resulted in 4 times (on average) more replicas for all the
algorithms.

Next, we observe the effects of increase in the read and
update (write) frequencies. Since these two parameters are
complementary to each other, we describe them together. In
both the setups the number of sites and objects were kept
constant. Increase in the number of reads in the system would
mean that there is a need to replicate as many object as
possible (closer to the users). However, the increase in the
number of updates in the system requires the replicas be
placed as close as to the primary site as possible (to reduce the
update broadcast). This phenomenon is also interrelated with
the system capacity, as the update ratio sets an upper bound on
the possible traffic reduction through replication. Thus, if we
consider a system with unlimited capacity, the “replicate
everywhere anything” policy is strictly inadequate. The read
and update parameters indeed help in drawing a line between
good and marginal algorithms. The plots in Figures III and IV
show the results of read and update frequencies, respectively.
A clear classification can be made between the algorithms.

Aε-Star, Greedy and NPAM incorporate the increase in the
number of reads by replicating more objects and thus savings
increase up to 89%. GRA gained the least of the RC savings
of up to 67%. To understand why there is such a gap in the
performance between the algorithms, we recall from [8] that
GRA specifically depends on the initial population of the
candidate solution. Moreover, GRA maintains a localized
network perception. Increase in updates result in objects

having decreased local significance (unless the vicinity is in
close proximity to the primary location). On the other hand,
Aε-Star, Greedy and NPAM never tend to deviate from their
global view of the problem domain.

In summary, Table IV shows the quality of the solution in
terms of RC percentage for 10 problem instances (randomly
chosen), each being a combination of various numbers of sites
and objects, with varying storage capacity and update ratio.
For each row, the best result is indicated in bold. The
proposed NPAM steals the show in the context of solution
quality, but Aε-Star and Greedy do indeed give a good
competition, with savings within a range of 5%-10% of
NPAM.

V. CONCLUSIONS
This paper proposed an N+1st price auction mechanism that

effectively addressed the fine-grained data replication
problem. The experimental results which were recorded
against some well-known techniques such as branch and
bound, greedy, and genetic algorithms revealed that the
proposed mechanism exhibited 5%-10% better solution
quality and incurred the fastest execution time.

REFERENCES
[1] T. Abdelzaher and N. Bhatti, “Web content adaptation to improve sever

workload behavior,” Computer Networks, 21(11), pp. 1536-1577, 1999.
[2] M. Arlitt and T. Jin, “Workload characterization of the 1998 World Cup

Web Site,” tech. report, HP Lab, Palo Alto, HPL-1999-35(R.1), 1999.
[3] R. Bunt, D. Eager, G. Oster, and C. Williamson, “Achieving load balance

and effective caching in clustered web servers,” in 4th International Web
Caching Workshop, pp. 159-169, 1999.

[4] K. Calvert, M. Doar, E. Zegura, “Modeling Internet topology,” IEEE
Communications, 35(6), pp. 160-163, 1997.

[5] S. Floyd and V. Paxson, “Difficulties in simulating the internet,”
IEEE/ACM Transactions on Networking, 9(4), pp. 253-285, 2001.

[6] J. Kangasharju, J. Roberts and K. Ross, “Object replication strategies in
content distribution networks,” in Proc. of WCCD, pp. 455-466, 2001.

[7] S. Khan and I. Ahmad, “Heuristic-based Replication Schemas for Fast
Information Retrevial over the Internet,” in Proc. of 17th International
Conference on Parallel and Distributed Computing Systems, 2004.

TABLE IV
AVERAGE RC SAVINGS IN PERCENTAGE
Problem Size Greedy GRA Aε-Star NPAM

N=150, M=20 [C=20%,U=25%] 70.46 69.74 74.62 75.70
N=200, M=50 [C=20%,U=20%] 73.94 70.18 77.42 78.43
N=300, M=50 [C=25%,U=5%] 70.01 64.29 70.33 82.25
N=300, M=60 [C=35%,U=5%] 71.66 65.94 72.01 74.43
N=400, M=100 [C=25%,U=25%] 67.40 62.07 71.26 73.89
N=500, M=100 [C=30%,U=35%] 66.15 61.62 71.50 75.45
N=800, M=200 [C=25%,U=15%] 67.46 65.91 70.15 73.68
N=1000, M=300 [C=25%,U=35%] 69.10 64.08 70.01 72.45
N=1500, M=400 [C=35%,U=50%] 70.59 63.49 70.51 74.01
N=2000, M=500 [C=10%,U=60%] 67.03 63.37 72.16 73.15

Reads

R
C

 S
av

in
gs

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
36%

42%

48%

54%

60%

66%

72%

78%

84%

90%

Legend
Greedy
GRA
Aε-Star
NPAM

FIGURE III

RC SAVINGS VERSUS READS (N=2000, M=500, C=45%)

Updates

R
C

 S
av

in
gs

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
NPAM

FIGURE IV

RC SAVINGS VERSUS UPDATES (N=2000, M=500, C=60%)

INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE 2004

 5

[8] T. Loukopoulos and I. Ahmad, “Static and adaptive data replication
algorithms for fast information access in large distributed systems,” in
Proc. of ICDCS, pp. 385-392, 2000.

[9] T. Loukopoulos, D. Papadias, and I. Ahmad, “An overview of data
replication on the internet,” in Proc. of ISPAN, pp. 31-36, 2002.

[10] L. Qiu, V. Padmanabhan and G. Voelker, “On the Placement of Web
Server Replicas,” in Proc. of the IEEE INFOCOM, 2001.

