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Optimizing Download Time of Embedded
Multimedia Objects for Web Browsing

Thanasis Loukopoulos and Ishfag Ahmad, Senior Member, IEEE

Abstract—Notoriously high delays in accessing Web pages loaded with massive multimedia objects are highly undesirable. Inspired
by the requirements of news agencies and other information providers to include multimedia content in their pages, this paper
proposes a new solution to the problem of minimizing the Web response time. We consider an environment that consists of a central
multimedia repository and various sites physically dispersed. Our approach is based on simultaneous downloading of some of the
embedded multimedia objects from the repository, and the rest from the regional servers. We propose a cost model to formalize the
relative benefits of the proposed scheme, and design an algorithm that replicates multimedia objects so as to take advantage of
concurrency in data transferring. An extensive simulation study evaluates the performance of the proposed replication policy under
storage and processing capacity constraints, as well as with various network transfer rates. Comparisons are carried out with

alternative schemes.

Index Terms—Parallel downloads, replica placement, multimedia repository, Web, Internet.

1 INTRODUCTION

HE World Wide Web is the de facto source of information

for common users and is responsible for the majority of
Internet traffic. Web pages usually consist of a text part and
various embedded objects (e.g., images, applets, audio files,
and video clips.). Typically, all components of a page are
stored and downloaded by the same server. With a proper
distribution scheme, a request to a page and the subsequent
requests for the embedded objects can be redirected appro-
priately toward multiple servers that can concurrently
transmit the data for the whole page. The current replica-
tion/redirection schemes aim at distributing the requests to
identical mirror servers so as to balance their loads. Thus, any
concurrency exhibited in transmitting a page is an ad hoc
result of the load balancing process.

In this paper (parts of which appeared in [15]), we
exploit the ability to explicitly distribute the HTTP requests
for embedded objects in order to decrease the retrieval time.
The distribution is made offline by rewriting the HTML part
of a page, altering the URLs of the embedded objects so that
they point to multiple servers. Such a technique avoids
some of the overheads related to redirection since the client
addresses the requests directly to the additional servers.
The method is applicable to objects that require a complete
download before being presented at the client’s browser
and not for streaming media. Throughout the paper, we
refer to such objects with the term multimedia objects
(MOs), even though, in certain cases (e.g., images), they
involve only one medium.

We target sites containing pages heavily loaded with
MOs, e.g., pages with many images and/or animation files.
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Typically, such sites are of high commercial value, e.g.,
news agencies, magazines, comic archives, and reducing
their download times is critical to their success. Applying
our scheme to these cases requires the following steps:

1. accumulation of servers statistics over a large time
period,

2. offline redirection decisions and HTML rewriting,

3. periodic online statistics accumulation, and

4. decision (depending on the online statistics) whether
to send the client the original HTML file or the
rewritten one.

In other cases, our scheme can be a preprocessing step and
should depend on the online conditions (e.g., whether the
redirection spot is overloaded or not).

The contributions of this paper are as follows: First, we
show that downloading a page in parallel from multiple
servers (using URL rewriting) leads to increased perfor-
mance in certain cases. Based on the observation, we
incorporate the possibility of parallel downloads into a
classic model used for replica placement. The resulting
problem thus becomes: find the optimal placement of MOs
and the optimal redirection decisions that minimize the
overall download time. We tackle a special case of interest
where there exists a central repository storing and indexing
all the MOs. The MOs contained in a page are split into two
sets, one to be downloaded from the original server and one
from the repository. To achieve this, a model quantifying
the expected download time is developed. Both the storage
and processing capacity constraints influence redirection
decisions. We then proceed by presenting an algorithm
called REPD (Replication Enabled Parallel Downloads) to
solve the combined replication/redirection problem. The
algorithm is distributed in nature and is experimentally
shown to outperform various alternatives.

The rest of the paper is organized as follows: Section 2
elaborates the system model used in our study. Section 3
formalizes the problem of minimizing the response time
exhibited by a client as a constraint optimization problem.

Published by the IEEE Computer Society
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Fig. 1. The system model. (a) System organization, (b) preprocessing, and (c) parallel downloads.

Section 4 presents the proposed replication algorithms.
Section 5 describes experimental results. Section 6 presents
the related work reported in the literature. Finally, Section 7
provides some concluding observations.

2 SysTEM MODEL

The environment of interest consists of one central multi-
media repository located at a company’s headquarters and
worldwide dispersed sites/servers hosting pages from the
company’s regional departments. Fig. 1a shows an example
of a news agency where the regional sites provide storylines
of local interest. We will use the term regional server to
denote all the servers of the system other than the central
one that supports the repository. The case of multiple
repositories, as well as organizational schemes to support
parallel downloads from multiple regional servers is out of
the scope of the paper. However, the cost model and the
algorithms proposed in Section 3 and 4, respectively, can be
modified to support such extensions.

Pages hosted by a regional server contain MOs that are
also stored at the repository. Therefore, it is possible to split
the downloads of the embedded MOs between the regional
and the central server. Fig. 1b depicts an example where all
the MOs of a page are initially embedded using URLs
referring to the regional site. In the preprocessing step, it is
decided that some MOs should be served by the repository.
Their URLs change accordingly, and a new copy of the
HTML file is stored. The result of this process is shown at
Fig. 1c where a client requesting the page receives its

contents from both the regional and the central server in
parallel.

Always downloading a page in parallel might not be the
best solution since the workload of the servers could vary in
a dynamic environment such as the Web. In order for our
policy to be applicable in practice, regional servers should
monitor the server dynamics of the repository and decide
whether to satisfy requests for all MOs or use redirection.
Examples of metrics that can be used is server workload
(e.g., CPU utilization or opened connections), average
service times, weighted past service times, etc. Such
schemes were extensively studied in the context of server
selection [11] where the problem is deciding which mirror
server should satisfy an HTTP request. In this paper, we
turn our focus on the implications parallel downloads have
in replica placement decisions [14].

Typical replica placement formulations assume the objects
initially undistributed and target in creating a distribution
scheme (subject to various constraints) that optimizes certain
criteria (e.g., average response time, network traffic). We
consider the generic case where regional servers might not be
able to store all MOs (due to storage capacity limitations)
and/or might not be able to satisfy all requests without
exceeding their processing capacity limitation. The target of
the developed problem formulation is to minimize the
average response time. Furthermore, the model tackles the
case where MOs can be downloaded by following a link. We
call such MOs optional to differentiate them from the
embedded ones that are always presented to the user. Since
optional MOs account for single object transfers, they cannot
benefit from our scheme. However, including optional MOs
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in the replica placement formulation is essential in order to
tackle the case where an MO is embedded in some pages and
optional in others.

3 PROBLEM FORMULATION

In this section, we first discuss the response time para-
meters. We then use the resulting formulas to develop a cost
model and define the problem as a two-objective optimiza-
tion problem.

3.1 Response Time Parameters

We define the response time perceived by a user as the time
difference between sending a request and receiving all the
data required to present the Web page or, in the case of
optional MOs, the data to present the single object. Let
Si ... 8, be the s regional servers of the company and R be
the server of the central repository. We assume that clients
download all page components over a single persistent
HTTP connection [17] and use the following simple formula
to calculate the response time: Initial Overhead + Transfer
Rate - Size of Objects.

A client’s request for a page first results in opening a
TCP connection to the server. Afterward, the actual HTTP
request for the HTML file is sent, the server processes the
request and responds with the file. We model the elapsed
time between the client initiating a TCP connection and the
server having finished the process of the HTTP request with
ds, - RTTs,, where RTTs, stands for the Round Trip Time
between the client and the regional server S; and dg, is a
constant. A typical value for dg, is 2 (3/2 for establishing the
TCP connection and 1/2 for sending the HTTP request). As
the client’s browser starts receiving the HTML file, it
retrieves the URLs of the embedded objects and sends
additional requests for them. We assume that this happens
with the first data packet that arrives to the client (in
practice, Web servers try to send the additional URLs
needed as early as possible). With the use of persistent
HTTP, these additional requests account for no latency
since the client uses the previously opened TCP connection
to route them.

In the general case, part of the MOs will be downloaded
from the regional server and part from the repository. For
the latter, a new TCP connection needs to be established,
accounting for an additional latency of dggs, - RTTgs,
(where dp g, is a constant and RTTp g, stands for the Round
Trip Time between the client requesting the page from S;
and the repository). Thus, by denoting with Ovhd(S;) and
Ovhd(R, S;) the initial overheads between the client issuing
the Web page request and the first data packet being sent
from the regional server and the repository, respectively,
we can write:

Ovhd(S;) = ds, RTTs (1)
O’Uhd(R, Sl) = (dgl + 1/2)RTTSI + dR‘Sl RTTR‘SI. (2)

Notice that the 1/2 factor in (2) stands for the latency of
sending to the client the first packet of the HTML file that
includes the URLs of the embedded MOs. After gaining
some insight about the cause of delays affecting response
time, in the following section, we define a cost model to
formulate the problem of selecting which MOs to download
from the regional servers and which from the repository.

3.2 The Cost Model

Let Wy ... W, denote the company’s pages and M; ... M,
the multimedia objects. Let H;...H, denote the HTML
files, where H; is related to only the W; Web page. In case a
page includes more than one HTML file, we treat the HTML
parts of the page as one composite HTML file. Let f(1¥;) be
the access frequency of W, measured in requests/sec.

Let U be an n x m(0, 1) matrix such that Uy, = 1 iff M is
embedded at ;. A is an s x n(0, 1) matrix such that 4;; = 1
iff W; is hosted at S; and 0 otherwise (page allocation
matrix). We assume that a Web page is allocated to exactly
one server and, if multiple copies of it exist, we treat each
copy as a different page. We define X to be an n x m(0,1)
matrix (download matrix) such that Xy, = 1 iff M should
be downloaded from the regional server (obviously, either
M;, is embedded at W; or is an optional MO). Since each
page is allocated to only one regional server, there is no
need to define separate download matrices for each
regional server. Let B(S;) be the average data transfer rate
at which a request to S; is satisfied and B(R, S;) the rate at
which requests from the clients in the region of S; are
satisfied by the repository. Let C(S;), C(R), denote the S;’s
and R’s processing capacity, measured in HTTP requests/
sec. We also refer to the storage capacity of S; by using
Size(S;). We use the same function to denote the size of H;
and M, all measured in bytes.

We can define the time it takes for Web page retrieval as
the sum of the initial latency and the actual transfer time of
MOs. Let Time(S;, W;) and Time(R,W;) denote the time
required to transfer the contents of W; stored at S; and R,
respectively. We have:

Time(S;, W;) = Ovhd(S;) + B(S;)Size(H;)
+ Xij]kB(S7)S’LZ€(]\/[k) (3)
=1

Time(R,W;) = Ovhd(R, S;)

£ 3 (1 X URB(R,)Size(My)  (4)
k=1

and, hence, the response time a user experiences, denoted
as Time(Wj), is given by:

Time(W;) = max{Time(S;, W;), Time(R,W;)}  (5)

provided that at least one MO is downloaded from the
repository.

Having retrieved page Wj, the user can request optional
MOs. Let N(W;, M;) be the average number of per user
requests for M; once W; was downloaded. We define
Time(W;, M) to be the total response time a user experi-
ences when following the links of W; to optional MOs.
Computing Time(W;, M) is inherently difficult as it
involves characterizing user behavior, e.g., a user can
request all optional MOs at once (by opening multiple
browser windows) or retrieve the MOs sequentially. We
will use the aggregate response time of the latter case as our
metric. For each optional MO download, a new TCP
connection needs to be established, accounting for latency
of either Ovhd(S;) (download from the regional server) or
Ovhd(R, S;) (download from the repository). Summing up
the above remarks, we end up with the following equation:
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PARTITION (W)

Sort_by_Decreasing_Size (MOQarr);
LocalDownload[ Wj]
RemoteDownload[W;] = Ovhd(R, S));

WHILE MOarr  NULL DO
obj = Take Next Object from MOarr;

downloads. */
Xjk = 0;
ELSE
stored locally.*/
Xjk=1;

Delete_from_MOarr(obj);
ENDWHILE

Fig. 2. Pseudocode for MO allocation.

Time(W;, M) Z{N W;, My,)[X1(Ovhd(S;) + B(S;)
Szze(Mk)) (6)
+ (1 — Xj)(Ovhd(R, S;) + B(R, S;)

Size(My))]}.

By taking into account the capacity of the servers as well
as the storage space available, we can formulate the
problem of minimizing the total response time users
experience to be a two objective constrained optimization
problem:

Assign 0,1 values to matrix X so as to minimize:

Zf Zf

)Time(W;) AN Dy = ) Time(W;, M)

(7)

subject to the following constraints:

S AW+ S0 XU+ N3, M) < C(S)
=1 k=1

V(1<i<s) (8)
ST A (L= XU+ NOWL M) < CR) (9)
=1 k=1
ZA”Szze )+ i Size(My)|(3W;|Aij X = 1) < Size(S;)

k=1
V(1 <i<s). (10)

Equation (10) represents the storage capacity constraint
for each regional server, while (8) and (9) represent the

MOarr[] = {M|(Uy = 1)}; /*MOarr stores the embedded objects of */

= Ovhd(S;) + B(S)Size(H));
/*The time it takes for the local downloads. Initially, only the HTML file is downloaded*/

/*The time it takes for the repository downloads. Initially, no objects are to be downloaded*/
/*Add the time to download the object in both the repository and the local downloads*/
RemoteDownload[W]] += B(R, S;)Size(obj);
LocalDownload[W;] += B(S;)Size(obj);
IF (RemoteDownload[W;] < LocalDownload[W;]) THEN
/*Downloading the object from the repository is more beneficial. Restore the time for local
LocalDownload[ W] -= B(S))Size(obj);
/%X is the (0,1) allocation matrix as defined in the cost model (Sec. 3)*/

/*Downloading the object from the regional server is more beneficial. Mark the object to be

RemoteDownload[W)] -= B(R, S;)Size(obj);

Store the M;’s that have at least one non-zero entry in X matrix.
Store all optional objects if local download is faster than the remote one.

processing capacity constraint for the regional servers and
the repository. By assigning oy, ap positive weights to the
target functions D, and D, of (7), respectively, we can
restate the problem as a single target function constrained
optimization one. Hence, we refer to the composite
weighted target function by D. Reducing the relevant
decision problem to the classical file allocation problem,
which is known to be NP-complete [10], is straightforward.
Therefore, the optimization problem cannot be solved to
optimality and requires heuristics.

4 THE REPD ALGORITHM

A centralized approach to solving the replication problem
using mathematical programming would be inefficient for a
widely distributed system. In our scheme, we let the
regional servers decide which MOs should be stored and
serviced locally, given the storage and processing capacity
constraints. These distributed decisions may result in
overloading the repository. In this case, an offloading
negotiation mechanism between the repository and the
regional servers takes place.

4.1 Description

Each regional server decides for each page which of the
MOs to store locally. This is done by first sorting the MOs
according to their size and then testing for each one in
decreasing size order whether local downloading would
result in smaller response time than downloading it from
the repository. If the local download is more beneficial, then
a copy of the object is kept and the expected response time
of the Web page is updated accordingly. A description of
the algorithm is given in Fig. 2.
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RESTORE_STORAGE()
UsedSpace = 0;
YV (M€ CandidateMOs)
UsedSpace += Size(My);
WHILE (UsedSpace > Size(S))) DO
ImpactMin =}

BestMO =-1;
/*L1%/ ¥V (Me CandidateMOs)

’

(Ovhd(S)+B(S;)Size(My))];
ImpactMO += ImpactPage;

BestMO =k;
/*PART II: Reoptimize page downloads*/

/*L3* ¥ (VV; | )(jBe.le()l]jBe.\tM() =1
FLA% Y (Mi| Uy = 1 A Xy = 0)
X =1,

UsedSpace -= Size(Mpesmo);
ENDWHILE

/*Impact if the object is optional*/
ImpactPage += N(W;,M)[(Ovhd(R, S)+B(R, S)Size(My)) -

ImpactPage *= fiW,)/Size(My);

IF (ImpactMO < ImpactMin) THEN

CandidateMOs = {M;| (3 Wj| X =1)}; /*List of MOs marked for local storage*/

/*PART I: Find the most beneficial MO to deallocate™*/

/*Stores the least impact found so far*/

/*Stores the index of the best candidate for deallocation™*/
ImpactMO = 0; /*The total impact of M;*/

/*The impact M,’s deallocation has on W;*/

NewRemoteDownload[W;] = RemoteDownload[ W] + B(R, S))Size(M);

/*¥L2%/ YV (W) Xx=1)
ImpactPage = 0;
NewLocalDownload[W;] = LocalDownload[ W] - B(S;)Size(My);
/*Impact if the object is embedded*/
ImpactPage += X Uy(max{NewRemoteDownload[ W],
NewLocalDownload[W)] } -

max {RemoteDownload[ Wj],LocalDownload[ Wj] })

/*For all pages where Mp.n0 was embedded and marked for local download*/
/*For all embedded MOs that are stored locally but were marked for remote download*/
IF (downloading M; locally improves response time) THEN

Deallocate MBeJ.,Awo; /*Making necessary updates*/

Fig. 3. Pseudocode for restoring the storage constraint.

Let z denote the average number of embedded MOs per
page. Page partition begins by sorting the embedded MOs
which can be done in O(zlogz). The WHILE loop removes
one MO from MOarr in every iteration, thus it accounts for
O(z) complexity. Therefore, assuming w pages hosted on
average at each regional server, the total complexity of the
partitioning phase is O(wzlogz).

Storing all the MOs the algorithm outputs may not be
feasible due to storage or processing capacity constraints.
To deal with this problem, we restore the storage capacity
constraint by using a greedy method in which we evaluate
the negative impact each MO deallocation causes in the
target function D and remove the MO with the least
negative effect. After each deallocation, we check whether
we can further reduce the download time for pages
previously marking the deallocated MO for a local down-
load. This is performed by taking advantage of the fact that
some MOs, although stored in the regional server, are not
marked for local download in these pages since they would
increase the response time. However, with the deallocation
of an MO marked for a local download, it can be beneficiary
to let previously unmarked MOs taking its place. If this is
the case, we alter the object partitioning for these pages and
continue to iterate the whole process until the storage

constraint is no longer violated. The pseudocode of Fig. 3
summarizes the process.

The worst case of this phase comes when each page has
m embedded objects and Size(S;) =0 which forces the
while-loop to iterate until all MOs are deallocated. Part I of
the algorithm runs in O(mw) since it iterates for all MOs
and all pages. The same holds true for Part II of the
algorithm if all the embedded objects are marked for local
downloads. Since Parts I and II are executed in every
iteration of the while-loop and the number of iterations is
m, we conclude that in the worst case, the deallocation
phase runs in O(m*w).

Next, we analyze the uniform case where all MOs are of
equal size, in each page there are, on average, z embedded
MOs and each MO has the same probability of being
embedded in a page. The above means that, on average,
each MO is embedded in [ = wz/m pages. By assuming that
Ovhd(S;), Ovhd(R,S;), and Size(H;) are comparatively
small, we can approximate the ratio of MOs marked for
local downloads using the transfer rate ratios: r = B(S;)/
(B(S;) + B(R, S;)). Since all MOs are of equal size, r also
denotes the probability that, inside a page, an embedded
MO is marked for local download. Therefore, the prob-
ability that an MO is marked for local download in at least
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OFF_LOADING_REPOSITORY( )
Collect_Status_Messages( );
P(R)=} P(S;, B);

WHILE (P(R) > C(R)) DO

Ly = {S|(Sig L1) A (Sig L2)};

BREAK;
P(Ly) =Y. {P(S)|(Sie L)};
P(Ly) =Y, {P(S)|(Sie L)};

V (Sie L)

ELSE
V (Sie L)
NewReq(S)) = P(S);

VY (Sie Lp)

Collect_Answers( );
P(R) =% P(Si,R);
ENDWHILE
V' S;

Ly = {Si|(Space(S)>0) A (P(S)>0)};
Ly = {S|(Space(S)=0) A (P(5)>0)};

IF (L, and L, are empty) THEN
/*CONSTRAINT CAN NOT BE RESTORED*/
IF ((P(R)-C(R)) £ P(L,)) THEN

NewReq(S)) = P(S)(P(R)-C(R))/P(L1);
Send_Message(S;, NewReq(S)));

Send_Message(S;, NewReq(S)));

NewReq(S;) = P(S))(P(R)-C(R)-P(L1))/P(Ly);
Send_Message(S;, NewReq(S)));

Send_Message(Off_Loading_END);

Fig. 4. Pseudocode for the offloading phase.

one page is: 1 — (1 — 7). Thus, the storage capacity needed
to store all necessary MOs is m(l — (1 —r7)l). Let the
available storage space be ¢ m(1 — (1 —r)l) with ¢ € (0,1].
The while-loop clearly performs (1 —c)m(1— (1—r)l)
iterations. Let [ > 1. L1 loop performs m iterations. L2
checks 7l = O(l) pages on average (since r is constant).
Therefore, Part I runs in O(ml). L3 is the same as L2 and
iterates O(l) times. L4 checks all MOs marked for remote
download. The number of such objects inside a page is
z(1 —r) on average. Thus, Part II runs in O(zl) time. The
total running time of the deallocation phase is O(m(1 —
(1 —r) )(ml+ 2l)). We distinguish two cases of interest.
The first is the worse case where all pages embed all MOs
(i.e., z = m). It follows from the definition of [ that | = w and
the running time becomes O(m(1 — (1 — r)w) (mw + mw) =
O(m?w) since (1 — r)w can be considered small. The worst-
case result is identical to the one shown for the generic case,
where MOs are not equal in size and are embedded with
different probabilities. The second case of interest is when
each MO is embedded in k pages (for a constant k). It
follows that =k and that the running time becomes
O(m? 4+ mz) or O(m?).

For the processing capacity constraint restoration, we
follow the same guideline, i.e., we check which (page, local
MO) download pair would have the least decrease in
performance if done from the repository and mark it
accordingly. Again, we continue iterating until the con-
straint is met. If, through this process, an object is marked in
all the pages to be retrieved from the repository, we
deallocate it (further reducing the required storage space).
The pseudocode of the algorithm resembles the one

presented for restoring the storage constraint and is not
included here.

Upon completion of the replication protocol, each S;
sends a status message to the repository. This message
contains its free storage space Space(S;), the local proces-
sing capacity left P(S;) and an estimation for the workload
that the current local assignment will impose to the
repository P(S;, R). Having collected all the status mes-
sages, the repository checks if its estimated workload P(R)
will exceed its processing capacity C(R). If this is the case,
an offloading algorithm allocates the excess workload back
to the regional servers. Servers that have both free storage
and processing capacity available are considered first for
allocating the extra workload, while those who have free
processing power but have no storage space left are
considered afterward. A description of the algorithm as
pseudocode is presented in Fig. 4.

Upon receiving from the repository the extra workload
to be added, every S; assigns (W;, M;;) more requests to be
serviced locally. The criterion is the same as in the
restoration of local processing capacity constraint, i.e., the
(W;, My) local downloads that result in the minimum
increase of response time. As long as S; € L;, all objects
that are either already stored or whose storage would not
result in capacity violation are considered until the new
workload requirement is achieved or the storage capacity
limit is reached. When S; € Ly, we explore the fact that
some stored MOs might not be marked for local downloads
in every page in which they are embedded (an MO is stored
if it is marked for local download in at least one page). If the
required workload level can still not be achieved, we check
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if deallocating stored objects and allocating others can
increase the workload of the regional server to the required
level. This is done by first sorting all MOs in order of their
total access frequency (i.e., the summation of the accesses in
all the pages where they are referred). We afterward scan
the array from left to right until we find an MO currently
stored (this MO will have the least frequency among the
ones stored). We then scan the array from right to left until
we find an MO that is not stored. If the storage constraint is
not violated, we replace the stored MO with the candidate
one and proceed the scanning until either the required
workload level is reached or the two scans cross each other.

Finally, if S; still cannot serve NewReq(S;) additional
requests, it sends a message to the repository with the
number of additional requests it could satisfy and the fact
that it now belongs to L3, i.e., not to be considered in the
protocol. This can result in another round of message
exchanges. The worst case for the number of message
rounds occurs when servers are added to L3 one by one and
is O(s).

4.2 Alternatives

Here, we describe some additional algorithms that support
parallel downloads. These algorithms are intuitive and
serve as a yardstick in order to evaluate the performance of
REPD in Section 5. The first algorithm stores the Most
Frequently (MF) accessed MOs until the storage capacity is
reached. Requests for MOs not hosted locally are satisfied
from the repository, while the rest are served from the
regional server. The regional server processing capacity
constraint is removed by deallocating MOs, starting from
the least frequent one until the required workload is
reached. Note that, at the end of this process, the processing
capacity constraint of the repository if violated cannot be
restored. The reason is that the regional servers already
store the most frequent MOs (up to their capacity) and,
therefore, their workload cannot be further increased. MF
exploits some parallelism, but not in a direct manner, since
requests to the repository can only occur as a result of
storage and processing capacity constraints. In case the
constraints are not restrictive, the MF algorithm will store
and download all MOs from the regional servers.

The second alternative is called MFPD (MF with Parallel
Downloads). As implied by its name, MFPD is an extension
of MF. It too allocates the most frequently accessed MOs at
the regional servers with respect to the storage capacity
constraint. Unlike MF though, MFPD splits the MOs in two
sets: one to be transferred from the repository and one from
the regional server, in a way similar to REPD. Note the
difference between MFPD and REPD. REPD first optimizes
downloads and then stores the MOs (using the deallocation
phase), while MFPD first stores the most promising MOs
and then optimizes the downloads (no deallocation phase is
needed). In order to restore the processing capacity
constraints, MFPD follows the same method with MF (i.e.,
it deallocates the least frequent MOs). As a consequence,
MEFPD is simpler compared to REPD and runs considerably
faster. However, its performance is reduced, especially
when the constraints are restrictive.

The final alternative is a local policy whereby everything
is stored and retrieved from the regional servers (i.e.,, no

TABLE 1
REPD Parameters
RTT, | RTTg | da | dsa | B(A) | BBA)
LAN 110msec [480msec| 2 4 [200Kbps| 150Kbps
Dial-up | 240msec |640msec| 2 2 | 8Kbps | 7Kbps

parallelism occurs). Note that this policy assumes that
regional servers have enough storage and processing
capacity to satisfy all the requests.

5 PERFORMANCE EVALUATION

We performed two sets of experiments: The first was a
practical scenario where we had two servers and one of
them was acting as a repository. The second was a
simulation setup where we evaluated the performance of
REPD under various scenarios concerning the constraints
and variables of the cost model.

5.1 Practical Scenario

We used two servers: one located at a technical institute in
Greece (www.di.teilam.gr, designated from now onas A) and
the other one at the Hong Kong University of Science and
Technology (www.cs.ust.hk, hereafter referred to as B).
Server A acted as a regional server, while B was the
repository. We used two clients as our test cases. The first
was located at an Internet Cafe with a 100 Mbps Ethernet
LAN, while the second was behind a 52 Kbps dial-up. Both
clients were geographically close to server A. The pages used
in the experiment consisted of a 10 KB HTML part and images
of 70 KB and 200 KB size (roughly). Pages were retrieved
using Internet Explorer 6. We compared REPD against the
Local alternative. For this reason, we had to define both the
parameters of (1) and (2) and bandwidth values. The RTTs
were derived using the ping utility. For the rest of the
parameters, we used the following approach: we set d4 = 2
and recorded the average bandwidth when downloading a
page with two 70 KB images from server A. We proceeded by
assuming dp 4 = 2 and defining the bandwidth when down-
loading from B, using the same page. Afterward, we set one
image to be downloaded from A and one from B, and
recorded the completion time. Using the previously derived
variables we updated the value of dp 4. Table 1 summarizes
the derived parameters (rounded).

We proceeded by testing the download time of a page
containing 70 KB images as the number of the embedded
objects increases. Figs. 5a and 5b show the results for the
fast and slow clients, respectively (each case depicts
30 downloads).

For the fast client, we can observe that REPD achieves
better performance in the majority of the test cases. The only
case where REPD fails is when the number of images is five.
This is due to the fact that the initial overhead of connecting
to the repository out weights the benefits from parallelism.
Fig. 5b illustrates that for a slow client, there is virtually no
difference between REPD and the Local alternative. This is
expected since the client’s bandwidth acts as a bottleneck.

Next, we performed our tests using 200KB images. Fig. 6
demonstrates the results for the fast client. The download
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Fig. 5. (a) Download times for the fast client and (b) download times for the slow client.

times for the slow client showed no real difference between
REPD and Local and are therefore not included.

Notice that gains from REPD are now more obvious.
Even in the case of five images, REPD outperforms (by a
narrow margin) the local alternative. Summing up the
results of the first set of experiments, we can conclude that,
provided the client is fast enough, REPD speeds up page
download. In future work, we will evaluate its performance
in the replica placement framework.

5.2 Simulation Results

We performed our simulation runs using a synthetic
workload in the following manner. We generated pages
with popularities following the Zipf distribution and HTML
sizes following a heavy-tail one [3] with the average value
being 30K. This is in accordance with previous work on
characterizing the workload of Web servers (see [1], [5]). In
our workload, roughly 10 percent of pages accounted for
60 percent of the requests. MOs were split into three
categories according to their size (small 5K-50K, medium
50K-400K, large 400K-4M). Embedded MOs were assumed
to be of small/medium size, while optional MOs were set as
medium/large files.

The number of embedded MOs for a page was varied
uniformly between 5 and 30, with 80 percent of MOs of small
size. Ten percent of the pages in our experiments had links to
optional MOs. The number of links was varied uniformly
between 10 and 50 with 50 percent of MOs being of medium
size, the rest of large. Unless otherwise stated, only 10 percent
of users accessing a page with links to optional MOs request
any of them. The number of optional MOs requested by an
interested user was varied uniformly with the average value

180 -
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Fig. 6. Download times for the fast client.

being 20 percent of the optional MOs referenced by the page.
Page frequencies were derived with respect to the regional
server processing capacity constraint and their popularity.
Regional servers were assumed to have a processing power of
150 HTTP requests/sec. Unless otherwise stated, the reposi-
tory was assumed to have enough processing capacity to
satisfy all requests directed to it.

RTTs between clients and regional servers followed a
Gaussian distribution with a mean value of 50 msec and,
between clients and the repository, a Gaussian distribution
with mean value of 200 msec (requests arriving to a regional
server mostly originate from clients with high proximity toit).
All HTTP requests arriving to the repository were served
using fixed data transfer rates taking values from a Gaussian
distribution with minimum value 3Kbytes/sec, maximum
8Kbytes/sec, and mean 5KBytes/sec. The equivalent rates for
the regional servers were decided proportionally depending
on the experiment, e.g., if the proportion was fixed to 2:1, then
the transfer rates were obtained from a Gaussian distribution
with minimum value 6Kbytes/sec, maximum 16Kbytes/sec,
and mean 10Kbytes/sec. We fixed the number of regional
servers to 10. Each server hosted between 400-800 pages
referring to 1,500-3,000 distinct MOs (both values varying
uniformly). The total number of MOs in the network was
10,000. Eachregional server received a total of 10,000 requests.
We compared REPD with the three different alternatives
presented in Section 4.2.

We conducted four experiments and recorded the
average response time. Unless otherwise stated, the transfer
rate proportion was 2:1 (regional servers:repository) and the
weight parameters of the target function (7) were
(a1, a9) = (5,1). The Local alternative was used as the basis
for performance evaluation. Figs. 7, 8, 9, 10, 11, and 12 show
the percentage of response time reduction each algorithm
achieved compared to the Local alternative. In the first
experiment (shown in Fig. 7), we tested how REPD
performs as the storage capacities of the regional servers
vary (100 percent storage capacity in the figures means that
all MOs can be stored locally).

Fig. 7 shows that the performance of REPD and MFPD
tends to remain constant when the available storage
capacity is enough to hold the most beneficial (for REPD)
or the most frequently accessed MOs (for MFPD) and drops
significantly when the available storage space is reduced
below a certain threshold (between 60 percent to 70 percent).
It also demonstrates clearly the main merits of our approach
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since REPD decreases the response time compared to the
local alternative, even when only 40 percent of the storage
space is available, while, at the same time, it maintains
higher performance compared to the simpler MF/MFPD
alternatives. The gains themselves are significant, e.g., with
an available storage capacity of 50 percent, REPD results to
an almost 20 percent decrease in the average response time.
The same figure also shows that for low storage space
values the response time increases compared to the Local
alternative (negative values in the figures). This is expected
since the Local alternative assumes no constraints.

Concerning the performance of MF, Fig. 7 illustrates that
it initially increases as the storage space drops and then
decreases to negative values. This somewhat unexpected
result can be explained by considering that, at 100 percent
storage space, MF behaves exactly as the Local alternative
(i.e., stores and downloads everything from the regional
server). As the available storage drops, MF redirects
requests for the less frequent objects to the repository. This
introduces some concurrency and results in gains in
response time. As in REPD/MFPD, further reduction in
the storage capacity results in performance decline, which is
more acute in MF. This occurs because REPD and MFPD
explicitly optimize the concurrent page download while MF
accounts only for indirect parallelism.

In the second experiment (Fig. 8), we study the effect of
the processing capacity constraint at the regional servers.
Fig. 8 shows REPD outperforming both MFPD and MF. For
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Fig. 8. Processing capacity at regional servers (Size(S;) = 100 percent).

MF, the performance difference is not surprising, while, for
MFPD, it deserves further explanation. Although MFPD
optimizes the MO partitioning and downloading in the
same way REPD does, when the processing capacity is not
enough for all the selected MOs to be downloaded from the
regional servers, MFPD assigns randomly a portion of the
requests locally, shifting the rest to the repository, while
REPD optimizes this assignment. Fig. 8 also shows that the
performance of MF follows a trend similar to that of Fig. 7,
i.e., increases initially and drops afterward. This is again
due to the indirect download parallelism introduced when
some of the MO requests are redirected to the repository.

Overall, the results of Fig. 7 and Fig. 8 are promising
since the performance of REPD seriously reduces only in
extremely adverse cases where storage and processing
capacities are less than 60 percent of the required ones.
Viewing these results from another perspective, we can say
that REPD is expected to achieve comparable performance
to the Local alternative using 40 percent less resources.

In the third experiment, we varied the transfer rate ratio up
to 14:1, so as to test REPD as the margin of potential benefits
from parallel downloads is lowered. Figs. 9a and 9b show the
results when processing and storage capacities are fixed to
(100 percent, 100 percent), and (60 percent, 60 percent). In the
unconstrained case, shown in Fig. 9a, the performance of MF
is identical to the Local alternative and is not included. In the
other case, shown in Fig. 9b, we include, for comparison
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Fig. 9. (a) Proportional transfer rate of regional servers (C(5S;), Size(.S;) = 100 percent, 100 percent). (b) Proportional transfer rate of regional servers

(C(S;), Size(S;) = 60 percent, 60 percent).
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reasons, the unconstrained performance of REPD (desig-
nated with REPD_Opt).

Fig. 9a illustrates that, as the proportional transfer rate
increases (i.e., downloading from the repository becomes
more expensive), the performance of REPD and MFPD
drops sharply. Both REPD and MFPD manage to achieve
significant gains even when the ratio is large (more than
10 percent in the 8:1 case of Fig. 9a), while, in the most
realistic spectra of rates between 0.5-2:1, REPD managed to
exploit potential parallelization even in the adverse cases of
Fig. 9b, achieving a reduction between 30 percent and
70 percent. Another observation is that the merits of REPD
versus MFPD are only apparent when the storage or
processing capacities are restricted. As a matter of fact,
the slight performance difference in Fig. 9a is mostly due to
fluctuations on the transfer rate during different runs.

Fig. 10 shows the performance of REPD/MFPD when the
transfer rates of the regional servers and the repository
increase, while their relative proportion remains fixed at
2:1. The figure shows a small, almost linear decrease in
performance because, with the increase in actual transfer
rates, the initial overhead becomes more important. Fig. 10
demonstrates that increasing the transfer rate to 70Kbytes/
sec (and 35Kbytes/sec for the repository) results in the
performance of REDP dropping from around 35 percent to
25 percent (the base transfer rate for the regional servers has
a mean value of 5Kbytes/sec.).

In the fourth experiment, we tested two additional
aspects that can affect REPD’s performance. First, we
examined the sensitivity of REPD toward requests for
optional MOs. Fig. 11 shows the performance as the
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Fig. 11. Percentage of users requesting optional MOs (a; = 1,5, 10,
50,100, ary = 1).

50%
45% -
40%
35%
30%
25% -
20% -
15% -
10%
5% -
o o o 1] ML |

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

I mREPD_1
mMFPD_1
OREPD_2
OMFPD_2

Fig. 12. Processing capacity of the repository (proportional transfer rate
1:1 and 2:1).

percentage of optional MO requests increase (a 100 percent
value indicates that the 10 percent of the users that request
optional MOs will ask for all MOs referenced by a page).
We also tested different weight assignments of (7). The
performance of REPD remains either constant or drops
marginally as requests to optional MOs rise (depending on
the weight assignment). We can observe that low weight
ratios of 1-10:1 are less sensitive to the workload compared
to larger ones (50-100:1). Nevertheless, the largest difference
exhibited was no more than 5 percent (between REPD_1
and REPD_100 in the 80 percent case), which indicates that
weight selection does not significantly affect the algorithm’s
performance.

Finally, we measured the performance of the algorithms
by varying the processing capacity of the repository. We did
this by fixing the processing capacity at the regional servers
to 120 percent (i.e., each server could satisfy 20 percent
more requests than the ones assigned by REPD) and by
computing the number of requests REPD redirects to the
repository. We assumed a percentage of them being
satisfied by the repository and reassigned the rest back to
the regional servers using the negotiation mechanism
described in Section 4. In case the regional servers reach
their processing capacities, we accordingly increase them in
order to account for the remaining requests. For the MFPD,
we assumed infinite processing capacity at the regional
servers. Fig. 12 illustrates the results for transfer rate ratios
of 1:1 and 2:1. We observe that the performance of the
algorithms increases almost linearly to the processing
capacity of the repository in both the cases. This, in turn,
implies that small alterations of the repository’s processing
power (originated possibly by excessive workload) will not
have a serious effect on the performance of the algorithms
(e.g., the performance difference between the 100 percent
and 80 percent case is around 5 percent).

Summarizing the experiments, the proposed scheme for
concurrent downloads (REPD) was shown to significantly
decrease the average page download time, compared to the
naive approach of downloading all MOs from the regional
servers. Furthermore, compared to a simpler policy (MFPD)
that takes into account potential parallelism, but follows
simpler allocation decisions, REPD was found to perform
better, especially when resources are restricted.
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6 RELATED WORK AND COMPARISON

There are two main issues in the replication of Web content.
The first is deciding what to replicate where, also called the
allocation or replica placement problem. The second is the
design of a redirection method that allows a request to be
satisfied by aserver other than the one originally addressed to.

Various redirection schemes have been proposed in the
relevant literature, some also being available as commercial
products. IBM’s Network Dispatcher [18] and CISCO'’s
Local Director [8] map the domain name of the Web site to
the IP of a multiplexing router that is placed in front of a
server farm. Both schemes perform better when the servers
of the farm are not geographically distributed. In [4] and [6],
the DNS server returns the IPs of the servers holding the
requested object. Server selection is performed by the
client’'s DNS resolver after probing the candidate servers.
Various methods for selecting among replicated servers
were extensively discussed, for example, in [7] and [23],
while scheduling algorithms varying from blind round-
robin to more sophisticated feedback methods were devel-
oped by the research community [9]. Overall, the described
redirection schemes account for at least the additional
latency of forming an initial network connection before
connecting to the required server. In our framework,
redirection is performed by regional servers when sending
the HTML file. Related to redirection is the proposal in [12]
to build a global infrastructure that can return the distance
between any pair of hosts.

With regard to allocation, much work has been done in
the past in the context of file allocation. An extensive survey
can be found in [10]. For a recent comprehensive summary,
the interested reader is referred to [14]. Most of the existing
models formulate this as an optimization problem, with the
target function being either the overall network traffic, the
client-replica distance, replica availability, or the response
time. Solutions range from greedy approaches [20] to
genetic algorithms [16]. The dynamic variation of the
problem where replicas can be potentially created and
deleted upon every request was studied, for instance, in [2],
[21], and [24]. Here, we take advantage of the existing file
allocation formulations in order to build a cost model that
describes parallel downloads.

Prepartitioning of objects and URL rewriting are im-
portant aspects of our work. The idea of analyzing the page
structure is also used in the HTTP_DRP [25] protocol,
where, for each page, an index file is created and Uniform
Resource Identifiers (URIs) are assigned to the embedded
objects. Related to URL rewriting is the way media files are
handled in the solutions offered by enterprises specializing
in content management, e.g., NetApp [19]. A metafile (ASX)
that includes the possible sources for downloading the
requested media file is created. The client, instead of
accessing the media file itself, accesses the metafile and is
appropriately redirected. Incorporating such metafiles to
our scheme is both straightforward and viable.

Perhaps, the works reported in [13] and [22] are the
closest to our approach. In [22], the authors propose to
transmit a file simultaneously from multiple mirror servers.
Concurrency occurs on a per block basis. Our approach is
complementary in that, while [22] aims at accelerating FTP
transfers, we focus on HTTP transfers. Embedded objects
are usually of small-medium size and, therefore, the

benefits of block-parallel downloads are diminished.
Furthermore, our scope differs since we do not assume
mirror servers, but rather try to keep the stored (at the
regional servers) objects to the minimum necessary. In [13],
the authors investigate whether it is more beneficial to
download all the page components from one server by
opening multiple connections to it or from multiple servers.
They conclude that the best strategy is to download
everything from a single server. At first, their conclusion
seems to contradict our policy. However, the strategy for
parallel downloads considered in [13] was to transfer the
HTML part of the page from one server and all the
embedded objects from another.

7 CONCLUSIONS

In this paper, we proposed a replica placement/redirection
scheme that benefits from parallel downloading the various
multimedia objects contained in a page from a regional
server and a central repository. To the best of our knowl-
edge, this potential is not yet adequately addressed in the
relevant literature. Performance measurements and simula-
tion results indicate that our policy outperforms other
alternatives under a wide range of varying parameters. The
benefits of the proposed scheme are limited when the
client’s bandwidth acts as a bottleneck. However, this is not
a major drawback, especially since client bandwidth
continues to increase. Future work includes further perfor-
mance measurements using different server pairs, as well as
exploring parallel download techniques in a distributed
server environment where each server can act as a potential
repository. Another research direction is to integrate this
work with some of the server selection schemes proposed in
the literature.
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