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Abstract— A major cost in retrieving multimedia data from
multiple sites is the cost incurred in transferring multimedia
data objects (MDO’s) from different sites to the site where the
query is initiated. The objective of a data allocation algorithm
is to locate the MDO’s at different sites so as to minimize the
total data transfer cost incurred in executing a given set of
queries. There is a mutual dependency between data allocation
and query execution strategies in that the optimal allocation
of MDO’s depends on the query execution strategy employed
by a distributed multimedia system while the query execution
strategy optimizes a query based on this allecation. In this
paper, we fix the query execution strategy and develop a site-
independent MDO dependency graph representation to model
the dependencies among the MDO’s accessed by a query. Given
the MDO dependency graphs as well as the set of multimedia
database sites, data transfer costs between the sites, the allocation
limit on the number of MDO’s that can be allocated at a site,
and the query execution frequencies from the sites, an allocation
scheme is generated. We formulate the data allocation problem as
an optimization problem. We solve this problem with a number
of techniques that broadly belong to three classes: max-flow
min-cut, state-space search, and graph partitioning heuristics.
The max-flow min-cut technique formulates the data allocation
problem as a network-flow problem, and uses a hill-climbing
approach to try to find the optimal solution. For the state-
space search approach, the problem is solved using a best-first
search algorithm. The graph partitioning approach uses two
clustering heuristics, the agglomerative clustering and divisive
clustering. We evaluate and compare these approaches, and
assess their cost-performance trade-offs. All algorithms are also
compared with optimal solutions obtained through exhaustive
search. Conclusions are also made on the suitability of these
approaches to different scenarios.

Index Terms— Data allocation, distributed database systems,
multimedia database systems, query processing, hill-climbing
heuristics, optimal allocation, max-flow min-cut problem, net-
work flow algorithm, clustering, best-first search algorithm.

1. INTRODUCTION

distributed multimedia database system [13], [19] is a
database system loosely coupled with a multimedia data
provider as shown in Fig. 1 (unlike the integrated and het-

erogeneous computing paradigm based distributed multimedia

database systems [2]). Special-purpose distributed multimedia
database system architectures [8], [18] have been proposed.
The aim of these architectures is to support specific application
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domains (like, medical databases and news-on-demand), and
thus they are tightly integrated to favor these applications.
We consider a general-purpose loosely coupled architecture
which can be built by using off-the-shelf products. In this
architecture, multimedia data provider (MDP) enables users to
retrieve multimedia data objects (MDO’s) from different sites.
A common multimedia user interface (CMUI) enables the
users to specify queries accessing the distributed multimedia
database system and presenting the result to the user. The
synchronization for the presentation of the multimedia data
is handled by the CMUI [15]. Whereas, the MDP identifies
the relevant multimedia data for an user query and facilitates
shipping of the multimedia data to the CMUIL The CMUI
is a client process and the distributed database management
system (DDBMS) and the MDP are server processes. There
can be multiple CMUI processes, and multiple DDBMS and
MDP processes. An- user can use any one of the CMUI
client processes to query the distributed multimedia database
system. The query is decomposed into two parts by CMUIL:
one accessing the multiple DDBMS servers, and the other
accessing multiple MDP servers. After which, the DDBMS
and MDP servers ship the result data to the CMUIL Finally,
the result is presented by the CMUI to the user.

A major component of multimedia query execution cost is
the data transfer cost. That is, the total cost involved in moving
the MDO’s from the sites where they are located to the site
where the query is issued. The MDO’s are made of two kinds
of data. The first is the single-media data that is managed by
the DDBMS servers, such as relations (fragments), records,
etc. The second is the multimedia data, such as audio, video,
and image, managed by the MDP servers. These two types of
data are managed by different specialized storage managers,
and need to be retrieved for the user queries. As the allocation
problem arises for both single-media data and multimedia data,
we develop a common data allocation problem formulation
and a solution methodology. Since the CMUI is responsible
for synchronization before presenting the data to the user, the
major issue is to reduce the data transfer cost in accessing
MDOQ’s from different sites. This can be done by optimally
allocating the MDQ’s to the sites of the distributed multimedia
database system.

Optimal allocation of MDO’s is a complex problem be-
cause of mutual interdependency between allocation scheme
(which gives the location of each of the MDQ’s at various
sites of a distributed multimedia database system) and query
optimization strategy (which decides how a query can be

0733-8716/96%05.00 © 1996 IEEE
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optimally executed, given an allocation scheme). Given a
query execution strategy, we model the dependencies between
the MDO’s and the amount of data transfer incurred to execute
a query as site independent MDO dependency graph (MDG).
We use the MDO dependency graph to solve for an optimal or
near optimal allocation of MDO’s. The processing strategy of
distributed multimedia objects retrieval involves shipping of
all the multimedia objects to the user’s query site because this
strategy supports efficient access for synchronization during
the presentation of the result by the CMUL

Fig. 2 shows the steps in data allocation strategy developed
in this paper. Essentially, there are two aspects to this problem.
The first aspect is to represent and evaluate the set of queries
accessing the distributed multimedia database. The second
aspect is to use this information to come up with a formu-
lation and solution for the data allocation problem. The query
processing [17] consists of decomposing the queries and data
localization. Data localization involves identifying the MDO’s
accessed by the query and generating the MDO query operator
trees. These MDO query operator trees are further processed
by taking into consideration a given distributed query exe-
cution strategy and the information about the MDO sizes to
generate MDO dependency graphs. The MDO dependency
graph models the dependencies between the MDO’s accessed
by a query and the amount of data transfer incurred to execute
a query. A data allocation algorithm takes as inputs: 1) the
MDO dependency graphs, 2) unit data transfer costs between
sites, 3) the allocation limit on the number of MDO’s that can
be allocated at a site, 4) the query execution frequencies from
the sites, 5) the number of MDQ’s, and 6) the number of sites,
and outputs an allocation scheme.

The objective of this work is to design efficient algorithms
to generate minimum total data transfer cost allocation scheme.
The rest of the paper is organized as follows: Section II further
elaborates the data allocation problem. Section III describes
a cost model used to calculate the total data transfer cost
incurred to execute a set of queries. Section IV includes the
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Loosely coupled architecture of distributed multimédia database system.

algorithms proposed in this paper. The experimental results for
these algorithms are provided in Section V. The effectiveness
and suitability of the proposed algorithms to different scenarios
is discussed in Section VI. The related work is presented in
Section VII, and Section VIII concludes this paper.

II. THE DATA ALLOCATION PROBLEM

In this section, we describe in detail the inputs to the
data allocation problem addressed in this paper. These inputs
characterize the underlying distributed multimedia database
system and help in formulating the problem. We also intro-
duce a number of notations throughout the paper which are
summarized in Table 1.

Consider a distributed multimedia database system with m
sites, with each site having its own processing power, memory
and a database system. Let S; be the name of site ¢ where
0 < 4 < m — 1. The m sites of the distributed multimedia
database system are connected by a communication network.
A link between two sites S; and S;/ (if it exists) has a positive
integer c;;; associated with it giving the cost for a unit data
transferred from site S; to site S;:. If two sites are not directly
connected by a communication link then the cost for unit data
transferred is given by the sum of the cost of links of a chosen
path from site S; to site ;. Let @ = {qo,¢1,"*,gn—1} be the
most important queries accounting for say more than 80% of
the processing in the distributed multimedia database system.
Each query g, can be executed from any site with a certain
frequency. Let a;, be the frequency with which query g, is
executed from site .S;. The executions frequencies of n queries
at m sites can be represented by a m x n matrix, A. Let
there be £k MDO’s (or database objects, or relations), named
100,01, "+, Op_1}.

A. Query Representation

Any query accessing both the single-media database frag-
ments and multimedia objects can be split into two queries, one
which accesses only single-media fragments and one which
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Fig. 2. Steps in MDO allocation.

TABLE I
SYMBOLS AND THEIR MEANINGS

Symbol Meaning
0, The fthMDO
S; The ith site
Q The set of queries
9y The xth query
m The number of sites in the network
k The number of MDOs in the distributed database system
n The number of queries
A The access frequencies matrix
a;, The access frequency of the xth query at site ¢
C The unit transportation cost matrix of the network
[ The unit transportation cost from site i to site i’
! The allocation limit vector of the sites
L The allocation limit of site i
R The query data transfer size matrix
Ty The query data transfer size of the xth query of MDO j
u The site data transfer size matrix
Uy The site data transfer size of MDO to site j’
D The MDO dependency matrix
dy The size of the data from MDO i to the site where MDO  is located
t The total data transfer cost

accesses only multimedia data. The basis for this split is
provided by the architecture of the loosely coupled distributed
multimedia database system. The queries that access single
media database fragments will be optimized by distributed
database system, and the queries that access multimedia data
will be processed by the multimedia data provider at the site.

As mentioned above, the data allocation problem is complex
because of the mutual interdependency between the query
execution strategy (decided by the query optimizer) and the
allocation of the fragments. The optimal allocation of the

fragments depends on a given query execution strategy while
the optimal query execution strategy depends on a fixed
materialization of the fragments (i.e., fixing the location of
the fragments accessed by the query). The main problem in
deciding on the optimal allocation is the lack of a represen-
tational model of the dependencies among the data fragments
accessed by the query. These dependencies arise because of
the partitioning of the relations into data fragments (by using
methodologies proposed by [7]) and/or access to multiple
relations by a query.
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We use the distributed query decomposer and data localiza-
tion algorithms [17] to decompose a distributed query into
a set of queries. This decomposed query incorporates the
dependencies between data fragments. These dependencies
model binary operations (like join, union) between the data
fragments that need to be processed in order to execute the
distributed query. We estimate the sizes of the intermediate
relations [17] generated after executing the unary and binary
operations by using the database statistics (like, cardinality and
lengths of tuples of the fragments/relations) available from the
system catalog. In the distributed database query processing
the optimal binary operation ordering is based on a fixed query
execution strategy. By fixing the query execution strategy
we eliminate the dependency between the distributed query
execution strategy and data allocation. A query execution
strategy can be the following:

1) Move-Small: If a binary operation involves two data
fragments ‘located at two different sites then ship the
smaller data fragment to the site of the larger data
fragment.

2) Query-Site: Ship all the data fragments to the site of
query origin and execute the query.

Usually, the move-small query execution strategy is used by
the distributed database system because it gives rise to lower
data transfer costs for query execution than the query-site
query execution strategy. As mentioned before, the MDP uses
the query-site query execution strategy because of the synchro-
nization requirements imposed on accessing the multimedia
objects and the need to present each multimedia object as an
individual data stream. Thus, the first aim of data allocation is
to maximize the locality of the MDOQ’s (consisting of single-
media or multi media) for executing the queries. The second
aim is to use the query execution strategy to reduce the total
data transfer cost when a query needs to access MDO’s from
different sites.

B. Query Evaluation

Each of the n queries on the distributed multimedia database
are restructured and decomposed to generate query operator
trees.

Example 1: Consider the following query adapted from
[17] accessing relations E(Eno, Ename, Title), G(Eno, Jno,
Resp, Dur), and J(Jno, Jname, Budget) and multimedia ob-
jects representing the pictures EPicture(Eno, Picture) and the
speech ESpeech(Eno, Speech) as shown in Fig. 3(a) and (b),
respectively. For enhancing the readability, we use nested SQL
statement to exemplify MDO retrieval specification. From the
data allocation point of view, we need only consider the
shipping of the retrieved Picture and Speech from EPicture
and ESpeech, respectively, given the Eno values.

The relational algebra tree for the query in Fig. 3(a) af-
ter query decomposition and data localization is shown in
Fig. 4(a). The intermediate relations generated after the query
restructuring phase are J', G, E',G”, and J”. Assume that
the size of G’ is greater than the size of E’, and the size of
J’ is greater than the size of ‘G”. By using the move-small
query execution strategy it is preferable to transfer E’ to the
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SELECT Picture, Speech
FROM EPicture, ESpeech
WHERE Eno in (SELECT Eno
FROM J, G, E
WHERE G.Eno = E.Eno
AND G.Jno = J. Jno
AND Ename <> “J.Doe”
AND J.Name = “CAD / CAM
AND (Dur = 12 OR Dur = 24));

(a) ®

Fig. 3. (a) SQL statement on distributed relational database system and (b)
query statement to retrieve MDO’s from EPicture and ESpeech.

SELECT Ename

FROMJ, G, E

WHERE G.Eno = E.Eno

AND G.Jno = J. Jno

AND Ename <> “J.Doe”

AND J.Name = “CAD / CAM *
AND (Dur = 12 OR Dur = 24);

site where G’ is located and also to transfer G to the site
where J' is located, in order to minimize the total size of data
required to be transferred to execute the query. The move-
small query execution strategy and the corresponding fragment
dependency graph that is generated is illustrated in Fig. 4(b).

In a fragment dependency graph, the fragment-nodes (like
Site(J), Site(G), etc.) represent the potential sites where the
fragments are located. The query-node Site(Q) represents the
site where the query is initiated (i.e., the query site, which is
fixed for each execution of the query). There is a cost value
attached to each edge of the graph corresponding to the amount
of data that may be transferred if the fragments corresponding
to the two nodes of the edge are located at different sites, or
if the location of the fragment and the query site are different
sites. The fragment dependency graph models the execution
strategy used by the query optimizer without exactly fixing
the locations of the fragments. This enables us to calculate
the amount of data transfer incurred to process a query under
different data allocation schemes. For example, referring to
Fig. 4(b), if relations £ and G are located at different sites
then it will incur Size(E’) data transfer cost to process the join
between relations £’/ and G’ when using move-small query
execution strategy. Similarly, by applying the fragment depen-
dency graph concept to multimedia data retrieval we generate
the MDO data dependency graph accessing the speech and
picture from ESpeech and EPicture, respectively, by using the
query-site query execution strategy [see Fig. 4(c)].

‘ III. THE DATA TRANSFER COST MODEL

The cost model developed in this section is applicable for
calculating the total data transfer cost incurred to process
both single-media distributed database query and multimedia
data retrieval query. We will not make any further distinction
between single media database fragments and multimedia data
for the rest of the paper, and will consider the problem in the
context of MDO’s—the retrieval of MDO’s will be modeled
by the MDO dependency graphs that can arise from either or
both move-small or query site query execution strategy.

There are two aspects of the data transfer cost incurred to
process a query that need to be modeled. The first aspect is the
unit data transfer cost from one site to another. This is modeled
as minimum cost path and the corresponding path from one
site to another. We use an all-pairs shortest path algorithm to
generate the cost matrix C, where c;; is cost of transporting
a single unit of data from site S; to site S;. Note that even
if the network is fully connected the shortest path between
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two sites may have more than one edge. In order to find the
best allocation of a set of MDO’s (i.e., the allocation which
minimizes the total data transfer cost), it is enough to know
the size of data from every MDO that is required from every
site. This is the second aspect of data transfer cost that needs
to be calculated. However, the problem is that, as represented
in the MDO’s dependency graphs, the size of data from a
MDO that is required from a site varies with the locations of
other MDO’s. The MDO dependency graph of every query
models two types of data transfer cost. The first type of cost
is due to moving the data from the sites where the MDO’s
are located to the site where the query is initiated. The second
type of cost is due to moving the data from the site where one
MDO is located to the site- where another MDO is located. For
the first type of cost, the size of data of a MDO required by
every site does not vary with the location of other MDO’s as
there is no dependency between the MDO’s accessed by the

query. This is true in the case of query-site query processing.

strategy, and the top level of the MDO dependency graphs. In
the case of move-small query processing strategy [for example
in Fig. 4(b)], the edge Site(J) — Site(Q) models this type of
data transfer cost.

Let r,; be defined as the size of data of MDO O; needed
to be transported to the site where ¢, is initiated. The corre-
sponding matrix is R of size n X k. Note that this incorporates
the top level of the MDO’s dependency graph. Let there be
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(a) An example of fragment query operator tree, (b) the move-small fragment dependency graph, and (c) query-site MDO data dependency graph.

a query ¢, initiated from site S;, a;, times in an unit time
interval. And let ¢, request MDO O; and each request require
5; amount of data transfer from the site where O is located.

Let U be a m x k matrix where u;; gives the amount of
data needed to be transferred from the site where MDO O; is
allocated to the site .S; where the queries are initiated. That is

n—1
Uiz = Zaim T
z=0
And in matrix representation
U=A-R.

The second type of data transfer cost corresponds to the
deeper levels of the MDO’s dependency graph. The data is
trahsported from the site where one MDO is located to the
site where the other MDO is located in order to perform
binary operation involving two (or more) different MDO’s.
In this case, the amount of data of a MDO required by a site
varies with the allocation of other MDO’s. Let d;;+ define the
size of data from MDO O; that needs to be transported to
the site where O;: is located so as to execute some binary
operation. Let the corresponding matrix, k x &, be D. But this
is dependent on the query that is to be processed. Therefore,
for each query we need to extract the information about how
much data needs to be transferred from site where one MDO
is located to the site where another MDO is located given that
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both the MDO’s are accessed by the query. This information
is extracted by the MDO’s dependency graph generator which
processes the query operator trees on MDO’s by applying
a query execution strategy and is represented in the MDO
dependency graph.

Let 67,/ be the data size of O; needed to be transported
to the site where O;: is located to process g,. And let the
corresponding matrix be V*. Then the amount of data that
needs to be transported from the site where O; is located to
the site where O; is given by

n—1 /m—1
dijr =Y (Z aix> 8%,

=0 \ i=0

And in matrix representation

D= Z <Z a,m>

=0

Let site(O;) denote the site where MDO O; is located. Then
the total transportation cost, 7', is given by

— m—1k—-1

ki~
Z Z Csite(O;),site(Oyr) * djjr + E Z Uij * Cisite(O;)"
3=03'=0

i=0 j=0

where the first term gives the data transfer cost incurred to

process the binary operations between the MDO’s located at
different siteés, and the second term gives the data transfer
cost incurred to transfer the results of the binary operations of
MDO'’s to the site where the query is initiated. The objective
in data allocation problem is to minimize 7" by altering the
function site(O;) (which maps a MDO to a site).

IV. PROPOSED DATA ALLOCATION ALGORITHMS

Developing an efficient solution to the data allocation prob-
lem highly depends on the query execution strategy employed
by the distributed database system. This is because different
query execution strategies have different MDO migration pat-
terns. The data allocation algorithm is NP-complete in general
[11]. In this section, we develop solutions for the allocation
problem when query-site and move-small query execution
strategies are respectively used by the distributed database
management system and the multimedia data provider. As
will be described below, optimal solution can be obtained in
polynomial time if the query execution strategy is constrained
to be query-site only.

In this section, we present three approaches to tackle the
data allocation problem using four different algorithms. In the
first approach, we employ a hill-climbing algorithm to generate
a near-optimal solution. In the second approach, we formulate
the problem as a state-space search problem and solve it by
using a best-first search algorithm. The third approach is a
graph partitioning approach and is based on two clustering
techniques.These algorithms are explained below.
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A. Optimal Data Allocation: Max-Flow Min-Cut Approach

We first describe an algorithm that generates optimal solu-
tions for query-site query execution strategy. We use Floyd-
Warshall’s algorithm [26] to find the minimal cost commu-

‘nication path between any two sites. This gives us the c;;

values in the cost matrix C'. The running time of this algorithm
is O(m3) where m is the number of sites in the distributed
database system.

In this case, all the MDO’s are transferred to the query
site, and the query is executed at the site of its origin. This
is the same as neglecting the dependency among MDO’s
and allocating the MDO’s when move-small query execution
strategy is used. Let MDO O; be allocated at S; then let W be
am X k matrix where w;; represents the cost of data transferred
from O; to site S; (i.e., the second term in expression for the
total transportation cost). That is

m—1
Wij = E Cigr = Ugrg-

=0
And in matrix representation,
W=C-U.

Let X;; be 1 if O; is allocated at site S;, and zero otherwise.
The allocation problem is formulated as assigning zero-one
values to XZJ under the constraints,

1) 21_0 Xij=1, YO0<j<k-1

2) Y Xy <k, W0<i<m-L
SO as to minimize

‘_\

k

1
-

m—
U}”
=0

.
i
(=1

The first constraint ensures that each MDO is allocated to
at least one site, and the second constraint ensures that no site
is allocated more MDO’s than the maximum numbcr that can
be allocated at that site.

Based on the above formalism, the data allocation problem
in this case can be viewed as a mapping problem. Given the
costs of data transfer incurred (i.e., w;;) when a MDO O; is
allocated at site .S;, the problem is to map the MDO’s to sites
so as to minimize the total data transfer cost. Since a single site
will not have enough storage space for all the MDO’s there is
a limit on number of MDQ’s that can be allocated at a site.
This problem is equivalent to a maximum-flow minimum-cost
problem, and an optimal mapping can be achieved.

The outline of the solution is formulated as follows. Cal-
culate W as shown previously. Then, transform the problem
into a maximum-flow minimum-cost problem. After the costs
of allocating MDOQ’s at each site have been calculated (W is
found), the problem of allocating MDO’s to sites in order to get
minimum data transfer cost can be viewed as a maximum-flow
minimum-cost problem. The first step in translating allocation
problem to a maximum-flow minimum-cost problem is to
calculate the cost of allocating .a MDO to a particular site.
This is done by calculating the matrix W.
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Fig. 5. Formulating the data allocation problem to max-flow min-cut prob-
lem.

In order to formulate the data allocation problem as a
maximum-flow minimum-cut problem (see Fig. 5) we need
to perform following steps.

1) Two nodes, a source and a sink, are created and named,
S and T, respectively.

2) m nodes are created, one each -corresponding to a site
named, {So, S1, -, Sm—1}-

3) k nodes are created, one each corresponding to a MDO
named, {Oo, Ol, ey Ok—l}-

4) For each node S;, where 0 < ¢ < m — 1, an edge from
S to it is created and the capacity and cost of the link
are assigned as [; and O, respectively.

5) For each node O, where 0 < j < k — 1, an edge from
it to 7" is created and the capacity and cost of the link
are assigned to 1 and O, respectively.

6) For every pair of nodes S; and O;, an edge from S; to
Oj is created and the capacity and cost of the link are
assigned as 1 and w;;, respectively.

The problem is to find the maximum flow with minimum
cost from S to 7. It can be observed that the maximum flow
in this case is k& (i.e., the number of MDO’s in the distributed
database system), since it is bounded by the sum of capacity of
incoming edges to 7. The sum of capacity of outgoing edges
from S must be bigger than £ (the number of MDO’s) for
all MDO’s to be allocated. This will be true if Y1~ ' l; > k.
At the point of maximum flow, there must be exactly one
incoming edge (say from node S;) to O; with flow equal fo 1
and all other incoming edges from nodes .S;, have flow equal
to zero, for 0 < p < m — 1 and p # . This is equivalent
to allocating MDO O; to site S;. Since the capacity of flow
from S to site S; is assigned [;,0 < ¢ < k — 1, no site will
be allocated more than the maximum limit on the number of
MDO’s allowed. The problem then is to achieve maximum
flow from node S to node 7' with the minimum cost. This is
equivalent to assigning each MDO to a site while minimizing
the total data transfer cost.
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Fig. 6. Max-flow min-cut formulation for the example allocation problem.

Lemma: The maximum-flow and minimum-cost formula-
tion of data allocation problem with guery-site query execution
strategy generates the optimal solution.

Proof: The data allocation problem can be restated as
a mapping problem (i.e., mapping a MDO to a site). When
the query-site query execution strategy is used, the MDO’s
dependency graph of queries has only one level. This implies
that the data transfer cost incurred to execute all the queries
when a MDO is located at a site is fixed (i.e., independent of
the allocation of other MDO’s). That is, all the values for d;;
are zero, for 0 < 7,7’ < k — 1. The data transfer cost for the
MDO O; to be allocated on site S; can be found by summing

: 1 an—1 o
up 30y > jimo(Ci - @iy -7j15), which is exactly the values

of the elements of matrix W. These are the cost values on
the edge from site S; to MDO O; in Fig. 5. Therefore, by
finding the maximum flows of this graph, a feasible allocation
is found. And by finding the minimum-cost maximum-flow a
minimum total data transfer cost allocation is found, which
implies that the optimal solution is achieved. The value of the
minimum total data transfer cost is the sum of the costs w;;
on the edges S; from to O; which form the maximum-flow
and minimum-cost solution. O

Example 2: Consider a distributed multimedia database
system with 3 fully connected sites So, S, and Sy, and two
MDO’s ESpeech, and EPicture. Let there be only one query (as
shown in Fig. 4) accessing the multimedia service provider.
The MDO dependency graph is illustrated in Fig. 4(c). Let
this query be initiated from site Sy with frequency 3, from site
S1 with frequency 2, and from site Sy with frequency 1. Let
the sizes of intermediate MDO’s be: size(ESpeech) = 5, and
size(EPicture) = 20. Since there is only one query, the matrix
R =[5 20] corresponding to MDO’s ESpeech, and EPicture,
respectively, and the matrix A = [3 2 1]* (ie., a column
vector) corresponding to sites Sy, S, and Sy respectively. Let
the limit vector [, constraining the number of MDO’s that
can be allocated to a site be, [ = [1 1 2]. Then the matrix
U = A- R is as follows (the rows correspond to sites Sg, S1,
and Sy, respectively, and the columns correspond to MDO’s
ESpeech, and EPicture respectively) '

15 60

1040
5 20

U=
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Let the cost matrix for unit data transfer cost from one site to
another be (the rows and columns correspond to sites Sy, 51,
and Ss, respectively)

0 2 5
C=12 0 3
5 3 0

Then the total data transfer from a MDO to a site is given
by the matrix W = C - U as follows (the rows correspond to
sites Sy, S1, and Sy 'respectively, and the columns correspond
to MDO’s ESpeech, and EPicture, respectively)

0 2 5 15 60 45 180
W=12 0 3 10 40| = | 45 180
5 3 0 5 20 105 420

Fig. 6 illustrates the max-flow min-cut formulation for this
example. After applying the Ford and Fulkerson method [26)
to solve for maximum-flow with minimum cost, we get the
solution as: allocate F to site Sy, and J to site S;. The total
data transfer cost is: 45 + 180 = 225.

B. The Hill-Climbing Approach

The general data allocation problem has been proved to be
NP-complete [11]. Finding the optimal solution by exhaustive
search would require O(k™) in the worst case where k is the
number of MDO’s and m is the number of sites. Therefore,
a heuristic algorithm based on hill-climbing technique is
developed in order to find a near optimal solution. The general
data allocation problem solution consists of following two
steps:

1) As a first step, neglect. the dependencies among the
MDQO?’s, and come up with a initial data allocation, by
using the max-flow min-cut formulation of the problem
(as described in Section IV-A).

2) Tteratively improve the initial data allocation by using
the hill climbing heuristic until no further reduction in
total data transfer cost can be achieved. This is done
by applying some operations on the initial allocation
scheme. Since there are finite number of feasible alloca-
tions, the heuristic algorithm will complete its execution.

The initial solution generated by the max-flow min-cut
formulation is refined by applying some operations on it. The
objective for applying these operations is to reduce the total
data transfer cost. There are two types of operations that are
defined, namely, migrate (migrate MDO’s from its currently
allocated site to the newly allocated site), and swap (swap the
locations of one set of MDO’s with the locations of new set
of MDO’s). Note that a migrate operation cannot be applied if
the limit on the number of MDO’s that can be located at a site
is exceeded. Whereas, the swap operation does not change
the number of MDO’s allocated at each of the sites. These
operations take into consideration the dependency between the
MDO’s as modeled by MDO dependency graphs. In order
to come up with a general solution, these operations are
independent of exact structure of a MDO dependency graph
but are based on the type of processing involved in executing a
query in a distributed fashion. These operations are iteratively
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Max-flow Min-cut Algorithm

j Initial allocation

Apply migrate operations

Lg

Incrementally improved allocation

Yes Any reduction
in Total Data

Transfer Cost?

Apply swap operations

l Incrementally improved allocation

Yes

Any reduction
in Total Data
Transfer Cost?

Final Allocation

Fig. 7. Steps in the hill-climbing algorithm for data allocation.

applied until no more reduction is observed in the total data
transfer cost. Fig. 7 shows the major steps in the hill-climbing
heuristic algorithm that is developed in this section.

The set of migrate and swap operations are as follows.

1) Migrate (O, S;): move MDO O; to S;. This operation
can be applied to each MDO, and the MDO can be
moved to any one of m — 1 sites (it is not located at).
Therefore, there can be maximum of k(m — 1) migrate
operations that can be applied during each iteration. The
migrate operation can potentially reduce the data transfer
cost involved in processing the binary operation over
two MDO’s. If one MDO is located at one site and
another MDO is located at a different site, then migrating
one MDO to the site of another can potentially reduce
data transfer cost. .

2) Migrate2 (Oj,Si,Oj/,Sil)I move MDO Oj to site S;
and MDO O to site S;. This operation can be applied to
each pair of MDO’s, and they can each be moved to any
one of m— 1 sites where they are not located. Therefore,
there can be maximum of (k(k—1)/2)(m—1)2 migrate2
operations that can be applied during each iteration. As
in the case of migrate operation, the migrate2 operation
can potentially reduce data transfer costs in processing
binary operations involving three MDO’s.

3) Migrate3 (0O;,8;,0j,8:,0;,Sy): move MDO O; to
site S;, MDO O to site Sy and MDO Oj; to site S
This operation can be applied to each triplet of MDO’s,
and they can each be moved to any one of m — 1 sites
where they are not located. Therefore, there can be a
maximum of (k(k — 1)(k — 2)/6)(m — 1)3 migrate3
operations that can be applied during each iteration. The
migrate3 operations' can potentially reduce data transfer
costs in processing binary operations over four MDO’s.

4) Swap (O, 0, ): swap the location of MDO O, with
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the location of MDO O,. This operation can be applied
to each distinct pair of MDO’s. Therefore, there can
be a maximum of k(k — 1)/2 swap operations that can
be applied during each iteration. The swap operation
is useful in minimizing the total data transfer cost by

. monitoring the data transfer between two sites. Since
there is a limit on number of MDO’s that can be
allocated at a site, by swapping MDO’s we maintain
this constraint, and simultaneously explore if we can
improve the allocation.

5) Swap2 (O, 04, Oy, Oy): swap the location of MDO
O, with the location of MDO O,, and location of O,
with location of O,. This operation can be applied to
each of the distinct pairs of MDO’s O, O, and O,
O, . The swap2 operation is also useful in reducing the
total data transfer cost while maintaining the constraint
on number of MDO’s that can be allocated to a site.

6) Swap3 (0;,0,:,0,,0,,0,,0,): swap the location of

- MDO O, with the location of MDO O,, location of
Oy with location of Oy, and location of O, with the
location of O,:. This operation can be applied to each
of the distinct pairs of MDO’s O, £/, Oy, Oy and O,
O,:. The swap3 operation is also useful in reducing the

" total data transfer cost while maintaining the constraint
on number of MDO’s that can be allocated to a site.

In the experiments that we have conducted, we noticed
that migrate and swap operations are applied most often,
followed by migrate2 and swap?2 operations. The least frequent
occurrences were that of migrate3 and swap3 operations. In
our extensive experimental studies we found that many times
Jjust applying migrate and swap operations would not give the
global optimal solution, but would give a global solution when
migrateZ and/or swap2 operations, or migrate3 and/or swap3
operations were applied. This was the reason for us to define
three different types of migrate and swap operations. The run
time complexity was higher for the hill-climbing algorithm to
use migrate4 or swap4 operations.

Example 3: We use the example presented in Section II-
B with the distributed database system using the move-small
query execution strategy. The MDO dependency graph is as
illustrated in Fig. 4(b). Let the MDO sizes are: size(E') =
5, size(J') = 30, and size(G') = 25. First, we use the
top-level of the MDO dependency graph; i.e., the edge from
Site(J) — Site(Q), to solve for initial allocation scheme by
using maximum-flow minimum cut formulation. Let this query
be initiated from site Sy with frequency 3, from site .S; with
frequency 2, and from site S; with frequency 1. As there
is only one query, we have the matrix R = [0 0 30
with each element corresponding to relations E’, G/, and J',
respectively, and the matrix A = [3 2 1]* (ie., a column
vector) with each element corresponding to sites Sy, S1, and
Sa, respectively. Let the limit vector /, constraining the number
of MDO’s that can be allocated to a site be, [ = [2 2 2].
Let the cost matrix for unit data transfer cost from one site to
another be (the rows and columns correspond to sites So, 51,
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and Sy, respectively)

C=

288 Rl
W o
O W Ot

After formulating the problem as maximum-flow and min-
imum cut problem and solving it (as illustrated in Section
IV-A) we get the initial solution as: allocate MDO F' at site.
Sy, allocate MDO G at site S1, and allocate MDO J at
site So. This allocation schema is represented as {Sp, S1,590}
corresponding to the sites where the relations £, G, and J are
to be located, respectively.

The matrix V' giving the amount of data needed from a
MDO to be transported to site of another MDO derived from
the MDO dependency” graph [shown in Fig.

4(c)] is

V=

(o= en R e}

5
0 2
0

o Ot O

The row and columns of matrix V! correspond to MDO’s
E', G', and J', respectively. We get the total amount of data
that must be transported from the site where one MDO is
located to the site where another MDO is located as (the
rows and columns correspond to MDO’s E', G’; and J',
respectively)

05 0 0 30 0
- D=3B4+2+1)-(0 0 25/ =10 0 150
0.0 0 0 0 0

The total data transfer cost given for the initial allocation
{S0,51,80} is (2 x30+2x 150) + (24 1) x 30 = 450. The
cost value in first parenthesis corresponds to the data transfer
cost incurred in transferring £’ to-site where @ is located, and
transferring G’ to the site where J is located. The second cost
value corresponds to the data transfer incurred in transferring
the result J’ to the query site:

We now apply the hill-climbing heuristic algorithm to
improve upon the initial solution so as to further reduce the
total data transfer cost if possible. Table II illustrates the
working of hill-climbing algorithm. ;

Table TI shows the migrate and swap operations applied to
improve the initial solution provided by the max-flow min-
cut algorithm. Two operations were applied, 1) migrate(J, S1)
(which reduced the total data transfer ‘cost from 450 to
180). and 2) migrate(E, S, G, Sy, J, So) (which reduced the'
data transfer cost from 180 to 150). The solution to data
allocation problem generated by the hill-climbing algorithm
is {51, 50,50} (.e., allocate relation E at site Sy, relation G
at site Sg, and relation J at site Sp) with the total data transfer
cost incurred to execute the query as 150. Table Il shows
all feasible allocation schemes and the total data transfer cost
incurred for-each of them. Table III also shows the itemized
costs for the data transfer. The cost involved in transferring
E’ to site where relation G is located is given by the column
Size(E') — Site(G), the column Size(G") — Site(J) gives
the cost of transferring G to the site where relation J is
located, and the column Size(J') — Site(Q) gives the cost of
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TABLE II
OutpuT OF THE HILL-CLIMBING ALGORITHM FOR DATA ALLOCATION

Current Operation Operation Applied New Total Data
Allocation | Type Allocation Transfer Cost
{50, 51, So} | migrate migrate (], S;) {54, 51,51} 180

{8, 5,5} | migrate None applied — —

{8y, 5,5} migrate2 None applied — —

{Sy 51,5} migrate3 migrate (E, S1, G, Sy, ], Sp) {S,, S0, Sy} 150

{S,, S Sy} migrate None applied — —

{8, S Sy} migrate2 None applied — —

{S,, Sy Sy} migrate3 None applied — —

{S, Sor S} swap None applied — _

{S,, S0, 54} swap?2 None applied — —

{S,,5¢ So} swap3 None applied — —

transferring the .J’ to the query site. Following points can be
noted after comparing hill-climbing algorithm with the results
of exhaustive solution.
1) The hill-climbing algorithm generates the optimal solu-
tion (which is allocation number 9) in Table III.
2) The hill-climbing algorithm would not have find the
optimal solution if only migrate operation had been used.
Note that only after applying migrate3 operation was
optimal solution achieved.
3) The hill-climbing algorithm may not always generate an
optimal solution

C. BFS/ESP Algorithm

In this section, the data allocation problem is formulated as
a state-space search problem. A best-first search algorithm,
which is based on similar principles as the A* algorithm,
is used for solving the problem [25]. In a state-space search
problem, each state description is denoted by a node. Operators
applicable to nodes are defined for generating successors of
nodes, called node expansion. A solution path of a search
problem is a path in the state-space defined by a sequence of
operators which leads a start node to one of the goal nodes.
The A* algorithm has been successfully applied to the tasks
to processors mapping problem in parallel processing. In the
data allocation problem, a solution path defines an allocation
which has the minimum cost. The state-space search problem
is formalized as follows.

1) State Description: Let a set of ordered pairs of MDO
and site denote the partially developed allocation corre-
sponding to a node in the search tree.

2) Initial State: The initial state is the empty set.

3) Operators: An operator adds a new pair of MDO and
site to the current set under node expansion. Every
unallocated MDO-site pair is a candidate.

4) Goal State: The goal state is reached if every MDO is

allocated to a site.

The above formulation just offers a search scheme for
finding a solution. We use an algorithm called best-first search
with efficient search-space pruning (BFS/ESP) to find the
optimal solution. The BFS/ESP algorithm is based.on similar
principles as the A* algorithm in that it uses an evaluation
function to judge which search node to expand next. In an A*
algorithm, an evaluation function is used to order nodes for
expansion, and is guaranteed to find a optimal solution path
in that the path cost is minimized if the evaluation function is
admissible. More specifically, we define an evaluation function
as

F(N) = g(N) + h(N)

where g(N) is the minimum path cost from the start node
to node N in the state-space, and k() is a lower-bound
estimate, using any heuristic information available, of the
minimum path cost A*(N) from node N to a goal node. As
long as h(N) < h*(N) for all N (i.e., h(N) is consistent),
evaluation function is called admissible and the A* algorithm
using such an evaluation function will be guaranteed to find an
optimal solution path in the state space after expanding fewer
nodes during the search than any uninformed algorithms. That
is, such a heuristic search algorithm can speed up the search
of an optimal data allocation, which is usually time consuming
for graphs with large numbers of MDO’s and sites. In order
to speed up the search process by properly pruning the search
space, the heuristic function has to be tight. If its value is too
small (e.g., zero), then the search degenerates to an exhaustive
search. If its value is too large, then it may not be admissible
and cannot guarantee optimal solution. Thus, such heuristic
function is problem-dependent and is usually difficult to define.

For the data allocation algorithm, g(N) of a search node
N is simply the cost of the partial allocation. This partial
cost can be easily computed by using the total transfer cost
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TABLE 1II
ENUMERATION OF FEASIBLE ALLOCATION SCHEMES AND THE RESPECTIVE DATA TRANSFER COSTS
Allocation | Allocation Data Transfer Cost (Itemized) Total Data
Number | Scheme Size (E’) — Site (G) | Size(G”) — Site(G) | Size(J') —Site(Q) | Transfer
Cost

1 (505,51 0 2x 150 (3+1)x30 420
2 {5y Sp» S} 0 5x 150 (3+2) x 30 900
3 S Sy, S} 2%30 2% 150 (2+1) x30 450
4 (S Sy 51} 2% 30 0 (3+1) x30 180
5 {50 5, 5,3 2% 30 3% 150 (3+2) x30 660
6 {Sp S2 Sp} 5x30 5% 150 (2+1) x30 990
7 {54 5, 5} 5% 30 3x 150 (3+1) x30 720
8 {Sg S» 53} 2% 30 0 (3+2) x30 210
9 {5, Sy So} 2% 30 0 (2+41) x30 150
10 {5,,5, 5.} 2%30 2% 150 (3+1) x30 480
11 {81 Sy, Sa} 2x30 5% 150 (3+2) %30 960
12 {5,,5,, S0} 0 2% 150 (2+1) x30 390
13 S, 5, 5,1 0 3% 150 (3+2) x30 600
14 5,5, So} 3%30 5% 150 (2+1) x30 930
15 {5,5,, 8} 3 %30 3x150 (3+1) x30 620
16 {5, 5,5} 3x30 0 (3+2) x30 240
17 {5, S0 Sol 5x30 0 (2+1) x30 240
18 {5, S0 51} 5% 30 2% 150 (3+1) x30 570
19 {S, Sy, Sy} 5%30 5% 150 (3+2) x30 1050
20 {55 S, Sy} 3%30 2x 150 (2+1) x30 480
21 {5, 5., 5.} 3%30 0 (3+1) x30 210
2 {5, 8,55} 3%30 3% 150 (3+2) x30 750
23 {5, 5, S} 0 5% 150 2+1) x30 840
24 {5,5,53) | . 0 3% 150 (3+1) x30 570

expression with the unallocated MDO’s being excluded from
the expression. As to the heuristic function A(N), it can be
defined by several different approaches. The simplest way is to
set A(IN) = 0 for all N, and the resulting search is a uniform-
cost search. To be more efficient in the search, nonzero h(V)
should be used. In our approach, we define h(V) as follows.

1) Let O be the set of unallocated MDQO’s at the current

search node N.

2)  Set A(N) = 0.

3) FOR each MDO o € O DO.

4)  Set MinCost=MAXINT.

5) FOR each site s DO

6) Determine ThisCost to be the additional allocation
cost if o is allocated to s.

7 IF ThisCost < MinCost THEN Set MinCost =
ThisCost.

8)  ENDFOR

9) h(N) = h(N) + MinCost.
10) ENDFOR
Using the above procedure, however, it is not difficult to

“see that h(IV) is not always a consistent lower bound of

h*(N) for all N. In other words, the search algorithm cannot
guarantee‘optimal solutions in all cases. Given the definitions
of g(N) and h(IV), the BFS/ESP algorithm for solving the
data allocation problem is briefly described below.
BFS/ESP Data Allocation Algorithm:
1) Put the initial search node I = ¢ on a list called OPEN,
and set f(I) = 0.
2) Remove from OPEN the search node n with the smallest
f, and put it on a list called CLOSED.
3) If N is a goal node, then determine the final allocation
and stop; otherwise, go to the next step.
4) Expand search node n by considering the allocation
of the next MDO to all the sites. Compute f(N') =
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g(N") + h(N') for each successor node N’ of N. Put
all the successors on OPEN. Go to step 2).

In the worst case, the BFS/ESP algorithm may explore the
entire search tree before the best solution is located. Thus,
the worst case time complexity of the BFS/ESP algorithm is
O(m*). However, it should be noted that with the above-
mentioned heuristic node evaluation function, the BFS/ESP
algorithm can take much less time than the worst case time
complexity implies [10].

D. Agglomerative Clustering

In this section, we describe two clustering approaches to
tackle the data allocation problem. In general, search-based
methods can produce better solutions at the expense of much
longer execution time, while clustering approaches are much
faster but may generate less optimal solutions [3], [16], [23],
[24]. Clustering algorithms can be broadly divided into two
classes [4].

1) Agglomerative Algorithms: The graph to be clustered is
initially considered to have N unit clusters. A number
of clustering operations are then performed to produce
a certain number of larger clusters.

2) . Divisive Algorithms: The graph is initially considered to
be a single cluster. The large cluster is then incremen-
tally cracked to form a number of smaller clusters.

In this section, we present an agglomerative algorithm that
performs clustering of the MDO’s followed by a mapping of
the clusters to the sites. In this algorithm, the MDO’s are
considered to be connected as a clique. Each edge in the
clique is associated with a weight, denoted by e;;/, representing
the aggregate amount of data dependence between the two
MDQ’s i and ¢’ across all the queries. Each node in the clique
represents the maximum allocation cost of the MDO’s, denoted
by w; (determined by the query-site strategy), across all sites.
Given the MDO- dependency graphs and the queries set, this
MDO clique can be computed before the clustering algorithm
starts. The clustering algorithm works by first locating a pivot
MDO, defined as the MDO that is connected by the heaviest
edge, and then incrementally includes neighbor MDO’s until
the cumulative maximum MDO allocation costs exceeds a
threshold 7. This threshold is simply the sum of all the
maximum MDO allocation costs divided by the number of
sites in the system. Following the clustering of the pivot MDO,
the same procedure is applied to a new pivot MDO selected
from the remaining unclustered MDO’s. '

After a set of MDO clusters are formed, each cluster is
mapped to a site. The criterion of choosing a site for a MDO
cluster is simple: the site that gives the least increase in the
partial allocation cost is the target site. The algorithm is briefly
presented below.

Agglomerative Clustering:

1) Construct the MDO clique by:

For each MDO 4, compute the maximum allocation cost
¢ across all sites. This value, denoted by w;, is taken as
the node weight of ¢ in the clique.

For each pair of MDO 4 and ¢/, determine the aggregate
MDO dependency costs between ¢ and ¢’ across all
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queries. This cost is denoted by e;; and is taken as
the edge weight in the clique.
2) Determine a threshold T, defined as the sum of all
weights divided by the number of sites.
3) WHILE not all MDO’s are clustered DO
4)  Determine the pivor MDO, defined as the MDO with
the heaviest edge.

5)  Incrementally include neighbor MDO’s in order of
decreasing edge weight until the total node weights
exceeds T

6) ENDWHILE
7) Set TotalCost = 0.
8) FOR each MDO cluster C, in decreasing order of total
weights DO
9 Map C to a site s such that the increase in the partial
allocation cost, ACost, is the minimum.

10)  TotalCost = TotalCost + ACost.
11) ENDFOR

Compared with the previous approaches, the AC cluster-
ing algorithm incurs much less time complexity. The time
complexity of the AC algorithm is only O(k*m(k +m)).

E. Divisive Clustering

The agglomerative clustering (AC) algorithm, described
above, is designed to be a MDO dependency-oriented algo-
rithm. That is, we put the main emphasis on the dependency
among MDO’s in determining the target data allocation. In
this section, we present a divisive clustering (DC) algorithm,
which is designed to be a site-oriented algorithm. That is, we
consider the network communication costs among the sites
as more important factor in determining a better allocation.
More specifically, the DC algorithm works by first allocating
all the MDO’s to a pivot site. The pivot site is the one that has
the lowest aggregate communication costs among all the sites.
The sum of all the communication overhead of the outgoing
links of the pivot site to other sites is the minimum among
all the sites. Each MDO is then considered to be migrated to
another site which can lower the cost of the allocation. All sites
are considered for the migration of each MDO. The process
terminates when all the MDO’s are examined. Similar to the
AC algorithm, the design of this DC algorithm is again simple
so that it admits very efficient implementation. The algorithm
is briefly described below. '

Divisive Clustering:

1) Find out the site that has the lowest aggregate communi-
cation overhead across all channels. Let it be the pivot
site.

2) Allocate all the MDO’s to the pivot site. Determine the
cost of the allocation.

3) FOR each MDO o in the pivot site DO

4)  Set BestSite = pivot, ACost = 0.

5)  FOR each other site s DO

6) Compute ACost’ if o is migrated to s.

T) IF ACost < ACost THEN set BestSite = s,

ACost = ACost .
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TABLE IV
EXPERIMENTAL RESULTS OF THE HILL-CLIMBING ALGORITHM

No. of No. of No.of  No.of Aver. % Nurmnber of Sol. with Deviation. in range

Sites MDOs Problems Opt:Sol.  Deviation (0, 5%) [5,10%) [10,20%)  [20%, -)

5 5 100 95 1.5832 5 0 0 0

5 6 100 82 1.1149 18 0 0 0

5 7 100 87 1.0243 13 0 0 0

5 8 100 89 0.7539 11 0 0 0

6 5 100 93 0.6412 7 0 0 0

6 6 100 95 0.8160 5 0 0 0

6 7 100 84 0.9123 16 0 0 0

6 8 100 81 0.9228 19 0 0 0

7 5 100 88 0.6100 12 0 0 0

7 6 100 86 0.8796 14 0 0 0

7 7 100 88 0.8161 12 0 0 0

7 8 100 76 0.8264 24 0 0 0

8 5 100 87 0.9841 13 0 0 0

8 6 100 88 0.4505 12 0 0 0

8 7 100 83 0.7225 17 0 0 0

8 8 100 83 0.9034 16 1 0 0
8) ENDFOR uniform distribution. Each data allocation algorithm described
9)  Migrate o to BestSite. above was tested for every case and statistics were collected.
10) ENDFOR

Similar to the AC algorithm, the time complexity of the DC
algorithm is- also much less than the search based methods.
The time complexity of the DC algorithm is O(k?m(k +m)).

V. RESULTS

In this section, we present the experimental results for the
data allocation algorithms described in the previous sections.
Comparisons among these algorithms will be made by con-
sidering the quality of solutions and the algorithm running
times.

A. Workload

The example considered in the previous section was used
for illustrating how the hill-climbing algorithm works. But it
had only one query, three MDO’s and three sites. The number
of feasible allocations were only 24, with data transfer cost
ranging from 150 to 1050. Since the solutions were to be
compared with the optimal solutions generated by exhaustive
search and the exhaustive search method takes large amount
of time to experiment for a distributed multimedia database
system with even moderate number of sites and MDO’s (for
k MDO’s and m sites there are k™ allocation schemes, and
for each allocation scheme the data transfer cost needs to be
calculated), we conducted sixteen experiments with number of
MDQO’s ranging from five to eight, and number of sites ranging
from five to eight. Each experiment consisted of 100 allocation
problems with number of sites and number of MDO’s fixed.
Each allocation problem had between 10 and 20 queries, and
each query had a MDO dependency graph. The communication
network, the relation sizes, the link costs, and the structure
of MDO dependency graph were randomly generated from a

B. Comparison of Allocation Costs

In Tables IV¥o VII, we list, for each of the experiments
conducted in a column-wise fashion, the following: 1) the
sites, 2) number of MDO’s, 3) number of problems, 4) number
of problems for which the hill-climbing algorithm generated
the optimal solution, 5) the average deviation in percentage
of near optimal solutions from optimal solution for those
allocation problems for which the hill-climbing algorithm did
not generate optimal solution, 6) number of near optimal
solutions with deviation less than 5%, 7) number of near
optimal solutions with deviation of 5% or more but less than
10%, 8) number of near optimal solutions with deviation of
10% or more but less than 20%, and 9) number of near optimal
solutions with deviation 20% or more. The number of optimal
solutions can reflect how good the algorithm is; whereas the
average deviation shows how bad the algorithm performs when
it cannot generate optimal solutions.

From Table IV, we note that the hill-climbing algorithm gen-
erated optimal solution for a large number of problems—1385
cases out of a total of 1600 cases, corresponding to about 86%
of the test cases. In addition, the overall average deviation
(i.e., the mean of all average deviations) of a near optimal
solution from the optimal solution was only about 0.87% in
total data transfer cost. Furthermore, for the tests that when the
hill-climbing algorithm generates suboptimal solutions, almost
all of them are within 5% from the optimal. Thus, the hill-
climbing approach is a very effective algorithm in that it can
generate optimal solutions for most cases and very near to
optimal solutions when it cannot generate optimal solution.

Table V includes the results of the BFS/ESP algorithm.
Although not as good as the hill-climbing approach, the
BFS/ESP algorithm performs well. The number of optimal
solutions is 926 out of 1600—more than 57%. Moreover,
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TABLE V
EXPERIMENTAL RESULTS OF THE BFS/ESP ALGORITHM

No. of No. of No. of No. of Aver. %  Number of Sol. with Deviation. in range
Sites MDOs Problems Opt.Sol.  Deviation (0, 5%) [5,10%) [10,20%)  [20%, -)
5 5 100 69 5.6043 24 6 0 1

5 6 100 62 3.8830 25 7 6 0

5 7 100 57 5.1204 31 6 4 2

5 8 100 47 3.7522 40 8 4 1

6 5 100 71 3.5797 23 3 3 0

6 6 100 63 2.3129 35 1 1 0

6 7 100 61 3.2448 31 6 1 1

6 8 100 50 2.8268 38 10 2 0

7 5 100 68 1.8634 30 2 0 0

7 6 100 59 2.0448 36 5 0 0

7 7 100 55 2.1835 41 2 2 0

7 8 100 58 1.9695 37 5 0 0

8 5 100 69 1.4174 29 2 0 0

8 6 100 52 2.3270 41 6 1 0

8 7 100 45 1.5727 53 1 1 0

8 8 100 40 1.6548 56 4 0 0

TABLE VI
EXPERIMENTAL RESULTS OF THE AGGLOMERATIVE CLUSTERING ALGORITHM

No. of No. of No. of No. of Aver. % Number of Sol. with Deviation. in range
Sites MDOs Problems Opt.Sol.  Deviation (0, 5%) [5,10%) [10,20%)  [20%, -)
5 5 100 66 5.6070 25 8 0 1

5 6 100 43 3.4601 43 7 7 0

5 7 100 49 4.4600 38 8 3 2

5 8 100 47 3.9008 38 10 4 1

6 5 100 67 3.3800 26 4 3 0

6 6 100 48 2.2310 48 3 1 0

6 7 100 49 3.5626 43 4 3 1

6 8 100 37 2.9107 50 10 3 0

7 5 100 63 1.9947 35 2 0 0

7 6 100 50 2.0075 46 4 0 0

7 7 100 44 1.9855 52 4 0 0

7 8 100 40 2.1333 53 6 1 0

8 5 100 65 1.8618 30 5 0 0

8 6 100 44 2.3550 49 6 1 0

8 7 100 36 1.7192 60 3 1 0

8 8 100 38 1.7162 58 4 0 0

more than 80% of the remaining cases are only 5% from the
optimal. Only five out of 1600 cases are more: than 20% from
the optimal. The overall average deviation from optimal is
small—about 2.83%. The BES/ESP algorithm is more efficient
than the hill-climbing approach because it takes 2 order of
magnitude less time to generate a solution, as will be seen in
the following subsection. ’

Table VI contains the performance data of the agglomer-
ative clustering (AC) algorithm. The performance of the AC
algorithm is comparable to that of the BFS/ESP algorithm.
Despite that the number of optimal solutions generated is
fewer (786 out of 1600) the number of solutions with costs
within 20% from the optimal is the same as that of the
BFS/ESP algorithm. This can be noted from the table that both
algorithms have only five cases out of 1600 with costs more
than 20% from the optimal. The overall average deviation is
also similar—about 2.83%. Based on these results, we can

notice that the agglomerative clustering algorithm is indeed
very cost-effective. This is because all the search based
algorithms take exponential time in the worst case.

Table VII contains the performance results of the divisive
clustering (DC) algorithm. The performance of the DC al-
gorithm is again comparable to both the AC and BFS/ESP
algorithms. The number of optimal solutions generated is 802
out of 1600. And almost all of the suboptimal solutions are also
within 20% from the optimal. The overall average deviation
is also similar—about 2.82%. Thus, we can observe that for
the data allocation problem, there is no particular preference
to either the agglomerative approach or the divisive approach.

C. Comparison of Running Times
Table VIII contains the average running times of all ~algo-

rithms for each experiment. For comparison, the time taken
to generate the optimal solutions by using exhaustive search
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TABLE VI
EXPERIMENTAL RESULTS OF THE DIVISIVE CLUSTERING ALGORITHM

No. of No. of No. of No. of Aver. % Number of Sol. with Deviation. in range
Sites MDOs Problems Opt.Sol.  Deviation (0, 5%) [5,10%) [10,20%)  [20%, -)
5 5 100 62 4.9888 - 31 6 0 1
5 6 100 61 3.3866 ~ 29 5 5 0
5 7 100 42 4.2882 43 10 3 2
5 8 100 40 3.7411 42 14 3 1
6 5 100 67 3.4530 27 4 2 0
6 6 100 55 2.5675 40 3 2 0
6 7 100 48 3.2486 42 8 1 1
6 8 100 40 © 2.6330 50 8 2 0
7 5 100 63 1.9495 35 2 0 0
7 6 100 49 1.8516 47 4 0 0
7 .7 100 41 2.5595 53 4 1 1
7 8 100 48 2.2369 46 5 1 0
8 5 100 64 1.4758 34 2 0 0
8 6 100 : 44 2.9364 42 12 2 0
8 7 . 100 39 1.9406 56 3 2 0
8 8 100 39 1.8989 57 4 0 0
TABLE VIII
AVERAGE RUNNING TiMES (MSECS) OF ALL THE ALGORITHMS

No. of No. of Exhaustive Hill- BFS/ESP AC DC

Sites MDOs  Search Climbing

5 5 110.55 120.92 4.46 2.68 2.55

5 6 679.53 259.29 9.86 4.80 4.81

5 7 4111.79 487.48 15.46 7.90 8.01

5 8 2404491  961.96 34.88 12.65 13.12

6 5 325.98 206.27 6.06 3.27 3.57

6 6 2344.89 421.09 13.35 5.66° 6.26

6 7 25599.84  1339.67 34.90 15.12 1694

6 8 169081.30. 2018.21 56.27 20.80 24.70

7 5 648.65 273.16 6.40 3.45 3.72

7 6 5667.73 597.79 1447 5.95 6.54

7 7 45137.12  1152.67 34.36 9.67 10.32

7 8 44044644 227242 62.37 15.84 18.40

8 5 1447.89 458.87 9.67 4.16 4.84

8 6 1491547  898.44 2297 7.54 8.05

8 7 134759.01  1940.40 36.40 11.83 13.81

8 8 1312713.03 3377.72 49.46 19.25 22.44

are also listed. All the algorithms were implemented on a
SPARC IPX workstation and the time data were measured
in milliseconds. As can be seen from the table, although the
hill-climbing approach took much short time compared with
exhaustive search, it took two order of magnitude more time
than the clustering algorithms, and the BES/ESP algorithm.
The two clustering algorithms were found to be the fastest
algorithms. Indeed, they are the more cost-effective algorithms
when compared against the other algorithms.

VL DISCUSSION

From the experiment results presented in the previous
section, we observe that the clustering algorithms are very
cost-effective if fast execution is desired. Therefore, these
algorithms can be applied to generate allocation schemes
for limited redesign of distributed multimedia databases [27].

Limited redesign implies change in allocation scheme but

not in fragmentation scheme for a distributed database. The
algorithms developed in this paper can be integrated with
algorithms for affecting the limited redesign of distributed
databases [22] and thus facilitating on-line tuning of a dis-
tributed multimedia database system. If solution quality is the
more prominent factor, the hill-climbing approach is a viable
choice for an off-line allocation. The BFS/ESP algorithm,
whose solution quality is next to that of the hill-climbing
approach, is also a practical approach, though it can take much
longer time than the clustering algorithms. The clustering
algorithms can be useful if the quality of the solution is not the
main objective but the algorithm running times is the major
consideration.

VII. RELATED WORK

The data allocation problem has been first studied in terms
of file allocation problem in a multi computer system, and
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later on as a data allocation problem in distributed database
system. The file allocation problem does not take into consid-
eration the semantics of the processing being done on files,
whereas data allocation problem must take into consideration
the interdependencies among accesses to multiple fragments
by a query. Chu [8] studied the problem of file allocation
with respect to multiple files on a multiprocessor system. He
presented a global optimization model to minimize overall
processing costs under the constraints of response time and
storage capacity with a fixed number of copies of each file.
Casey [5] distinguished between updates and queries on files.
Eswaran [11] proved that Casey’s formulation is NP complete.
He suggested that a heuristic rather than exhaustive search
approach is more suitable.

Ramamoorthy and Wah [21] analyzed a file allocation
problem in the environment of a distributed database and
developed a heuristic approximation algorithm for a simple file
allocation problem and the generalized file allocation problem.
They also proposed a model for file migration or reallocation
that is identical in formulation to the file allocation problem.
Ceri et al. [6] considered the problem of file allocation for
typical distributed database applications with a simple model
for transaction execution taking into account the dependencies
between accesses to multiple’ fragments.

Apers [1] considered the allocation of the distributed data-
base to the sites so as to minimize total data transfer cost.
The author came up with a complicated approach to allocate
relations by first partitioning them into innumerable number of
fragments, and then allocating them. The author did integrate
the system dependent query processing strategy with the
logical model for allocating the fragments. But the author
solves the complete fragmentation and allocation problem.
That is, the fragmentation schema is one of the outputs of
the allocation algorithm. This curtails the applicability of this
methodology when fragmentation schema is already defined
and allocation scheme must be generated.

Cornell and Yu [9] proposed a strategy to integrate the
treatment of relation assignment and query strategy to optimize
performance of a distributed database system. Though they
took into consideration the query execution strategy, the solu-
tion they came up with is a complicated linear programming
solution. The main problem in their approach is the lack of
simplicity in both incorporation of the query execution strategy
and the solution procedure.

There have been many linear programming formulations
proposed for data allocation problem [12], [20]. The main
problem with these approaches is the lack of modeling of
the query execution strategy. Lin et al. [14] also developed a
heuristic algorithm for minimum overall data transfer cost, by
considering replicated allocation of fragments and both read
and update transactions.

VIII. CONCLUSION

The problem of nonredundant data allocation of MDQ’s in
distributed database system is addressed in this paper. A query
driven data allocation approach is developed by integrating
the query execution strategy with the formulation of the data
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allocation problem. We studied the data allocation problem
for two popularly used query execution strategies, namely,
query site and move-small. We formulated the data allocation
problem with query-site execution strategy as a max-flow min-
cut problem and showed that it can be solved to generate
an optimal solution. A hill-climbing heuristic algorithm was
developed for the data allocation problem with move-small
query execution strategy. We studied the effectiveness of
this algorithm by conducting a set of experiments, which
show that the hill-climbing heuristic algorithm generates the
optimal solution for a large percentage of allocation prob-
lems. Moreover, the near optimal solution generated by the
algorithm has on an average small percentage of deviation
from the optimal solution in terms of the total data transfer
costs incurred to process all the queries. The problem was
also formulated as a state-space searched problem and was
solved with a efficient search algorithm called BFS/ESP. Two
clustering algorithms were also proposed which have much
shorter execution times although the quality of solutions are
slightly worse than the hill- climbing approach. The proposed
data allocation algorithms can be used in practice for allocating
MDO’s in distributed multimedia database systems.

A major contribution of this work is the development
of a site-independent MDO dependency graph . representa-
tion of data transfer costs incurred in executing a query
by using a particular query execution strategy. This enables
the application of query driven allocation approach to allo-
cate database objects under different database systems (like,
relational, object-oriented, network, etc.) and facilitates the
development of an uniform framework within which to define
and solve data allocation problems. A complicated query
execution strategy employed by a distributed database system
will generate complex MDO dependency graphs which will
involve development of novel techniques to solve for optimal
allocation.
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