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In this paper a hierarchical task scheduling strategy for assign-
ing parallel computations with dynamic structures to large hyper-
cube multicomputers is proposed. Such computations represent a
wide range of recursive and divide/conquer algorithms for which
structure of the problem varies dynamically. To achieve load bal-
ancing and reduce processor contentions, the system is divided
into multiple regions of processors for which the first level of
scheduling is done by the host computer that spreads out the
initial computations into these regions. The second level schedul-
ing is done by a set of median processors of these regions which
enable the processors of their regions to optimally balance the
dynamically created load and to communicate with each other
with reduced overhead. The results of an extensive simulation
study are presented that exhibit the performance of the proposed
strategy under different loading conditions, varying degrees of
depth and parallelism, and communication costs. The proposed
dual-level hierarchical scheduling is shown to outperform a well
known distributed scheduling strategy. © 1994 Academic Press, Inc.

1. INTRODUCTION

As parallel computers are becoming increasingly popu-
lar and a wide variety of parallel architectures are being
proposed, an efficient use of these computers for running
general-purpose problems has posed new challenges for
researchers. This is largely due to the fact that an effi-
cient use of a parallel processing system is a complex
task, and the design and implementation of a supporting
system needs to cope with a number of issues dealing
with languages, compilers, parallelism detection tech-
niques, grain-size determination procedures, data depen-
dency analysis, interprocessor communication mecha-
nisms, etc. The most critical considerations for an
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efficient use of a parallel system are to partition tasks and
schedule them onto the processors. This can be accom-
plished by using a static scheduling strategy based on a
priori knowledge of the problem structure that specifies
the execution and communication requirements of sub-
tasks. However, for a large class of problems, such a
structure is not known in advance. For these problems,
the workload is dynamically created as the execution of
the program proceeds. In this environment the system
must deal with dynamic partitioning of computational
tasks and handle the load that can fluctuate with time
across processors. Dynamically evolving computational
problems can be found in many applications such as
event-driven simulations, particle dynamics, searching of
game trees, sorting, branch and bound algorithms, etc.,
[9, 15]. These problems require dynamic load balancing
since tasks once assigned to processors can spawn more
subtasks at the run time as the computation proceeds
[17].

Considerable research has been done in both static (5]
and dynamic load balancing paradigms [1, 3, 10, 11].
Static load balancing requires decomposing the applica-
tion problem into multiple subtasks such that the com-
munication cost among these subtasks is the minimum
and the size of each subtask is approximately equal. This
is an optimization problem which can be solved with vari-
ous methods such as scattered decomposition, recursive
bisection, simulated annealing [5], neural networks, ge-
netic algorithms, and heuristics. On the other end of the
spectrum, dynamic load balancing requires algorithms
that are fast and are adaptive to the changes in the prob-
lem structure. Numerous dynamic load balancing algo-
rithms have been proposed in the context of distributed
systems [4, 17] that treat tasks as independent processing
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modules. However, for parallel systems, new solutions
need to be found for supporting dynamic creation of
workload and interprocessor communication [12]. A clas-
sification of load balancing techniques into four catego-
ries has been proposed in [18]. These categories are by
inspection, static, quasidynamic, and dynamic. For the
by inspection strategy, the problem structure is taken
into account before writing the code. If the given pro-
gram is partitioned before actually starting its execution,
then load balancing is considered static. The difference
between the quasidynamic and dynamic case is that in
the former case load balancing is invoked infrequently
during different computation phases, while in the latter
case the load balancing algorithm is used frequently or
continuously.

1t is known that even simple dynamic load balancing
algorithms provide better performance than not doing
any load balancing [4, 19]. For interconnection-network-
based multicomputer systems such as hypercube, distrib-
uted load balancing scheme based on task migration
among nearest neighbors has gained considerable atten-
tion. In a number of studies {7, 11, 13], several variants of
this strategy have been proposed and their effectiveness
has been proven both by simulation [2] and experimenta-
tion [13]. Kalé [7] has compared one version of this strat-
egy, known as Contracting Within Neighborhood
(CWN), to the Gradient Model [8] and has shown that
CWN spreads the load more quickly and performs better.
In another study [13], the concept of load averag-
ing among neighbors is introduced. The advantage of
load averaging is that each node attempts to keep its
own load equal to the average load among its nearest
neighbors.

Unlike static tasks, scheduling of dynamically created
tasks cannot be achieved by using a centralized control,
especially if the number of processors are of the order of
hundreds or thousands. A distributed scheduling algo-
rithm performs better in such an environment. However,
the performance of distributed scheduling algorithms
cannot be improved beyond a certain level without
increasing the complexity of collection and process-
ing of load information that is required in order to make
a better scheduling decision. An increase in this over-
head can have a negative effect on the performance,
since the scheduling of tasks must be done in real
time. In a previous study [1], we have shown that both
centralized and distributed algorithms are not always effi-
cient, especially for a large system. In this paper we pro-
pose a dual-level hierarchical scheduling strategy for
assigning parallel computation to large-scale hypercube
systems.

In Section 2 of this paper, we describe the type of
workload supported by the proposed strategy. Section 3
discusses the hypercube topology along with the charac-
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teristics that are used to partition the systems for provid-
ing a hierarchical control. The details of scheduling and
simulation methodologies are presented in Sections 4 and
5, respectively. Section 6 contains performance results,
and Section 7 concludes the paper.

2. WORKLOAD FOR PARALLEL COMPUTATIONS

Parallel computations can be classified as synchro-
nous, loosely synchronous, multilevel, multiphase, and
pipelined. The class of parallel computation considered
in this paper is viewed as a collection of computational
modules that can run asynchronously. Each computa-
tional module, referred to as a task, is an atomic unit of
computation that, once started, executes to completion
without any preemption. A task may, however, commu-
nicate with another task at the beginning and/or at the
end of their execution. The relationship among tasks is
represented by a directed dependency graph where nodes
represent tasks and edges represent the dependency
constraints. A task a is said to be a parent of task b if
there is a directed edge from a to b, and b is called the
child of a. A task has no more than one parent, and
therefore, each task graph has only one initial task,
known as root. Each parent can have zero or more chil-
dren. A task cannot start its execution until its parent has
finished its execution. The task graph can consist of
many levels. The level of a task is the length of the long-
est path (number of edges) from the root. We assume that
there is no interaction among siblings, and the only com-
munication is between parent and its immediate children.
This kind of task graph is also known as DAG (Directed
Acyclic Graph). A DAG represents the Task Precedence
Graph of a parallel computations and contains no cycles,
as opposed to a Task Interacting Graph that may contain
cycles because of undirected edges.

Although a static DAG has been extensively used in
the computing literature to represent parallel algorithms,
our workload is different in that the problem graph is
completely dynamic, that is, the structure of the graph is
not known a priori. Task graphs based on this assumption
represent a wide range of recursive algorithms. In such
algorithms, creation and synchronization of tasks pro-
ceeds recursively and conditionally. After completion, a
task can spawn a number of tasks that can be indepen-
dently scheduled onto the processors. The parent task
may pass some information and data to the newly created
tasks. Therefore, interprocessor communication and syn-
chronization needs to be supported. Furthermore, the
results from the child tasks need to be propagated back to
the parent tasks.

This type of workload needs a special consideration
and simple methods of task scheduling algorithms cannot
be applied in this case. The performance of these algo-
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rithms have been thoroughly evaluated in the literature
[9, 17]. However, most of these studies are based on
simplified assumptions that ignore several aspects such
as communication overhead and contention for re-
sources.

We assume that the main task submitted to the system
initially consists of a root task only. After its completion,
it may generate a number of messages where each mes-
sage results in creation of another task. The messages are
assumed to carry the data from the parent to a child and
other necessary information about the location of the par-
ent, level number in the graph etc. The communication of
these messages takes a certain amount of time. The task
graph is characterized by two parameters, namely, the
number of levels and the maximum number of children
for each node, denoted as L. and Sn... respectively.
For the workload, the number of children is generated
randomly from a uniform distribution between zero and
the maximum number of children allowed. After a task is
executed, two possible actions can occur. First, if the
task does not spawn more children, it sends the results
back to its parent. Second, if it spawns more children, it
gets suspended and waits for the results from its children.
These assumptions are realistic and justifiable since the
workload under these assumptions captures various
types of algorithms mentioned above. Figure 1 illustrates
some graph structures that can result by choosing differ-
ent combinations of L, and Spa,. The solid and dotted
arrows show the messages for transferring data and
results, respectively.

The workload considered here is similar to the chare
kernal, a run-time system that supports the same type of
computations mentioned above [14]. A number of prob-
lems such as N-Queens, Matrix Multiplication, Fi-
bonacci, Iterative-Deepening A* Search, Prime Sieve,
Gaussian Elimination and Romberg Integration, have
been tested with the aid of chare kernel scheduler.
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(Lmax = 3, Smax = 2)

Some of the possible graph structures representing parallel computations.

3. HYPERCUBE MULTICOMPUTERS

In this paper we evaluate the proposed scheduling
strategy for message-passing MIMD multicomputers
using binary n-cube network (hypercube). A number of
hypercube network based MIMD and SIMD machines
are commercially available such as the nCUBE, iPSC-2,
iPSC-860, and the Connection Machine CM-2.

The hypercube network topology, which we denote as
Q,, consists of 27 processors, each one represented as a
binary codeword of length n. Two processors with code-
words x and y are connected if and only if the Hamming
distance, H,,, between them is 1. It is known that for
such a network the physical distance between any two
processors x and y, denoted as L,, is equal to H,,. The
diameter, k, of such a network which is the maximum of
all the shortest distances in Q, is equal n. Q, is a distance-
regular graph, that is the number of processors at dis-
tance / from any processor is independent of the proces-
sor, and is given by the ith valency v; = (}) fori =0, 1, 2,

.., n.

For the proposed hierarchical scheduling strategy, we
partition a hypercube system into independent regions
(spheres), centered at some set (C) of processors. These
processors act as medians for maintaining the load infor-
mation of their respective spheres. The selection of set C
and the size of each sphere are determined by the graphi-
cal covering radius r in Q,, which is defined for given a
set C as r = Max,ey(Miniec(Ly)), where U represents the
set of all the processors in the hypercube. This radius
affects the amount of communication overhead incurred
during task scheduling and the number of processors
shared by competing tasks. For an arbitrary set C, finding
r in an arbitrary graph is an NP-hard problem [1].

There are a number of considerations involved in
choosing the set C. The first one is the size of each
sphere. Let the size of a sphere assigned to a processor
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FIG. 2. A Hadamard matrix and its complementary matrix.

x € C be denoted by |Si(x)|, where i is the radius of this
sphere. We can notice the total size of the sphere is given
as |Si(x)| = Zj_p v;. For partitioning of the hypercube, we
need a &-uniform set C (for some & to be determined)
which is the maximal set of processors in Q,, such that
the graphical distance among the medians processors is
at least & and |S/(x)| is constant ¥x € C, where i is the
covering radius of C. The size, |C|, depends on the selec-
tion of 8. Intuitively, larger & yields smaller |C|, but it
results in spheres with larger size. It can also be observed
that reducing |C| increases the sphere size and vice versa.
Since a median processor needs to maintain the load state
information of all the processors within the sphere (dis-
cussed in the next section), the diameter of the sphere
should be as small as possible. Another consideration is
that the whole network should be uniformly partitioned
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—
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FIG. 3.
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into spheres which should be symmetric and equal in size
thus leading to a symmetric algorithm for load balancing.

For Q,, we propose an efficient solution for finding the
set C using a combinatorial structure called Hadamard
matrix [6]. For this purpose the set C is selected from the
code generated by the rows of a Hadamard matrix M
(which is a square matrix of order n with entries = 1; see
[1]) and its complement M. Figure 2 shows the Hada-
mard matrix of order 8 and its complement. Each row of
set C, also called Hadamard code, represents the binary
address of a median node. When »n is a multiple of 4, |C| =
2n for Q,. For all other values of », a Hadamard matrix
can be modified to generate the set C [1].

For @ network, the spheres for the processors having
binary addresses 00000000 and 11111111 are shown in
Fig. 3. The covering radius r in this case is equal to 2 and
the valencies vy, v, and v, V x, have values 1, 8 and 28,
respectively, corresponding to a total volume of the
sphere |S2(x)| equal to 37. The rest of the 14 (=2n — 2)
medians with codewords corresponding to the rows of set
C are located midway between processor number 0 and
255, that is at a distance equal to the radius. A similar
configuration can be visualized for each of the remaining
14 medians, such that from each median there is one
median at distance 8, and 14 medians at distance 4.

There are a number of reasons for choosing Hadamard
code for the set C. The noted among them is the fact that
the set C provides the maximal k/2 (radius)-uniform set
for 0, [1]. A Hadamard matrix can be generated by vari-
ous ways (see, e.g., [6]).

11111111

The structure of Qs network.
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FIG. 4. The dual-level hierarchical scheduling scheme.

4. THE PROPOSED HIERARCHICAL
SCHEDULING STRATEGY

Based on the aforementioned partitioning of hyper-
cubes, we now present a hierarchical approach for sched-
uling and load balancing of dynamic task graphs in these
systems. The motivation for this approach is that many
contemporary parallel computers are usually equipped
with a front-end host machine. The users interact with
the parallel machine through the host which can be used
to assign tasks to a set of processors using some
‘*pseudoglobal’” knowledge. Within the parallel system,
further load balancing can be achieved by using some
“local”” knowledge. Figure 4 illustrates a conceptual
model for this dual-level scheduling approach, the details
of which are given below.

4.1. First Level Scheduling

The first level scheduling is handied by the host com-
puter that acts as a centralized scheduler. That is, when a
user submits a new task to the host, the host assigns the
root task to one of the median processors. The schedul-
ing decision at this level is based on the load information,
which is a linked list containing C elements. We will call
this linked list as level . load list. The elements of this
list are the addresses (codewords) of medians nodes. The
position of the address of a median node in the list is
maintained according to the number of root tasks cur-
rently present in the sphere of that median. The first ele-
ment of the linked list contains the median with the mini-
mum number of root tasks assigned to it. This list is
updated whenever either the host assigns a root task to a
median node or a root task is completed. Since the host
has no information about the complete structure of a task
and it only interacts with the parallel system through the
median nodes, this load metrics does not indicate the

precise load status of the spheres. Rather, it provides an
estimation of the load status of spheres in terms of root
tasks only. This we refer to as ‘‘pseudoglobal” knowl-
edge. At this level, it is not possible to maintain the load
information in terms of the number of subtasks present at
each individual processors (nodes) within the sphere,
since that information changes rapidly and also it can
result in a large amount of communication traffic.

For the proposed scheme, it can be noticed that the
number of medians is only of the order of O(log n).
Therefore, the complexity for maintaining the level_1 list
is far less than maintaining the list of all the nodes, as is
required in a centralized scheduling scheme. It can also
be noticed that there is no other communication between
the host and the median processors since the host up-
dates its list whenever it submits a new task to a median
node or when a task gets completed and the results are
returned back to the host.

4.2. Second Level Scheduling

At the second level, task scheduling and load balancing
is carried out by the individual processors in consultation
with the median nodes of their respective spheres. For
this purpose, another linked list, called level 2 load load
list, is maintained by every median node. This list con-
tains addresses (codewords) of all the processors in the
sphere controlled by that median node. The position of a
processor in the list is determined according to the num-
ber of subtasks currently assigned to that processor.
When a root task is submitted to a median node by the
host, that node consults the level 2 load list and assigns
this task to the most lightly loaded processor within its
sphere. Execution of the root task may spawn new sub-
tasks. The spawning processor then consults the median
node to get the addresses of the most lightly loaded pro-
cessor(s) within the sphere for scheduling the newly



322

spawned task(s). Again, the median uses the level 2 list
to satisfy this request. The messages for the invocation of
subtasks are sent to the selected processors by the re-
questing processor, where the subtasks are subsequently
executed. A subtask may in turn spawn more new sub-
tasks for which the same procedure is repeated. Upon
completion of a subtask, a processor sends a message to
its median node to update the level_2 load list. A task
that spawns child-tasks gets suspended and waits for the
results from its child-tasks. Accordingly, if a subtask has
a parent, it sends back results to the processor where the
suspended parent is waiting. The suspended parent is
invoked after receiving the results. It then sends back its
own results to its parent. If the parent task is the root
task, it finishes its execution and a message from the
median node is sent to the host which updates the level_1
load list. Tasks arriving at any processor are executed
using the First Come First Serve (FCFS) discipline.

4.3. Advantages of the Proposed Scheme

The proposed dual-level hierarchical scheduling strat-
egy have many advantages. Some of these advantages
are described below.

4.3.1. Dual Level Load Balancing. As mentioned
above, for a massively parallel system, centralized or
decentralized scheduling is not practical. A natural
choice is a hierarchical strategy. One such strategy
known as wave scheduling has been proposed in Ref. [16]
that uses a multiple level hierarchy consisting of proces-
sors labelled as workers, managers, supermanagers, and
so forth. The hierarchy is assumed to be based on a vir-
tual machine which does not reflect the actual physical
structure of the underlying network. Also, the dynamic
creation of task has not been considered in that study. In
addition, no definite methodology is given to describe the
workload and performance of that approach which makes
its merits. On the other hand, the strategy proposed in
this paper assumes a realistic workload.

4.3.2. Load Spreading. For efficiency and good per-
formance, it is required that the computations should be
spread out in the network as far as possible in order to
reduce resource contention. The proposed strategy
achieves this objective by assigning initial computations
to the medians of different spheres that are maximally
spread set of processors in the hypercube topology. In
that sense the proposed strategy spreads the creation of
dynamic workload as much as possible.

4.3.3. Increased Locality for Interprocessor Communi-
cation. Since the task model requires efficient com-
munication among parent and children, locality is an im-
portant consideration. In order to reduce the
communication overhead, tasks must be assigned to pro-
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cessors that are closer to each other. In distributed strat-
egies, the common practice is to allow a task to migrate
from processor to processor until it finds a suitable pro-
cessor. During this migration or drifting phase, a task
may travel a number of hops with respect to the task to
which it needs to communicate. The proposed strategy
attempts to reduce this migration overhead by confirming
the subtasks of a task graph within the same sphere.

4.34. No Redundant Migrations. Generally, in dis-
tributed scheduling strategies, allowing a task to migrate
up to some specific number of hops distance may enable
the task to find an idle or lightly loaded processor. How-
ever, multiple migrations proportionally increase the du-
ration of drifting phase which can result in a substantial
penalty. An additional disadvantage of multiple migra-
tions is the problem of task thrashing {1]. The proposed
strategy eliminates these problems by allowing transfer-
ring of a task only once from the processor where it is
created to the most lightly loaded processor within its
sphere.

4.3.5. Efficient Parallel Scheduling. Efficient load
balancing can be achieved if every new task is assigned to
the most lightly loaded processor of the system. A cen-
tralized control can be used for such purpose if the size of
the system is quite small. The hierarchical scheduling
which is intended for large-scale systems achieves this
goal by dividing the larger system into multiple smaller
regions and then by assigning a centralized control for
each region.

Another important aspect of the scheduling is that
when a number of new subtasks are created at a proces-
sor, it requests a list of processors to schedule the new
tasks, from its median node. The median node provides
this information using the sorted level_2 load list. This
whole interaction can be handled via a single request.

5. SIMULATION DETAILS

A discrete-event simulator has been developed to eval-
uate the performance of the proposed strategy for a hy-
percube multicomputer system. The processors in this
system are assumed to operate in an asynchronous envi-
ronment. The network is assumed to support message
passing using point-to-point communication among the
processors. The simulator simulates the partitioned hy-
percube topology based on the Hadamard Matrix.

For the workload, the root tasks are first submitted to
the host which then assigns it to the median processors
through first level scheduling as described in the previous
section. As the computation proceeds, the root tasks are
divided into subtasks. For the purpose of simulation,
Lnax and Sqax Of the task graph are taken as input parame-
ters. The number of children for each node of the task
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Levell_Schedule(main_task)

begin
Get_levell_load_info()
best_median = levell_load_list[0]
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Level2_Schedule(main_task -> root, best_median)
Update_levell_load_list(best_median, add_task)

end
Level2_Schedule(sub_task, my_median)
begin

Get_level2_load_info(my_median)

best_processor = level2_load_list{my_median][0}

Send_task(best_processor, sub_task)

Update_level2_load_list(my_median, best_processor, add_task)

end
Complete_Sub_Task(sub_task)

begin

Update_level2_load_list{my_median, this_processor, delete_task)
if (sub_task -> unscheduled_children > Q) then
fori =1 to sub_task -> unscheduled_children

begin

Level2_Schedule(sub_task -> child[i], my_median)

end
Suspend_Task(sub_task)
else if (sub_task == root) then
if (all_results_received) then
Finish_task(main_task)

Update_levell_load_list(my_median, delete_task)

else

Send_Results(this_processor, sub_task -> parent -> processor, sub_task, sub_task -> parent)

end

FIG. 5.

graph are generated using a uniform probability distribu-
tion between 0 and S..... We assume that the execution
time of a complete task graph is a random variable with
an exponential distribution having an average of 1 time-
unit. This time is equally divided among all the subtasks
of the whole task graph. Figure 5 provides a pseudo code
showing the possible events taking place during both lev-
els of scheduling and when a subtask completes its exe-
cution. The task communication time is also assumed to
be an exponentially distributed random variable. The
communication time for sending results from child tasks
to their parent tasks, is assumed to be negligible, since
only results are passed back to the parents. For stability
reason, we assume that the utilization ratio for every
processor remains below 1; otherwise, the queue length
of each processor approaches infinity, making it an unsta-
ble system. For this purpose, the task generation rate is
accordingly adjusted.

For the purpose of comparing the proposed scheme
with distributed scheduling, we use a well known neigh-
borhood averaging algorithm {7, 13]. In this algorithm,
each processor makes autonomous scheduling decisions
by collecting the load status information from its immedi-
ate neighbors. A task is either scheduled in a local execu-
tion queue or it is migrated to one of the neighbors over a

Pseudo code describing the events in the first and second-level scheduling and subtask completion procedures.

link (communication channel). In this strategy, the initial
tasks are submitted to all the processors with an equal
average arrival rate.

The performance measure selected for the proposed
strategy is the average response time of a whole task
(task graph). This response time is the residence time of
the main task (task graph) in the system and it consists of
the processing times of all the subtasks belonging to the
task graph, some of which may run in parallel, and the
interprocessor communication times to transfer tasks.

A number of parameters can be selected as input for
the simulator. These include the utilization ratio of a pro-
cessor, the average communication and computation
times, the total number of root tasks to be generated, the
maximum number of hops a task can traverse (for the
neighborhood averaging distributed scheduling algo-
rithm), and the task graph parameters, L., and Spax. A
limit of 10 on the maximum number of hops a task can
traverse is selected for the distributed scheduling strat-
egy. The rest of the parameters are varied for which the
simulation results are presented in the next section. It is
important to mention that the performance results ob-
tained with a discrete-event simulation are valid only if
the simulation is run for a time which is long enough to
capture the average behavior of the system. As opposed
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to some of the previous studies where the results repre-
sent the performance of a few sample task graphs, we
have generated 100,000 task graphs and took the average
of their response times for calculating the overall re-
sponse time. Furthermore, as in every valid discrete
event simulation, multiple runs of the same simulation
have been conducted by using different sets of seeds for
random number generation. The final results are the aver-
ages of those multiple runs with a 95% confidence inter-

val.
6. PERFORMANCE RESULTS

In this section, we present the performance of the pro-
posed strategy obtained through the simulation of a hy-
percube, Og, having 256 processors and compare it with
the above mentioned distributed scheduling. Qg is parti-
tioned into 16 identical spheres using 16 median proces-
sors, as described in Section 3. The impact of various
parameters on the performance has been studied that in-
clude the loading conditions of processors, the degree of
parallelism and depth of computation (by changing Sy,
and L., respectively), and the cost of communication
by varying value of the average task communication rate.
We describe these results below.

6.1. Impact of Amount of Load

The load of a system is defined by the ratio of the
average task generation rate to the average task process-
ing rate at a processor. We analyze the impact of load,
called utilization ratio, by controlling the task generation
rate in the simulation. Since, the dynamic creation of
subtasks also produces additional load, we have selected
four different types of task graphs, representing binary,
tertiary, and quaternary trees, and linear chains by
choosing various values of L,,,, and S, . Figures 6, 7, 8,
and 9, respectively, show the average response time of
these task graphs for processor utilization ratio that var-
ies from 0.4 t0 0.9. The task communication rate for these
figures has been selected to be 20 tasks/time-unit. We can
note from Fig. 6, that for binary tree computations, a
substantial improvement in the average response time is
obtained by using the hierarchical scheduling strategy as
compared to the distributed scheduling strategy. This fig-
ure also provides two other important pieces of informa-
tion. First, the curve for the response time obtained for
the hierarchical strategy is rather smooth for utilization
ratios of 0.4 to 0.7. Second, the performance of both the
strategies increases with an increase in load. This behav-
ior is due to the fact that the median of a sphere allows a
newly created task to be scheduled at the processor that
has the least load within its sphere. This makes a task to
go through minimum queuing delay. Additionally, the
communication overhead for scheduling a task is very
small due to a single migration. For utilization ratio up to
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0.7, efficiency of hierarchical scheduling and load balanc-
ing does not permit building of large queues at proces-
sors. As a result, the average queueing delay of a subtask
is reduced. At utilization ratios higher than 0.7, building
of queues is inevitable since there are abundant tasks in
the system. However, even at very high utilization ratios
such as 0.9, the performance of the proposed strategy is
substantially better than that of the distributed strategy.

Figure 7 shows results for tertiary trees for which both
Lmax and S,ax are equal to 3. This task graph model gener-
ates more task as compared to the binary tree task graph.
Although the computational load submitted to the system
depends on the external task arrival rate, the presence of
extra dynamically created tasks requires more scheduling
decisions. Again, hierarchical scheduling exhibits a bet-
ter performance. The response time results for quater-
nary trees, having L., = 3 and S,.. = 4, at various
loading conditions are shown in Fig. 8. This task graph
model generates a very large number of subtasks (this
number can be as high as 85 subtasks for a single task
graph). The increased response time for the distributed
scheduling, as shown in Fig. 8, is due to the fact that a
larger number of subtasks in the task graph increases the
synchronization overhead of the graph. This overhead is
less in hierarchical scheduling because the load informa-
tion maintained by the median node allows each dynami-
cally created task to get executed at the most lightly
loaded processor of the sphere. This faster execution of
individual subtasks in turn reduce the synchronization
penalty for the parent task. On the other hand, in distrib-
uted scheduling, due to load balancing among neighbor-
ing processors, some subtasks may get executed quickly
but some may migrate deep into the network and may
traverse a number of hops. Some of them may even reach
their maximum hop limit in which case they are forcibly
executed without further migration. The delay in the exe-
cution of these subtasks and the communication over-
head increase the waiting time of the suspended parent
tasks. As a result, the response time of the whole task
graph increases and thus results in the degradation of the
performance of distributed scheduling. This effect be-
comes more dominant with an increase in the external
arrivals. Comparing Fig. 7 with Fig. 6, we note that the
response time curve for distributed scheduling strategy
has shifted a little bit upward for low utilization ratio
while the curve for the hierarchical strategy has shifted
downward. We also observe that the response time curve
of distributed scheduling has further shift upwards in Fig.
8, indicating an increase in the response times. The dif-
ference in the performance of the two strategies is also
large at low loading condition for this graph model as
compared to that of the previous graph model. This indi-
cates that hierarchical scheduling achieves a better load
balancing with reduced task granularity and larger num-
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FIG. 6. Results for the binary tree task graph (L,, = 3, Sp. = 2).
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FIGS. 6-9. The average response time yielded by the hierarchical and the distributed scheduling strategies at varying processor utilization, for

various task graphs.

ber of sub-tasks. This observation is explained in more
detail in the next section.

Figure 9 shows the results for task graphs with L., = 7
and S, = 1. The task graph in this case consists of a
series of computational modules, forming a linear struc-
ture. Note that in this case, a task graph with the number
of level less than 7 is also possible since the number of

sub-tasks at a level can also be 0. In that case, the task
graph does not expand. For such tasks, the computation
is more sequential than parallel. For this type of task
model, the distributed scheduling strategy performs mar-
ginally better than the hierarchical strategy at low utiliza-
tion ratios. This is because at low loading, if a processor
does not have enough tasks waiting in the queue, it tends
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to keep the newly created single task locally. In the dis-
tributed scheduling, this behavior eliminates the com-
munication overhead. On the other hand, in the hierar-
chical strategy, the root task may have to make one
migration from the median processor to some other pro-
cessor within the sphere. However, this better perfor-
mance of the distributed scheduling strategy is sustained
only for a small range of load. At high load, more proces-
sors attempt to transfer their load to other processors
and, therefore, fewer newly created tasks are kept lo-
cally, which results in a degradation of performance. The
hierarchical strategy transfers tasks to better destinations
as compared to the distributed strategy. Consequently,
for utilization ratios higher than 0.5, the response time for
the proposed strategy improves.

6.2. Effect of Parallelism and Computational Depth

In this section, we investigate the effect of parallelism
and depth of computation in more detail. For this pur-
pose, three sets of experiments for the task graph have
been selected for obtaining performance results.

For the first experiment, we study the effect of parallel-
ism by setting L.« equal to 1 and varying S;,.. from 2 to
12. This type of task graphs represent parailel computa-
tions where a single problem is decomposed into multiple
independent tasks. No further tasks are created and the
whole problem completes when the last task sends its
results back to the root task. The performance results for
this case are presented in Fig. 10, which shows the re-
sponse times for both the scheduling strategies at two
utilization ratios, 0.5 and 0.8. The communication rate
has been again fixed as 20 tasks per time-unit. At both
low and high loading conditions, the hierarchical strategy
is shown to outperform the distributed strategy. The dif-
ference in performance increases with an increase in
Smax. As expected, the difference in the performance of
both strategies is higher when utilization ratio is 0.8. It
can be noted that the response time first decreases with
an increase in S, and then it starts increasing. This
behavior indicates that the optimal performance is
achieved at a certain degree of parallelism (S,,) for both
the strategies. The reason is that for smaller values of
Smax » there is not enough parallelism in the task graph to
yield a good response time. On the other hand, for a large
value of S.., the penalty for synchronizing a large num-
ber of subtasks at any level can be severe. Hence, there is
a range of Snax at which the response time is the mini-
mum, as is clear from Fig. 10. It is interesting to note that
for the same set of parameters, this range is different for
both the strategies. For distributed scheduling, this range
consists of some smaller values of S, because of higher
synchronization overhead, as explained above, and due
to the excessive subtask migrations. This range, how-
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ever, is also dependent on the utilization ratio. The task
response time for the values of S, greater than 12 have
not been determined due to the high simulation cost, but
we conjecture that the response time will increase for
those values.

For the second experiment, we have used task graph
models for which Sq.« was kept fixed at value 1 and while
L.y was varied from 1 to 9. The resuits for this task
graph are presented in Fig. 11, which shows a slight in-
crease in the response time for both the strategies as L,
is increased, at high load. There is no significant change
in response time at low loading conditions. Also at low
load, the performance of distributed scheduling strategy
is slightly better than that of hierarchical strategy. The
reason for this behavior is already explained in the pre-
vious section,

In another experiment, we have examined how binary
trees of various heights perform under both strategies, by
keeping Sm. fixed as 2 and varying L., from | to 4. The
simulation results for this experiment are illustrated in
Fig. 12. We note that at both high and low loading condi-
tions, the response time increases as the depth of compu-
tation, L.y, is increased. This is due to the fact that with
an increase in the number of levels, the number of sub-
tasks in a tree increase substantially. This can lead to
scattering of subtasks to different processors and syn-
chronization can cause large delays in completing the
execution of entire task graph. However, the perfor-
mance of the hierarchical strategy remains superior to the
distributed strategy.

6.3. Effect of Communication Cost

Finally, to evaluate the impact of communication on
the performance of both scheduling strategies, we
present simulation results that compare the two strate-
gies for different task communication rates. These results
are presented in Figs. 13, 14, 15, and 16 for four different
utilization ratios: 0.5, 0.6, 0.7, and 0.8, respectively. The
task graph selected for these results has L, = 3 and
Smax = 2. These results serve two purposes. First, the
variations in response times for different communication
rates can be examined, and second, the combined effect
of load and communication cost can be analyzed. As ex-
pected, the task response time is directly affected by the
communication cost incurred for sending a task genera-
tion message. For low and medium loading conditions,
corresponding to utilization ratios of 0.5 and 0.6, respec-
tively, the response time improves rapidly when the task
transfer rate varies from 4 to 12 tasks per time-unit. Be-
yond this range, it starts saturating at a fixed value. On
the other hand, at high loads such as utilization ratios of
0.7 and 0.8, the response time decreases more sharply
and saturates at higher values of communication rate.
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FIG. 12. The comparison of average response time for both strate-
gies for binary tree of various depths, Sq. = 2.

At a higher communication rate, the network latency is
negligible and only the queuing delays affect the quality
of load balancing algorithms for both the strategies. From
these figures, we note that at higher communication
rates, the difference between the performance of the two
schemes increases with an increase in the processor utili-
zation ratio. This suggests that the distributed load bal-

ancing algorithm is outperformed by the hierarchical
strategy. This is due to the fact that load balancing within
a sphere results in a much better utilization of resources
since the scope of load information at the sphere level
is greater as compared to the distributed scheme
where such a scope is limited only to immediate
neighbors.
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FIG. 13. Results for processor utilization = 0.5.
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FIG. 15. Results for processor utilization = 0.7.
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FIGS. 13-16. The impact of communication rate on performance.

7. CONCLUSIONS

In this paper, we have proposed a dual-level hierarchi-
cal scheduling scheme for dynamically evolving compu-
tations on the hypercube system using its partitioning
capability into identical spheres. The motivation for this
approach is that many contemporary parallel computers

are usually equipped with a front-end host machine
which controls the multicomputer system and can be
used to assign initial tasks to the median processors of
the partitioned system using a pseudoglobal knowledge.
Within each partitioned region, further load balancing is
achieved by using the load information maintained by the
median processor for that region. The management of
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load information at both levels is handled using linked
lists that are easy to manipulate. An extensive simulation
study has revealed that the proposed hierarchical sched-
uling strategy yields substantial improvement over a well
known distributed scheduling algorithm. In particular, its
performs very well at high loading conditions and for task
graphs having a high degree of parallelism.
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