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Abstract—This paper addresses the problem of fine-grained data 

replication on a set of Internet sites using the N+1st price auction. 
Specifically, we present an adaptive auction mechanism for 
replication of objects in a distributed system. The mechanism is 
adaptive in the sense that it changes the replica schema of the objects 
by continuously moving the schema towards an optimal one, while 
ensuring object concurrency control. The mechanism is 
experimentally evaluated against three well-known techniques from 
the literature: greedy, branch and bound, and genetic algorithms. The 
experimental results reveal that the proposed approach outperforms 
the three techniques in both the execution time and solution quality. 
 

Keywords—Data replication, auctions, static allocation, pricing.  

I. INTRODUCTION 
INE-GRAINED (object based) replica schemas determine 
how many replicas of each objects are created, and to 
which sites they are assigned. These schemas critically 

affect the performance of the distributed computing system 
(e.g. the Internet), since reading an object locally is less costly 
than reading it remotely  [9]. Therefore, in a read intensive 
network an extensive replica schema is required. On the other 
hand, an update of an object is written to all, and therefore, in 
a write intensive network a constricted replica schema is 
required. In essence replica schemas are strongly dependent 
upon the read and write patterns for each object  [3]. Recently, 
a few approaches on replicating data objects over the Internet 
have been proposed in  [1],  [6],  [7],  [8] and  [10]. The majority 
of the work related to data replication on the Internet employs 
the coarse-grained (site based) replication. As the Internet 
grows and the limitations of caching become more obvious, 
the importance of fine-grained replication, i.e., duplicating 
highly popular data objects, is likely to increase  [8]. 

In this paper, the replica schemas are established in a 
static fashion. The aim is to identify a replica schema that 
effectively minimizes the object transfer cost. We propose a 
novel technique based on the N+1st price auction, where the 
players compete for memory space at sites so that replicas can 
be placed. This approach is compared against three well-
known techniques from the literature: branch and bound  [7], 
greedy  [10], and genetic algorithms  [8]. Experimental results 
reveal that this simple and intuitive approach outperforms the 
three techniques in both execution time and solution quality.  
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II. PROBLEM FORMULATION 
Consider a distributed system comprising M sites, with each 

site having its own processing power, memory (primary 
storage) and media (secondary storage). Let Si and si be the 
name and the total storage capacity (in simple data units e.g. 
blocks), respectively, of site i where 1 ≤ i ≤ M. The M sites of 
the system are connected by a communication network. A link 
between two sites Si and Sj (if it exists) has a positive integer 
c(i,j) associated with it, giving the communication cost for 
transferring a data unit between sites Si and Sj. If the two sites 
are not directly connected by a communication link then the 
above cost is given by the sum of the costs of all the links in a 
chosen path from site Si to the site Sj. Without the loss of 
generality we assume that c(i,j) = c(j,i). This is a common 
assumption (e.g. see  [7],  [8], and  [10]). Let there be N objects, 
each identifiable by a unique name Ok and size in simple data 
unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i be the total number 

of reads and writes, respectively, initiated from Si for Ok 
during a certain time period. Our replication policy assumes 
the existence of one primary copy for each object in the 
network. Let Pk, be the site which holds the primary copy of 
Ok, i.e., the only copy in the network that cannot be de-
allocated, hence referred to as primary site of the k-th object. 
Each primary site Pk, contains information about the whole 
replication scheme Rk of Ok. This can be done by maintaining 
a list of the sites where the k-th object is replicated at, called 
from now on the replicators of Ok. Moreover, every site Si 
stores a two-field record for each object. The first field is its 
primary site Pk and the second the nearest neighborhood site 
NNk

i of site Si which holds a replica of object k. In other 
words, NNk

i is the site for which the reads from Si for Ok, if 
served there, would incur the minimum possible 
communication cost. It is possible that NNk

i = Si, if Si is a 
replicator or the primary site of Ok. Another possibility is that 
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TABLE I 
NOTATIONS AND THEIR MEANINGS 

Symbol Meaning 
M Total number of sites in the network. 
N Total number of objects to be replicated. 
Ok k-th object. 
ok Size of object k. 
Si i-th site. 
si Size of site i. 
rk

i  Number of reads for object k from site i. 
Rk

i Aggregate read cost of rk
i. 

wk
i  Number of writes for object k from site i. 

Wk
i  Aggregate write cost of wk

i. 
NNk

i  Nearest neighbor of site i holding object k. 
c(i,j)  Communication cost between sites i and j. 
Pk  Primary site of the k-th object. 
Rk Replication schema of object k. 
Coverall  Total overall data transfer cost. 
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NNk
i = Pk, if the primary site is the closest one holding a 

replica of Ok. When a site Si reads an object, it does so by 
addressing the request to the corresponding NNk

i. For the 
updates we assume that every site can update every object. 
Updates of an object Ok are performed by sending the updated 
version to its primary site Pk, which afterwards broadcasts it to 
every site in its replication scheme Rk.  

For the DRP under consideration, we are interested in 
minimizing the total Replication Cost (RC) (or the total 
network transfer cost) due to object movement, since the 
communication cost of control messages has minor impact to 
the overall performance of the system. There are two 
components affecting RC. The first component of RC is due 
to the read requests. Let Rk

i denote the total RC, due to Sis’ 
reading requests for object Ok, addressed to the nearest site 
NNk

i. This cost is given by the following equation:  
),( i

kk
i

k
i
k NNicorR =  (1)

Where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second 

component of RC is the cost arising due to the writes. Let Wk
i 

be the total RC, due to Sis’ writing requests for object Ok, 
addressed to the primary site Pk. This cost is given by the 
following equation:  
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Here, we made the indirect assumption that in order to 

perform a write we need to ship the whole updated version of 
the object. This of course is not always the case, as we can 
move only the updated parts of it (modeling such policies can 
also be done using our framework). The cumulative RC, 
denoted as Coverall, due to reads and writes is given by:  
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Let Xik = 1 if Si holds a replica of object Ok, and 0 
otherwise. Xiks define an M×N replication matrix, named X, 
with boolean elements. Equation 3 is now refined to:  

∑∑
∑= =

=














++

=−
=

M

i

N

k kk
M
x

i
kikkk

i
k

jkk
i
kik

PicowXPicow

XjicorX
X

1 1 1 ),()()],(

}1|),(min{)[1(  (4)

Sites which are not the replicators of object Ok create RC 
equal to the communication cost of their reads from the 
nearest replicator, plus that of sending their writes to the 
primary site of Ok . Sites belonging to the replication scheme 
of Ok, are associated with the cost of sending/receiving all the 
updated versions of it. Using the above formulation, the Data 
Replication Problem (DRP) can be defined as:  
Find the assignment of 0,1 values in the X matrix that 
minimizes Coverall, subject to the storage capacity constraint: 
∑ = ≤≤∀≤N

k ikik MisoX1 )1( , and subject to the primary copies 
policy: )1(1 NkX kkP ≤≤∀= . 

In the generalized case, DRP is essentially a constraint 
optimization problem, reducible to the Knapsack problem, and 
without the storage constraint, to the minimum k-median 
problem  [8]. 

III. N+1ST PRICE AUCTION AND ITS APPLICATION 
In the auction setup each primary copy of an object k is a 

player. A player k can perform the necessary computations on 
its strategy set by using the site Pk’s (where it resides) 

processor. At each given instance a (sub)-auction takes place 
at a particular site i chosen in a round robin fashion from the 
set of M sites. These auctions are performed continuously 
throughout the system’s life, making it a self evolving and self 
repairing system. However, for simulation purposes (“cold” 
network  [8]) we discrete the continuum solely for the reason 
to observe the solution quality. 

Each player k competes through bidding for memory at a 
site i. Many would argue that memory constraints are no 
longer important due to the reduced costs of memory chips. 
However, replicated objects (just as cached objects) reside in 
the memory (primary storage) and not in the media (secondary 
storage)  [9]. Thus, there will always be a need to give priority 
to objects that have higher access (read and write) demands. 
Moreover, memory space regardless of being primary or 
secondary is limited. 

Each player k’s strategy is to place a replica at a site i, so 
that it maximizes its (the object’s) benefit function. The 
benefit function gives more weight to the objects that incur 
reduced RC in the system:  
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) 
The above value represents the expected benefit (in RC 

terms), if Ok is replicated at Si. This benefit is computed using 
the difference between the read and update cost. Negative 
values of Bk

i mean that replicating Ok, is inefficient from the 
“local view” of Si (although it might reduce the global RC due 
to bringing the object closer to other servers). The pseudo-

code for the N+1st price auction is given in Figure I. 
To present our algorithm, we maintain a list Li at each 

server. The list contains all the objects that can be replicated at 
Si (i.e., the remaining storage capacity bi is sufficient and the 
benefit value is positive). We also maintain a list LS 
containing all servers that can replicate an object. In other 
words, Si∈LS if and only if Li ≠ NULL. The auction 
mechanism performs in steps. In each step a server Si is 
chosen from LS in a round-robin fashion. Each player k∈O 

N+1st Price Auction Mechanism 
Initialize: 
01 LS, Li. 
02 WHILE LS ≠ NULL DO 
03            SELECT Si∈LS                             /*Round-robin fashion */ 
04                           FOR each k∈O  DO 
05                                     Bk = compute (Bk

i);          /*compute the benefit*/ 
06                                     Report Bk to Si which stores in array B; 
07                           END FOR 
08           WHILE bi ≥ 0 
09              Bk = argmaxk(B);         /*Choose the best offer*/ 
10              Extract the info from Bk such as Ok and ok; 
11              bi = bi-ok; /*Calculate available space and termination condition*/ 
12              Payment = Bk;  /* Maintain N+1st price */ 
13              IF bi < 0 THEN EXIT WHILE ELSE 
14              Li = Li - Ok;                    /*Update the list*/ 
15              Update NNi

OMAX            /*Update the nearest neighbor list*/ 
16              IF Li = NULL THEN SEND info to M to update LS = LS - Si;         
17              Replicate Ok;  
18         END WHILE 
19         Si asks all successful bidders to pay Bk 
20 END WHILE 

FIGURE I 
PSEUDO-CODE FOR N+1ST PRICE AUCTION MECHANISM 
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calculates the benefit function of object. The set O represents 
the collection of players that are legible for participation. A 
player k is legible if and only if the benefit function value 
obtained for site Si is the maximum of among all the other 
benefit function values for sites other than i, i.e., Si ≥ S-i. This 
is done in order to suppress mediocre bids, which, in turn 
improves computational complexity. It is to be noted that in 
each step Li together with the corresponding nearest server 
value NNk

i, are updated accordingly.  
The worst case execution time of the algorithm is when 

each server has sufficient capacity to store all objects and the 
update ratios are low enough so that no object incurs negative 
benefit value. In that case, the while-loop (02) performs M 
iterations. The time complexity for each iteration is governed 
by the for-loop in (04) and the while loop in (08) (O(N2) in 
total). Hence, we conclude that the worst case running time of 
the algorithm is O(MN2). 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 
We performed experiments on a 440MHz Ultra 10 machine 

with 512MB memory. The experimental evaluations were 
targeted to benchmark the placement policies. The solution 
quality in all cases, was measured according to the RC 

percentage that was saved under the replication scheme found 
by the algorithms, compared to the initial one, i.e., when only 
primary copies exist.  

To establish diversity in our experimental setups, the 
network connectively was changed considerably. In this 
paper, we only present the results that were obtained using a 
maximum of 500 sites. We used existing topology generator 
toolkits and also self generated networks. Table II summarizes 
the various techniques used to gather forty-five various 
topologies. All the results reported, represent the average 
performance over all the topologies.  

To evaluate our proposed technique on realistic traffic 
patterns, we used the access logs collected at the Soccer 
World Cup 1998 website  [2]. Each experimental setup was 
evaluated thirteen times, i.e., Friday (24 hours) logs from May 
1, 1998 to July 24, 1998. Thus, each experimental setup in 
fact represents an average of the 585 (13×45) data set points. 
To process the logs, we wrote a script that returned: only those 
objects which were present in all the logs (2000 in our case), 
the total number of requests from a particular client for an 
object, the average and the variance of the object size. From 
this log we choose the top five hundred clients (maximum 

experimental setup), which were randomly mapped to one of 
the nodes of the topologies. The primary replicas’ original site 
was mimicked by choosing random locations. The capacities 
of the sites C% were generated randomly with range from 
Total Primary Object Sizes/2 to 1.5×Total Primary Object 
Sizes. The variance in the object size collected from the access 
logs helped to instill enough diversity to benchmark object 
updates. The updates were randomly pushed onto different 
sites, and the total system update load was measured in terms 
of the percentage update requests U% compared that to the 
initial network with no updates.  

For comparison, we selected three various types of replica 
placement techniques. To provide a fair comparison, the 
assumptions and system parameters were kept the same in all 
the approaches. We chose 1) from  [7] the efficient branch-
and-bound based technique (Aε-Star), 2) from  [8] the genetic 
algorithm based technique (GRA) which showed excellent 

adaptability against skewed workload, 3) from  [10] the 
famous greedy approach (Greedy). Due to space limitations, 
details for a specific technique are left as a reading exercise. 

Table III (best times shown in bold) shows the algorithm 
execution times. The number of sites was kept constant at 500, 
and the number of objects was varied from 1350 to 2000. 

With maximum load (2000 objects and 500 sites), the 
proposed technique NPAM saved approximately 50 seconds 
of termination time then the second fastest algorithm 
(Greedy). 

Superiority of execution time comes at the cost of loss in 
solution quality. However, NPAM showed high solution 
quality. First, we observe the effects of system capacity 
increase. An increase in the storage capacity means that a 
large number of objects can be replicated. Replicating an 
object that is already extensively replicated, is unlikely to 
result in significant traffic savings as only a small portion of 
the servers will be affected overall. Moreover, since objects 
are not equally read intensive, increase in the storage capacity 
would have a great impact at the beginning (initial increase in 

TABLE II 
OVERVIEW OF TOPOLOGIES  

Topology Mathematical Representation 
SGRG  [7] 
(12 topologies) 

Randomized layout with node degree (d*) and Euclidian 
distance (d) between nodes as parameters. 

GT-ITM PR  [2] 
(5 topologies) 

Randomized layout with edges added between the 
randomly located vertices with a probability (p). 

GT-ITM W  [2] 
(9 topologies) 

P(u,v)=αe-d/(βL) 

SGFCGUD  [7] 
(5 topologies) 

Fully connected graph with uniform link distances (d). 

SGFCGRD  [7] 
(5 topologies) 

Fully connected graph with random link distances (d). 

SGRGLND  [7] 
(9 topologies) 

Random layout with link distance having a lognormal 
distribution  [4]. 

TABLE III 
RUNNING TIME IN SECONDS  

Problem Size Greedy GRA Aε-Star NPAM
M= 500, N= 1350 81.69 117.60 110.46 90.09 
M= 500, N= 1400 98.28 127.89 127.89 95.34 
M= 500, N= 1450 122.43 139.02 139.02 98.91 
M= 500, N= 1500 134.61 148.47 155.40 104.37
M= 500, N= 1550 146.58 168.84 169.47 105.63
M= 500, N= 2000 152.25 177.66 189.21 108.57
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capacity), but has little effect after a certain point, where the 
most beneficial ones are already replicated. This is observable 
in Figure II, which shows the performance of the algorithms. 
Greedy and NPAM showed an immediate initial increase (the 
point after which further replicating objects is inefficient) in 
its RC savings, but afterward showed a near constant 
performance. GRA although performed the worst, but 
observably gained the most RC savings (35%) followed by 
Greedy with 29%. Further experiments with various update 
ratios (5%, 10%, and 20%) showed similar plot trends. It is 

also noteworthy (plots not shown in this paper due to space 
restrictions) that the increase in capacity from 10% to 17%, 
resulted in 4 times (on average) more replicas for all the 
algorithms.  

Next, we observe the effects of increase in the read and 
update (write) frequencies. Since these two parameters are 
complementary to each other, we describe them together. In 
both the setups the number of sites and objects were kept 
constant. Increase in the number of reads in the system would 
mean that there is a need to replicate as many object as 
possible (closer to the users). However, the increase in the 
number of updates in the system requires the replicas be 
placed as close as to the primary site as possible (to reduce the 
update broadcast). This phenomenon is also interrelated with 
the system capacity, as the update ratio sets an upper bound on 
the possible traffic reduction through replication. Thus, if we 
consider a system with unlimited capacity, the “replicate 
everywhere anything” policy is strictly inadequate. The read 
and update parameters indeed help in drawing a line between 
good and marginal algorithms. The plots in Figures III and IV 
show the results of read and update frequencies, respectively. 
A clear classification can be made between the algorithms. 

Aε-Star, Greedy and NPAM incorporate the increase in the 
number of reads by replicating more objects and thus savings 
increase up to 89%. GRA gained the least of the RC savings 
of up to 67%. To understand why there is such a gap in the 
performance between the algorithms, we recall from  [8] that 
GRA specifically depends on the initial population of the 
candidate solution. Moreover, GRA maintains a localized 
network perception. Increase in updates result in objects 

having decreased local significance (unless the vicinity is in 
close proximity to the primary location). On the other hand, 
Aε-Star, Greedy and NPAM never tend to deviate from their 
global view of the problem domain.  

In summary, Table IV shows the quality of the solution in 
terms of RC percentage for 10 problem instances (randomly 
chosen), each being a combination of various numbers of sites 
and objects, with varying storage capacity and update ratio. 
For each row, the best result is indicated in bold. The 
proposed NPAM steals the show in the context of solution 
quality, but Aε-Star and Greedy do indeed give a good 
competition, with savings within a range of 5%-10% of 
NPAM.  

V. CONCLUSIONS 
This paper proposed an N+1st price auction mechanism that 

effectively addressed the fine-grained data replication 
problem. The experimental results which were recorded 
against some well-known techniques such as branch and 
bound, greedy, and genetic algorithms revealed that the 
proposed mechanism exhibited 5%-10% better solution 
quality and incurred the fastest execution time. 
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