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In this paper, we present a fine-grained parallel implementa-
tion of the MPEG-2 video encoder on the Intel Paragon XP/S
parallel computer. We use a data-parallel approach and exploit
parallelism within each frame, unlike some of the previous
approaches that employ multiple processing of several disjoint
video sequences. This makes our encoder suitable for real-time
applications where the complete video sequence may not be
present on the disk and may become available on a frame-
by-frame basis with time. The Express parallel programming
environment is employed as the underlying message-passing
system making our encoder portable across a wide range of
parallel and distributed architectures. The encoder also pro-
vides control over various parameters such as the number of
processors in each dimension, the size of the motion search
window, buffer management, and bitrate. Moreover, it has the
flexibility to allow the inclusion of fast and new algorithms for
different stages of the codec into the program, replacing current
algorithms. Comparisons of execution times, speedups, and
frame encoding rates using different numbers of processors
are provided. An analysis of frame data distribution among
multiple processors is also presented. In addition, our study
reveals the degrees of parallelism and bottlenecks in the various
computational modules of the MPEG-2 algorithm. We have
used two motion estimation techniques and five different video
sequences for our experiments. Using maximum parallelism by
dividing one block per processor, an encoding rate higher than
30 frames/s has been achieved. ¢ 1995 Academic Press, Inc.

1. INTRODUCTION

A codec consists of an encoder and a decoder. For ease
of storage and transport of large amount of video data,
major functions of a video codec are compression and
decompression which are performed by the encoder and
the decoder, respectively. These operations require a great
deal of signal processing of the order of billion operations
per second. Although a video sequence has to be displayed
in real-time, depending on applications, video encoding
can be done either in real-time or in non-real-time. Since
video encoding is much more complex and time-consuming
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compared to decoding, it is always advantageous to
speedup the computation. Usually, special hardware
(VLSI) is needed to implement encoder for real-time appli-
cations. On the other hand, software implementation of
encoder is extremely difficult for real-time applications.
However, for prototyping and pre-recorded compression
(non-real-time), it is very desirable and effective. This pa-
per explores this possibility of software implementation of
a video codec, in particular, MPEG-2, by using parallel
computers with a view to achieve a high speedup in compu-
tation. MPEG-2 [13] is the most recent video coding stan-
dard established by the Motion Pictures Expert Group
of the International Standards Organization (ISO). Being
very comprehensive it is still evolving and is therefore
chosen for our software implementation.

MPEG-2 embodies different modules some of which are
very computation intensive. Since MPEG-2 is designed as
a generic standard to support a wide variety of applications,
several bit-rates of 2 Mbps and up, and various qualities
and services, it often needs to deal with processing of large
amount of data, for example, 10.37 million pels/s according
to CCIR 601 specification. Since the encoding time is pro-
portional to the total number of pixels to process, the
encoder requires extensive computation to fully support
applications such as HDTV transmission with embedded
standard TV, video-on-demand (VOD), cable TV distribu-
tion, video communications on asynchronous transfer
mode (ATM) networks, digital terrestrial television broad-
cast, home television theater, multimedia mailing, remote
video surveillance, satellite news gathering and networked
database services, etc. MPEG-2 requires that it should
also include the functionalities such as normal play, fast
forward/reverse, random access, and normal reverse [3].
Since it is very slow when performed on a conventional
serial computer, a parallel implementation of the encoder
is an obvious and most promising software solution.

There have been some previous approaches—mostly
using special hardware—to parallelize codec operations of
video sequences. For example, the CD-I full-motion video
encoding (nonstandard) has been implemented on a paral-
lel computer [25]. It employs an approach where paralleli-
zation is done by dividing the stages of the video codec
into tasks and assigning one task to a group of processors.
This has the disadvantage that many frames must be read
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before all processors have some tasks to execute. Further-
more, this implementation requires a special-purpose
hardware.

An MPEG-1 encoder has been implemented in [27] with
a special-purpose parallel hardware using DSP processors.
This has the drawback that the parallel programs are non-
portable and must match the ability of the special hardware
which has limited capability in signal processing. Another
hardware implementation of MPEG-2 using image com-
pression DSP with good performance has been described
in [1].

A parallel implementation of the H.261 video coding
algorithm using a single-instruction multiple-data (SIMD)
parallel machine has been reported in [18]. It suggests that
parallelization can be done either on individual pixels, on
blocks or on other groups of the frame data, while this
implementation chose to distribute data-blocks among
processors. However, due to the nature of SIMD paradigm,
only certain parts of H.261 were parallelized. Consequently
the implementation of rate control became the bottleneck
in processing and could only achieve a frame rate of about
5 frames/s. Distributed load balancing schemes for parallel
video encoding system have been described in {11], which
involve a hybrid video encoding algorithm recommended
by CCITT SG XV for p X 64 kbits/s.

Parallel MPEG-1 video encoding with a performance of
about 4 frames/s using 9 HP 9000/720 machines connected
via ethernet has been documented in [10]. It has been later
modified as described in [24] to run on Intel Touchstone
Delta and Intel Paragon. Although this implementation
has accomplished faster than real-time performance, but
it has several drawbacks. First, it divides the video sequence
into different sections and assignes those sections to differ-
ent processors. Each processor runs the same sequential
encoding program, but compresses different parts of the
video (in particular, different Group of Pictures) in paral-
lel. Therefore, the complete video sequence should be
available before encoding begins. Second, the compressed
data from each processor has to be concatenated off-line.
Third, since it was found inefficient to open a large number
of small files for input and output, this implementation has
to group sections of consecutive frames into a single file.
To get the most efficient performance using this approach,
a processor should open and read from a single file having
all the frames assigned to it, including the necessary refer-
ence frames. This means one can use only a limited number
of processors to encode a video sequence of a given length,
which restricts the scalability of the problem. Finally, it
uses some special 1/O operation capability offered by Intel
Touchstone Delta or Intel Paragon in order to improve
performance, and therefore is not portable to other hard-
ware platforms, for instance, a network of workstations.
A slice-based software implementation of MPEG-2 video
encoding is described in [29]. This implementation uses
socket programming for a local area network (LAN) of
workstation for its parallelism. For our implementation
of MPEG-2, we have chosen the data-parallel approach
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similar to [18] on a multiple-instruction multi-data
(MIMD) machine. Our implementation does not employ
any special-purpose hardware or programming primitives,
rather it is completely portable, flexible, and scalable. The
implementation is administered on the Intel Paragon, as
well as Intel iPSC/860 and various types of networks of
workstations, although only the results obtained on Intel
Paragon are reported here.

The rest of the paper is arranged as follows. Section 2
gives a description of MPEG-2, mentioning its differences
or improvements with respect to its previous counterparts.
Section 3 introduces the Intel Paragon XP/S. Section 4
describes the methodology adopted for the current imple-
mentation. It also discusses the data distribution and com-
munication strategies and provides an expression of maxi-
mum number of processors that can be used. Section 5
provides experimental results. The last section gives some
future research directions and conclusions.

2. AN OVERVIEW OF MPEG-2

The ISO/IEC 13818-2 standard, commonly known as
MPEG-2 video standard specification, provides a standard
syntax which offers an optimum between cost—for exam-
ple, VLSI area, memory size and bandwidth—and quality
such as compression efficiency. So it is rapidly emerging as
the preferred standard for full motion video compression.

MPEG-2 may be considered as the enhanced version of
ISO/IEC 11172-2 video coding standard, commonly known
as MPEG-1 [15]. MPEG-1 was established for digital stor-
age applications with VCR quality at 1.5 Mbps. MPEG-2
supports a variety of applications, generally with higher
picture quality at a bit-rate greater than or equal to 2
Mbps. It is also compatible with MPEG-1. A special case
of MPEG-2 i1s H.262 which is intended for high quality
visual communication.

2.1. Structure of MPEG-2

The bitstream syntax of the MPEG-2 standard [13] is
divided into subsets known as profiles, which specify con-
straints on the syntax. The profiles are again divided into
sets of constraints imposed on parameters in the bitstream,
which are known as levels. There are five profiles defined
by MPEG-2: simple, main, SNR scalable, spatially scalable,
and high; some of these involve upto four levels: low, main,
high 1440, and high. In each level there may be three
formats of color spaces, representing luminance and two
chrominance distributions, namely, 4:2:0, 4:2:2, and 4:4:4.
Also, in addition to the base layer in a level, there may
be one or more enhancement layer. The profiles and levels
of MPEG-2 limit the syntax and operation of its various
components and the parameters, for example, sample
rates, frame dimensions, coded bitrates, etc. (see Table 1),
respectively. Thus they optimize computational complex-
ity, buffer size, and memory bandwidth while still ad-
dressing the widest possible range of applications.
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TABLE I
Picture Quality in Terms of PSNR
Parameters Profiles
Simple Main SNR Scalable Spatially Scalable High
Horizontal size 720 352D 357 (1) 1440 (e) 720 (m,e)
(< pels) 720 () 720 (m) 720 (b) 352 (m,b)
1440 (h) 1440 (h.e)
1920 (h) 720 (h,b)
1920 (h.e)
960 (h,b)
Vertical size 576 288 (1) 288 (1) 1152 (e) 576 (m.e)
(< pels) 576 (m) 576 (m) 576 (b) 288 (m,b)
1152 (h) 1152 (hee)
1152 (h) 576 (b,b)
1152 (h.e)
576 (h,b)
Frame rate 30 om 300 60 (e) 30 (m)
(< frames/sec) 30 (m) 30 (m 30 (b) 60 (h.e)
60 () 30 (hb)
60 (h) 60<h,e)
30 (h,b)
Total number of 10, 368. 000 3,041, 280 (1) 3,041,280 (1) 47, 001, 600 (¢) 11, 059, 200 (m,2.¢)
pixels 10, 368, 000 (m) 10, 368, 000 (m) 10, 368, 000 (b) 3,041, 280 (m,2,b)
(< pelfsec) 47, 001, 600 (h) 14, 745, 600 (m.0.e)
62, 668, 800 (h) 3, 041, 280 (m,0,b)
47,001, 600 (h,2.e)
11, 059, 200 (h,2,b)
62, 668, 800 (h,0.e)
14, 745, 600 (h,0,b)
62, 668, 800 (h.2,e)
14, 745, 600 (h,2,b)
83, 558, 400 (h.0,e)
19, 660, 800 (h.0,b)
Bit rate 15, 000, 000 4, 000, 000 (1) 4, 000, 000 (1,2) 60, 000, 000 (a) 20, 000, 000 (m,a)
(< bits/sec) 15, 000, 000 (m) 3, 000, 000 (1.b) 40, 000, 000 (e) 15, 000, 000 (m,m)
60, 000, 000 (b 15,000,000 (m,a) 15, 000, 000 (b) 4, 000, 000 (m.b)
80, 000, 000 (h) 10,000,000 (m,b) 80, 000, 000 (h.a)
60, 000, 000 (h,m)
20, 000, 000 (h,b)
100, 000, 000 (h,a)
80, 000, 000 (h,m)
25, 000, 000 (h,b)
Ratio of bit rate to 626 167(1) 167 (l,a) 2, 503 (a) 835 (m.a)
frame rate 626 (m) 126 (1,h) 1, 669 (m) 626 (m,m)
(< kbits) 2,503 (h) 626 (m,a) 626 (b) 167 (m,b)
3,337(h) 418 (m,b) 3,337 (ha)
2, 503 (h,m)
835 (h,b)
4,171 (h,a)
3,337 (h,m}
1,043 (h,b)
VBYV Buffer Size 1, 835, 008 489, 472 (1) 489, 472 (l,a) 7,340,032 (a) 2, 447, 360 (m,a}
(< bits) t, 835,008 (m) 367, 616 (1,b) 4, 893, 696 (m) 1, 835, 008 (m,m)
7, 340, 032 () 1, 835, 008 (m, a) 1, 835, 008 (b) 489,472 (m.b)
9, 787,392 (h) I, 223, 680 (m, b) 9, 787,392 (h,a)
7, 340, 032 ¢h,m)
2,447,360 (h,b)
12, 233, 728 (h,a)
9, 787,392 (h.m)
3, 036, 160 (h,b)

“here | = low level, m = main level, # = high 1440 level, h = high level, e = enhancement layer, b = base layer, a = all layer,
m = middle layer, 2 = 4:2:2 format, 0 = 4:2:0 format.

The bitstream syntax can also be divided into two major
categories: the first is the nonscalable syntax (a superset
of MPEG-1) featuring the extra compression tools for in-
terlaced video signals along with some other important
inclusions such as variable bit-rate, alternate scanning, con-
cealment motion vectors, etc.; and the second is the scal-

able-syntax, having property of enabling the reconstruction
of useful video from pieces of a total bitstream by structur-
ing the bitstream in a base layer and some enhancement
layers, where the base layer can use the non-scalable syn-
tax. The purpose of layered structure is to facilitate the
decoding process and to prevent ambiguity while it sup-
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ports the claims of genericity, flexibility, and efficiency [17].
There is an abstract model of decoding used to verify
that an MPEG bitstream is decodable within reasonable
buffering and delay requirement, which is known as video
buffering verifier (VBV).

The coded representation defined in the non-scalable
syntax can achieve a high compression ratio while preserv-
ing good picture quality. Since the exact pixel values are
not preserved during coding, the algorithm is not lossless.
The choice of the techniques is based on the need to bal-
ance a high picture quality and compression ratio with the
requirement to make random access to the coded bit-
stream. Obtaining good picture quality at the bitrates of
interest demands very high compression, which is not
achievable with intraframe coding alone. The random ac-
cess requirement, however, is best satisfied with pure intra-
frame coding. This necessitates a delicate balance between
intra- and interframe coding and between recursive and
nonrecursive temporal redundancy reduction, leading to
the definition of Intracoded (I), Predictive coded (P), and
Bidirectionally predictive coded (B) pictures. This idea is
illustrated in Fig. 1.

Here, I-pictures provide good random access with mod-
erate compression and are used as reference pictures for
future prediction. P-pictures are coded more efficiently

Forward Prediction

Bidirectional Prediction

Previous frame

Current frame

\ Future frame
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from a previous I- or P-picture and are generally used as
reference pictures for further prediction. B-pictures pro-
vide the highest degree of compression but require both
past and future reference pictures for motion compen-
sated prediction. The display order of these frames (/, B,
B, P, B, ..), for the example shown in Fig. 1 would be
different from the transmission order (1, P, B, B. P, ...).

The algorithm first selects an appropriate spatial resolu-
tion for the signal. It then uses block-based motion-com-
pensated prediction for the temporal redundancy reduc-
tion, which falls into the temporal DPCM (differential
pulse code modulation) category. Motion compensation is
used both for causal prediction of the current picture from
a previous reference picture, and for noncausal, interpola-
tive prediction from past and future reference pictures.
Next in the algorithm is the stage of motion estimation,
which covers a set of techniques used to extract the motion
information from a video sequence. Motion vectors are
defined for each 16-pixel by 16-line region of the picture.
In MPEG-2, motion estimation is done by using block-
matching technique. Figure 1 shows an example of block
matching. Here, for block B in the current frame, the best
match is with block A in the previous frame and with block
C in the future frame.

In order to achieve spatial redundancy reduction, the

Frames

[ Intracoded

P (Forward) predicitve
coded

B Bidirectionally
predicted,
interpolative coded

Transmission Order

AT .

142 3 65.87..
[

I PBB PBB..
\/l

t
Group of pictures

Block-Matching Technique

1. Block B = Block A
2. Block B = Block C
3. Block B = (Block A + Block C)/2

FIG. 1. Typical arrangement of group of pictures in MPEG-2.
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difference signal, i.e., the prediction error, is further com-
pressed using the block transform coding technique which
employs the two-dimensional orthonormal 8 X 8 DCT
(discrete cosine transform) to remove spatial correlation.
The resulting 63 AC transform coefficients are mapped in
an alternate scanning pattern (or zig-zag scanning pattern
when providing compatibility to MPEG-1) before it is
quantized in an irreversible process that discards the less
important information. Luminance and chrominance com-
ponents of the frame data share the same quantization
tables. In MPEG-2, adaptive quantization is used at the
macroblock (16 X 16 pel area) layer, which pemits smooth
bit-rate control as well as perceptually uniform quantiza-
tion throughout the picture and image sequence. Finally,
the motion vectors are combined with the residual DCT
information, and transmitted using variable length codes.
The variable length coding tables are non-downloadable
and are therefore optimized for a limited range of compres-
sion ratios appropriate for the target applications. A block
diagram of the complete encoder is given in Fig. 2.

In the scalable syntax, scalability tools support applica-
tions beyond that supported by single layer video, by
breaking the bitstream into different layers which prioritize
the video data. For example, the high priority channel
(bitstream) can be coded with a combination of extra error
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correction information and decreased bit-error (i.e., higher
signal strength) than the lower priority channel. Another
purpose of scalability is the division of complexity. Com-
plexity division could be simply obtained by simulcasting
technique which is based on transmission/storage of multi-
ple independently coded reproductions of video. Neverthe-
less, a more efficient alternative is scalable video coding,
in which the bandwidth allocated to a given reproduction
of video can be partially reutilized in coding of the next
reproduction of the video. The basic scalability tools of-
fered by MPEG-2 are:

* Spatial Scalability. This is intended for use in video
systems for which a minimum of two layers of spatial reso-
lution are necessary. This spatial domain method codes a
base layer at lower sampling dimensions (i.e., “resolution”)
than the upper layers. The upsampled reconstructed lower
(base) layers are then used as prediction for the higher
layers.

* Data Partitioning. This in intended for use when two
channels are available for transmission and/or storage of
a video bitstream. Data partitioning is a frequency domain
method that breaks the block of 64 quantized transform
coefficients into two bitstreams. The first, higher priority
bitstream contains the more critical lower frequency coef-

Pticture Inter/ Bit
ype Inter/Intra Intra Coding VLC and FLC stream
) statistics encoder and |—- Buffer [
classifier ‘I processor —> multiplexer
A
Video y
n + DCT Quantizer
T Quantizer
b Quantizer Parameter Inverse
adapter quantizer
IDCT
l WY
f -
L Motion. Previous
compensation frame
predictor store
Motion l Write Write
vectors previous future
frame frame
Motion Future
estimator frame &
b store
Motion
vectors

FIG. 2. The MPEG-2 computational modules.
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ficients and side informations (such as DC values and/
or motion vectors). The second, lower priority bitstream
carries higher frequency AC data.

* SNR Scalability. SNR scalability is a spatial domain
method where channels are coded at identical sample rates,
but with different picture quality (through quantization
step sizes). The higher priority bitstream contains base-
layer data that can be added to a lower priority refinement
layer to regenerate a higher quality reproduction of the
input video.

* Temporal Scalability. A temporal domain method is
useful in applications for which migration to higher tempo-
ral resolution systems may be necessary. The first, higher
priority bitstream codes video at a lower frame-rate, and
the intermediate frames can be coded in a second bitstream
using the first bitstream reconstruction as prediction. It
provides transmission error resilience as the more im-
portant base layer data can be transmitted over a channel
with better error performance.

2.2. Range of Parameters

Table 1 shows the limits of different parameters permit-
ted by MPEG-2. To deal with various applications of differ-
ent nature, MPEG-2 specifies these constraints, by decom-
posing the bit-stream syntax into subsets called profiles
and levels, as explained in the previous section. The param-
eters to which the constraints are entangled are mainly:
horizontal size of a frame; vertical size of a frame: the
frame rate; the product of the horizontal size, the vertical
size, and the frame rate; the coded data rate (bit-rate); and
the VBV (video buffering verifier) buffer size.

3. AN OVERVIEW OF INTEL PARAGON XP/S

The Paragon XP/S [12] from Intel Corporation was first
delivered in September 1992. Similar to its predecessors
the Touchstone Delta (prototypical) and the iPSC/86(), the
Paragon 1s also a multicomputer. Its nodes are based on
Intel’s i860 XP processor and it primarily supports message
passing as the programming model using a new OSF/1-
based operating system.

From an architectural point of view. the Paragon is a
distributed-memory MIMD machine. Its processing nodes
are arranged in a two-dimensional rectangular grid. The
system consists of three types of nodes: compute nodes,
which are used for the execution of parallel programs;
service nodes, which offer capabilities of a UNIX system,
including compilers and program development tools; and
1/0 nodes, which are interface to mass storage and LANS.
All nodes are uniformly integrated in the interconnection
network. The login sessions are distributed in a user-trans-
parent manner to one of the nodes in service partition
from where jobs can be initiated interactively or submitted
via network queuing system (NQS). The I/O nodes provide
ethernet and high performance parallel interface (HiPPI)
connections to the Paragon; a fibre distributed data inter-
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face (FDDI) network can be attached to a HiPPI node by
using a router.

Paragon mesh routing chips (MRCs), connected by high-
speed channels, are the basis of the communication net-
work, where nodes may be attached. These are two inde-
pendent channels—one for each direction—between two
neighboring nodes. The channels are 16 bits wide and have
a theoretical bandwidth of 175 Mbps. The MRCs can route
messages autonomously and are independent of the
attached nodes. Communication is based on wormhole
routing with a deterministic routing algorithm [4]. Mes-
sages are sent first in the horizontal and then in the vertical
direction. Although the pipelined nature of the wormhole
routing allows the bandwidth to be nearly independent of
the distance between the communicating nodes, due to
software overhead, it is limited to 90 Mbps for system
release 1.2

All the three types of nodes are implemented by the
same general purpose (GP) node hardware. A 32-bit ad-
dress bus and a 64-bit, 50 MHz (i.e., 400 Mbps) data bus
connects all the components of the GP node’s compute
and network interface parts. The i860 XP is a fast compute-
oriented reduced instruction set computer (RISC) proces-
sor with a clock speed of 50 MHz and a theoretical peak
performance of 75 Mflops (64-bit arithmetic: 50 Mflops
add, 50 Mflops multiply) and 100 Mflops (32-bit arithmetic:
50 Mflops add, 25 Mflops multiply). When used in parallel,
add and multiply do not operate at full speed. The integer
peak performance is 42 Mips (32-bit) including load/store.
The interface of the GP node to the interconnection net-
work performs such that message-passing is separated from
computing. The actual transmission of data between the
memory and the network is accomplished by the network
interface controller (NIC).

The Paragon’s primary mass storage system is a disk
array like redundant array of inexpensive disks (RAIDs)
which can accommodate 4.2 Gbyte of data. The node mem-
ory is organized in two banks and constructed on the basis
of 4 Mbit, 60 ns DRAM chips. The peak speed of data
transfer between the memory and the processor caches is
64 bits per cycle, i.e., 400 Mbps.

The Paragon’s operating system is called Paragon OSF/
1, which provides an OSF/1-compatible application inter-
face. On the compute nodes, the operating system and
related buffers occupy more than 6 Mbyte. The OSF/1
servers and libraries jointly offer the view of a single UNIX-
like system to the user. The NX message passing interface
used in Paragon is a super-set of the iPSC/860’s NX/2.
Paragon OSF/1 supports virtual memory on all nodes. The
file system of Paragon OSF/1, called the parallel file system
(PFS), is upward compatible with the concurrent file sys-
tem (CFS) of the iPSC/860. It is based on a single-processor
file system, namely, the Berkeley 4.3 virtual file system
(VFS), along with a distributed file system. PFS provides
parallel access to a single file and higher data transfer
rates by striping files across multiple I/O nodes and their
attached RAID systems. It allows processor mesh to be
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divided into sets of nodes, called partitions, thus providing
a way to restrict part of the mesh for particular users or
types of jobs and a mode of specifying different scheduling
characteristics on different segments of the machines.

The Paragon system primarily supports the message-
passing programming model with the NX library. While
support is provided for both synchronous and asynchro-
nous messages as well as interrupt-producing messages,
global operations such as global sum are also available.
Several tools, including some runtime profiling tools, are
available for performance analysis. Portable message-pass-
ing libraries such as EXPRESS, PVM, PARMACS, and
TCGMSG can be used on the Paragon.

For our experiments, we have used a 140-node Paragon
at the Hong Kong University of Science and Technology,
Hong Kong. and a 512-node Paragon at the California
Institute of Technology.

4. METHODOLOGY FOR
PARALLEL IMPLEMENTATION

The parallel implementation of MPEG-2 has been car-
ried out using a data-parallel or SPMD programming para-
digm. The SPMD paradigm written in the C programming
language under Express [21] allows our software to be
portable across a wide range of architecture ranging from
high-performance scalable systems to high-speed networks
of workstation. In order to make our parallel MPEG-2
implementation scalable, we assume that our target proces-
sor topology is a two-dimensional grid. This has been
achieved using Express’s Cubix programming model
which. in addition to providing the facility of overlapped
data reading. can set up a virtual processor grid regardless
of the hardware topology and then automatically map the
data onto this array of processors. This allows us to control
the granularity of the problem by enabling it to run on a
few fast workstation in a coarse-grained fashion as well as
large-scale fine-grained massively parallel processing
systems.

Another reason for choosing this programming environ-
ment is that it provides all the communication primitives
and several library routines, which are very easily plugg-
able to a normal C code. In addition, not only does it
contribute to a minimal programming effort, but also the
program does not need to use machine-specific constructs
for message-passing. Furthermore, it does not rely on a
specific network topology or number of processors. These
countenances enhance the portability of the program to
other MIMD computers.

The following format of the input frame data (as per
MPEG-2) is considered: There are three input streams,
the luminance (Y') pixel stream, and two chrominance (Ch
and Cr) pixel streams. Each input stream represents the
line-by-line scan of the frame. The frame data is then
distributed among the processors, each processor having
some 8 X 8 blocks of data, depending upon the number
of processors available. Unlike [29], which uses a slice as
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the basic unit for parallel processing, our approach rather
resembles [18]. Motion estimation is performed on inde-
pendent macroblocks (16 X 16) while other operations
used 8 X 8 blocks as the basic unit of parallel processing.

4.1. Data Distribution

Since the overhead due to indispensable communication
can be the major limiting factor, care should be taken
while partitioning the data among the processors such that
minimal interprocessor communication is employed. The
data-distribution to the processors for the data-parallel
approach is very simple. The whole frame is distributed
as evenly as possible to each processor. It is possible to
partition the data by just apportioning the requisite part
of the frame data (one or more 16 X 16 macroblock) to
the corresponding processors as the processors are mapped
onto the two dimensional grid. This method is shown in
Fig. 3a. But in that case, it necessitates inevitable communi-
cation between processors as the search window during
motion estimation would move to the boundary (see Fig.
4). On the contrary, since each processor has enough mem-
ory to store the entire search window, it is possible to
eliminate use of overwhelming amount of communication.
In this case, the frame data is distributed among the proces-
sors allowing overlap and using the data partitioning
method as depicted in Fig. 3b. Here, each processor is
allocated some redundant data, which is necessary to form
the complete search area. Let us consider P and Q to be
the height and the width of the frame, respectively, and
let p be the total number of processors to be used. with
Pn to be the number of processors in the horizontal dimen-
sion and p, to be the number of processors in the vertical
dimension. Thus, p = p, X p,. If the search window size
is the size of the macroblocks in a particular processor
* Win both dimensions, with overlapped (redundant) data
distribution, given py, and p,, one can determine the size
of the local frame in each processor, which is given by

Xloca,=[;’Q;+2W]x[£+2W]. )

v

It is easy to see that if we want to avoid interprocessor
communication when computing motion estimation, some
additional memory is required for every processor to ac-
commodate the redundant data necessary to form the
search window. This is a realization of the popularly known
communication-memory trade-off. In our implementation,
the number of processors to be used is an input parameter.
Therefore, it can be ported to environments with a few
powerful processors to those with a large number of rela-
tively slow processors as well as to hardware platforms
with limited memory or slow communication.

4.2. An Upper Bound for Number of Processors

The maximum number of processors that may be used
can be determined as follows. Let the macroblock size be
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w X h (typically 16 X 16) for which motion vectors are to
be determined. The frame data may be divided among
processors if we can make the search window available to
the corresponding processor. This can be accomplished by
distributing one or more 16 X 16 block to each processor,
and then either sending the required boundary data to
corresponding processors to form their local frame (see
Fig. 4), that is search window, or equivalently, storing the
redundant data at the local memory of each processor,
which is necessary to form the search window to be used
for determination of motion vectors for the next frame.
Both types of distribution of data are discussed in the
previous section. Thus, one can have

Phumax = l%J and Py max = [%)J (2)

Hence, for w = h = 16, maximum number of proces-
Sors is

QxPJ

p’“""zl16><16 :”’S[MJ‘ %)

256

For example, if Q = 360, P
Dv.max = 15 and consequently p

240, then py . = 22,
330.

A1

(a) Data distribution without overlapping. (b) Data distribution with overlapping.

4.3. Implementation Feature

Our implementation of the MPEG-2 encoder generates
constant bit-rate bit-streams and supports progressive as
well as interlaced video. It is also able to generate MPEG-
1 bit-streams. It supports three input formats: separate
YUV, combined YUV, and PPM (Portable PixMap format
[23]). It outputs the encoded sequence as well as relevant
statistics and verifies legality of the user-given parameters
within profile and level. The current implementation does
not support variable bit rate encoding, scalable extensions,
integer pel motion vectors for MPEG-1 (always produces
half-pel motion vectors, which give better quality), 3:2 puil
down, low-delay, concealment motion vectors, editing of
encoded video, and scene change rate control. Our parallel
implementation is based on a sequential implementation
[19] of MPEG-2 video coding algorithm.

4.3.1. DCT and IDCT

Since DCT approaches the statistically optimal Karhu-
nen-Loeve transform (KLT) for highly correlated signals
such as pixels in a picture frame, it is widely used in motion
video or still image codec applications [6]. For this reason
DCT has been adopted in MPEG-2 as well as in other
standards. Compression is achieved owing to the following
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fact. The data, transformed using DCT, is scanned in an

alternate zig-zag scanning pattern and then quantized. The

high frequency components, which are insignificant to hu-

man visual perception, are discarded in the process. This

provides a large run of zeros, which can be very efficiently

used in run-length coding to yield data-compression.
The N X N two-dimensional DCT is defined as

f(x,y)cos (2 ;&) 7 (2 ‘2"13)077

withu, v, x,y = 0,1, 2, ., N — 1, where x, y are spatial
coordinate in the pixel domain, u, v are coordinates in the
transform domain and

\/i k)

1, otherwise.

foru,v =0,
Cu).C(v) =

The inverse-DCT (IDCT) is defined as

N-1 N-
fen =233 c@cwFuy .
2x + Vunw
[0 ] CcOs

Q2y + Don
2N '

2N

In our implementation with full-search motion estima-
tion, for DCT, standard row-column approach is used,
while for IDCT, Wang's fast algorithm [28] is used. On the
other hand, for the implementation that used the logarith-
mic search for motion estimation, we used Wang’s algo-
rithm with double precision for both DCT and IDCT. The
DCT and IDCT are performed on the 8 X 8 pixel blocks.
The same serial program is executed on each processor to
compute DCT or IDCT for as many blocks belonging to
its local share of the frame data. So there is no interproces-
sor data movement.

4.3.2. Motion Estimation

When a moving object exists in a video sequence, the
problem of motion estimation, that is to estimate displace-
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ments of moving object from frame to frame, is encoun-
tered. In motion-compensated coding (MCC), which is
adopted to MPEG, the problem of motion estimation
needs special attention. Basically, there are two different
approaches [20] for motion estimation: pe! recursive algo-
rithm (PRA) which estimates recursively the displacement
of each pel from its neighboring pels, and block matching
algorithm (BMA) which finds the best match for a block
(according to MPEG, 16 X 16) belonging to the current
frame, within a search area in the previous frame. Although
the performance (accuracy of motion estimation) offered
by the former method is higher, the latter is still widely
used owing to relative ease of implementation and relative
low computational cost, (which is still so high that it leads
to the motivation of parallel implementation), and is
adopted in MPEG.

In general, block-matching algorithm proceeds as fol-
lows: the motion vector is obtained by minimizing a cost
function by means of measurement of the mismatch be-
tween a block and each predictor candidate. Let M be a
macroblock (16 X 16) in the current picture, X, v is the
displacement with respect to the corresponding mac-
roblock in the reference picture X,, then the optimal dis-
placement (motion vector) is obtained by the formula

o* =min > D[X.(X) - X, (x+7)], vEV,

TeM

(6)

where X_ is the pixel value in the current frame, X, is for
the previous frame, and V is the search range of the possible
motion vectors. The value of V and the selection of the
cost function D are left entirely to the implementation [17].

In our case, mean absolute difference (MAD) is chosen
as the matching criterion (D) on the reference frame, while
the search range V remains as an input parameter. The
minimum mean absolute difference (MMAD) is given by,

MMAD = min (L >3 Xk, ) = Xk + i1+ j)l) .
ij mn k !
(7)

where (k, [) is the location of the m-by-n block in the
current frame, and the amount of shift is i pels and j lines
in the direction of scanning within the search area. The
motion vector with minimum MAD is considered as the
best motion vector.

We have employed both exhaustive and fast-search pat-
terns for motion estimation in our implementation. The
two-dimensional logarithmic search [16] is used as the fast
motion search technique. Exhaustive search examines all
motion vectors in the search window while there is a sig-
nificant reduction of number of motion vectors to search
when employing logarithmic search. The logarithmic
search is based on the assumption that the matching crite-
rion (D) increases monotonically as the search moves away
from the direction of minimum error. This direction of
minimum error is defined by (i, j) such that D(i, j) is
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FIG. 5. The 2D logarithmic search procedure [16].

minimum [20]. The 2D logarithmic search follows the di-
rection of minimum error. Five search points are checked
in each step, as shown in Fig. 5. The distance between the
search points is reduced if the minimum is in the center
of the search locations or at the boundary of search area.
In the example shown, seven steps are required to find the
motion vector at (4, 7).

The motion estimation is performed only on the lumi-
nance samples. The chrominance displacement is approxi-
mated by halving the luminance displacement. In order to
have further improved accuracy in prediction, after doing
an integral full-pixel search, a half-pel search is also done
on a neighborhood of eight bilinearly interpolated lumi-
nance samples from the reconstructed reference frame.

In our implementation, as described in Section 4.1 and
Section 4.2, the data distribution is done such that each
processor has all the data that it needs to conduct motion
estimation within the window size. As a result, all proces-
sors can concurrently generate their motions vectors.

4.3.3. Rate Control and Adaptive Quantization

The process of uniform quantization of the 8 X 8 DCT
coefficients may be expressed as

. Cij  k ..
Cq,; = int [Qr:/ 2] , Li=1,..8,

(8)
where the resulting quantized coefficients Cq, ; is the inte-
ger part of the bracketed term, C;; being the DCT coeffi-
cients and @, ; the corresponding quantizer steps; while
the parameter & takes on values 1 or 0, for quantization
with rounding to nearest integer and for quantization with
truncation, respectively [9]. (Note that, this formula as-
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sumes C;; is positive, however, it is trivial to generalize
this formula to take care of negative DCT coefficients).

For MPEG-2, Q,; = q,w, /8, where w,; is a matrix of
quantization weights and g, is the quantizer scaling factor.
There may be two integer matrices of w;; to code a se-
quence. Adaptive quantization results from the variability
of g, which is allowed to vary between 1 and 31 on a
macroblock-to-macroblock basis. The number of bits allo-
cated for quantized data is dependent on the g,,. Therefore,
the value of g, can be adjusted according to the bit rate
requirements.

Our implementation of the encoder holds fast a single
pass coding viewpoint and does not use any a priori mea-
surement to guide the allocation of bits at the global layers.
The complex bit allocation process is split into a number
of independent stages, coincident with the various layers
of MPEG-2 video. At the highest stage, a Group of Pictures
(GOP) becomes the edge where variable size coded pic-
tures are mapped into a constant channel rate. The GOP
is defined to be the distance between successive I pictures,
but it also appears as a convenient division for rate con-
trol [8].

The allocation of target bit for the current picture being
encoded is based on a global bit budget for the GOP, that
is, a bit budget for the coded sequence of pictures, and a
ratio of weighted relative coding complexities of the three
picture types. Coding complexity is estimated in each proc-
essor as the product of the average macroblock quantiza-
tion stepsize and the number of bits generated by each
processor by coding its part of the frame. The local bit
allocation for the current macroblock is based on two mea-
surements: first, the deviance from estimated buffer full-
ness for the current (jth) macroblock and second, the nor-
malized spatial activity. The estimated buffer fullness is
simply the product of the macroblock number and the
average bits per macroblock. The spatial activity is a mea-
sure which performs the second adjustment to the quanti-
zation step size. We have chosen variance of the mac-
roblock in question as this measure, which is computed
a priori on the four source luminance blocks (8 X 8) regard-
less of the ultimate macroblock prediction mode (in prac-
tice, variance has been computed concurrent with the mo-
tion estimation stage). The variance measure is then
normalized against the average variance of the most re-
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cently coded picture. The picture-fragment in each proces-
sor is approximated and estimated to have a uniform distri-
bution of bits. If the local trend of generated bits begins
to stray from this estimation, a compensation factor
emerges to modulate the macroblock quantization scale.
The compensation factor is the difference between the
predicted and the true buffer fullness of the jth macroblock.

Since the allocation of bit depends on the global bit
budget, the quantization and rate control process is inher-
ently sequential in each processor. The global bit budget
is broadcasted to all the processors to perform the alloca-
tion of target bit.

5. EXPERIMENTAL RESULTS

Experiments were performed on the Intel Paragon using
various number of processors. The measured time was
averaged over 50 frames of a video sequence. We used
five video sequences: Football (360 x 240), Table Tennis
(360 x 240), Salesman (360 X 288), Miss America (352 X
288), and Swing (352 X 288). The Football sequence in-
volves a football game, where players move in fast motion.
The Table Tennis sequence is a bouncing pingpong ball
with two players playing the ball; it involves camera pan-
ning and zooming and a scene change. The Salesman se-
quence shows a person holding an object while talking;
the salesman moves his hands and the object rapidly. The
Miss America sequence is basically a head and shoulder
sequence, and the motion involves a very large area of the
frame. The Swing sequence consists of a cluster of different
charts and graphs, which also involves some movements.
All of these sequences are representative of different kinds
of motion and are very useful for testing motion estimation.

The time to process 50 frames of a video sequence was
not necessarily the same in each processor, so the average
was taken over all the processors. Several such sets of
measurements were taken using 1, 2, 4, 8, 16, 32, 64, 128,
256, and 330 processors for each set. All of the timings
were measured with microsecond granularity.

We used a constant bit-rate of 5 Mbp and a video-buff-
ering-verifier buffer size of 112 as input for all 50 frames,
with a GOP of 12 and an I-to-P frame distance of 3, while
the search window was *11 pels for P-pictures and *10
pels for B-pictures. Both full search and 2D logarithmic

TABLE 11
Permitted Limits of Parameters of MPEG-2¢

Name of Sequence Average PSNR: Full Search | Average PSNR: 2D Log Search
(dB) (dB)

Football 37.1060 34 5281

Table Tennis 38.5159 35.7497

Salesman 39.8703 34.5039

Miss America 42.2098 37.1647

Swing 41.4682 37.3657
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search were performed and the corresponding perfor-
mance was monitored. In order to measure the quality of
the video, we used the peak signal-to-noise ratio (PSNR)
as there exists no good and simple metric for this measure
[10]. The PSNR of a video is defined as

PSNR =10 logm%, 9)
where MSE is the mean square error. The larger the PSNR,
the better the quality. The average values of PSNR ob-
tained for different sequences are shown in Table II.

In order to speed up the motion estimation process, the
search pattern was changed to outward spiralling order in
place of initial line scan order, and the inner loop of the
block distance calculation was unrolled. Furthermore,
while computing the distance, accumulation was stopped
if the partial sum exceeded a given distance. Figures 6
through 10 show various results for the encoder employing
full-search motion estimation. Figure 6 depicts the speedup
of the motion estimation module which is the most compu-
tationally expensive part. It is clear that the problem scaled
almost linearly as the number of processor was increased.
Figure 7 shows the speedup of the DCT module which
also increased at a near-linear rate.

Figure 8 gives the overall speedup with full search mo-
tion estimation algorithm. As can be noticed, the speedup
curves for various video sequences are almost linear up to
128 processors and then start saturating. Figure 9 shows a
comparison of the computational modules in terms of the
time required by each module. This bar graph indicates
where the bottleneck of the encoding is. In this case, it is
obvious that motion estimation was the most time-consum-
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FIG. 6. Speedup for motion estimation: full search.
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ing module. On the average, using optimizations, full-
search motion estimation took 71.5% of the total encoding
time. With optimizations, this figure reduced to 53.43%
but the motion estimation still remained the most time-
consuming module of the entire encoding process. Figure
10 depicts the average encoding speed of the entire encod-
ing process; the peak rate (averaged across all sequences)
was 11.76 frames/s with 330 processors. Clearly, this frame
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FIG. 8. Overall speedup with full-search motion estimation.
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FIG. 9. Comparison of modules using 128 processors: full search.

rate is not very impressive, though a high speedup in com-
putation was achieved. To obtain a faster encoding rate,
we employed a the logarithmic search.

Figures 11 to 15 show the results obtained when motion
estimation was done with the logarithmic search and DCT
was done with Wang’s algorithm. First, we examine the
speedup for the motion estimation module which is given
in Fig. 11. The speedup was close to that of full search,

Frame per second

AL I
816 3 64 128 256 330
No. of Procossars

FIG. 10. Encoding speed: full search.
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FIG. 11. Speedup for motion estimation: logarithmic search.

but the time required to do the search was decreased re-
markably. This is because the number of points searched
is much smaller with the logarithmic search as compared
to the full search. This provided roughly a ninefold incre-
ment in the motion estimation and a threefold increment
in the overall encoding speed. Figure 12 shows the speedup
for DCT using Wang’s algorithm indicating that fast DCT
routine also scaled almost the same way as the direct ap-
proach (given in Fig. 7).
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FIG. 12. Speedup for fast DCT while using logarithmic search.
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FIG. 13. Overall speedup with logarithmic-search motion estimation.

Figure 13 gives the overall speedup using the logarithmic
search with various number of processors. It is noticeable
that the overall speedup was less as compared to the full-
search realization: it can be observed that the overall
speedup was close to 150 for the full-search implementa-
tion, and about 130 for the logarithmic search implementa-
tion. This is because motion estimation did not dominate
anymore, rather the “others” module, which included vari-
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FIG. 14. Comparison of modules using 330 processors: logarithmic
search.
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ous housekeeping functions and some constant overhead,
became the predominant factor. This module did not ex-
hibit very regular behavior and, in fact, gave a speedup
less than 1. There was a rapid increase in the speedup up
to 128 processors. By increasing the number of processors
from 128 to 256, an escalation in speedup was still observed.
However, a little improvement was obtained beyond 256
processors. The reason is that the times for all the modules
except the “others” module approached their minimum
limits.

Figure 14 provides a comparison among the times for
various modules. It can be noticed that the relative pro-
cessing time required for motion estimation was consider-
ably smaller. The motion estimation module now took only
18.1% of the total encoding time. As can be seen from Fig.
15, the frame processing rate became about three times
faster than before. The maximum encoding rate was
achieved for the Swing sequence (31.14 frames/s). The
peak rate, averaged over all the sequences, was 29.36
frames/s.

Tables 111 through VII show the timings of the computa-
tional modules for all the sequences using various number
of processors for the full-search implementation, while Ta-
bles VIII through XII show the timings of the computa-
tional modules for all the sequences using various number
of processors for the logarithmic search implementation.

6. CONCLUSIONS

In this paper, an efficient parallel implementation of the
MPEG-2 encoder was described. The strategies for data
distribution were discussed. The implementation was per-
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FIG. 15. Encoding speed: logarithmic search.



Timings (ms) for Football Sequence: Full Search

TABLE III

Number of processors
Name of module
1 2 4 8 16 32 64 128 256 330
otion Estimation T11113.62 5599.37 2840.59 145210 ~746.89 | 386.75 20234 106.88 56.56 46.25
Motion-Comp. Prediction 208.89 104.96 52.89 26.71 1351 6.84 347 1.76 (.89 0.73
DCT Type Estimation 189.38 95.09 47.99 24.31 12.34 6.28 3.20 1.63 0.83 0.68
Discrete Cosine Transform 3104.99 1553.35 778.08 390.00 195.53 100.10 51.81 26.97 14.20 11.71
Quantization and VLC 978.18 494.33 251.15 128.71 66.23 34.22 17.81 9.32 490 4.02
Inverse Quantization 139.70 70.29 35.32 17.78 8.96 452 2.28 1.15 0.58 0.48
Inverse DCT 501.31 252.27 127.72 65.03 33.30 17.14 8.88 4.61 2.39 1.99
Calculation of Statistics 235.69 117.98 59.28 30.39 16.13 9.08 5.57 351 2.54 2.10
Calculation of Others 25.52 15.57 18.25 15.37 10.87 17.87 19.33 22.34 17.21 16.97
Total 16497.28 8303.21 4211.27 | 215040 1103.76 582.41 314.69 178.17 100.10 84.93
TABLE IV
Timings (ms) for Table Tennis Sequence: Full Search
Number of Processors
Name of module
1 2 4 8 16 32 64 128 256 330
~ Motion Estimation 11397221 573128 789854 147531 754.56 38831 200.70 104.31 5458 4434
Motion-Comp. Prediction 182.67 93.00 47.53 24.41 12.50 6.43 332 1.73 091 0.75
DCT Type Estimation 180.80 91.22 46.11 2345 11.99 6.17 321 1.67 0.88 0.72
Discrete Cosine Transform 3162.57 1593.72 805.56 409.50 209.67 107.77 55.81 29.01 15.26 12.36
Quantization and VL.C 1064.72 538.09 273.45 139.22 71.28 36.70 19.00 9.89 5.20 4.19
Inverse Quantization 130.32 65.56 33.21 16.87 8.60 441 2.28 1.19 0.63 0.52
Inverse DCT 532.58 268.37 135.64 68.91 3522 18.11 9.37 4.88 2.57 2.09
Calculation of Statistics 234.89 117.33 59.39 30.36 16.10 8.97 5.63 3.52 2.56 2.39
Calculation of Others 13.04 11.50 17.55 12.27 14.29 17.49 18.00 18.51 1813 14.34
Total 16898.81 8510.07 4316.98 2200.30 1134.21 594.36 317.32 174.71 100.72 81.70
TABLE V
Timings (ms) for Salesman Sequence: Full Search
Number of Processors
Name of module i 2 3 ) 16 2 64 128 756 330
Motion Estimation 1342319 6784.53 3466.27 1771.76 911.73 46919 24394 128.30 67.96 55.20
Motion-Comp. Prediction 224.60 113.13 57.08 28.96 14.74 7.54 3.88 2.02 1.06 0.86
DCT Type Estimation 195.34 98.38 49.86 25.38 12.98 6.67 3.45 1.80 0.95 0.78
Discrete Cosine Transform 3994.16 2009.24 101590 513.99 26148 133.80 68.86 35.79 18.85 1531
Quantization and VLC 1087.45 547.12 276.66 140.29 71.42 36.51 18.77 9.78 5.15 4.21
Inverse Quantization 124.56 62.53 3148 15.91 8.09 4.16 215 112 0.59 048
Inverse DCT 646.87 324.72 163.36 82.33 41.68 21.17 10.84 5.63 296 243
Calculation of Statistics 279.58 139.90 70.44 36.08 18.98 10.50 6.30 397 3.21 2.82
Calculation of Others 12.55 14.53 14.55 18.51 18.96 16.20 11.09 15.21 14.25 14.26
Total 19988.30 | 10094.08 5145.60 2633.21 1360.06 705.74 369.28 203.62 114.98 96.35
TABLE V1
Timings (ms) for Miss America Sequence: Full Search
Name of module Number of Processors
1 2 4 8 16 32 64 128 256 330
Motion Estimation 11332.69 5701.41 2901.78 148232 760.48 39275 20441 107.45 56.62 45.55
Motion-Comp. Prediction 185.97 94.55 48.07 24.58 12.59 6.48 3.37 1.76 0.93 0.76
DCT Type Estimation 198.13 99.95 50.54 25.73 13.16 6.78 3.52 1.84 0.97 0.80
Discrete Cosine Transform 3061.24 1542.42 783.99 401.10 206.54 106.77 55.28 28.83 15.16 12.38
Quantization and VLC 1078.29 542.32 274.29 139.42 71.33 36.67 18.97 9.92 5.23 4.25
Inverse Quantization 131.91 66.47 33.70 17.18 8.81 4.54 235 123 0.65 0.54
Inverse DCT 446.93 225.75 114.70 58.63 30.03 1547 8.00 4.16 2.19 1.83
Calculation of Statistics 271.67 136.91 68.94 35.33 18.53 10.36 6.21 3.87 2.98 2.76
Calculation of Others 13.00 11.58 18.70 15.35 2220 18.97 20.25 20.99 21.16 18.17
Total 16719.83 8421.36 4294.71 2199.64 1143.67 598.79 322.36 180.05 105.89 87.04
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TABLE VII
Timings (ms) for Swing Sequence: Full Search

Number of Processors
Name of module
1 2 4 8 16 32 64 128 256 330
Motion Estimation 1133258 | 5691.34 | 2861.85 | 144159 | 726.36 366.41 184.95 93.07 49.30 40.24
Motion-Comp. Prediction 18210 | 9207 46.61 2372 12.13 6.21 321 1.67 0.88 072
DCT Type Estimation 177.43 89.02 4.79 22.65 11.49 5.85 3.00 1.56 0.82 0.72
Discrete Cosine Transform 2885.64 | 1455.85 737.29 374.30 190.67 97.79 50.32 26.12 13.74 11.14
Quantization and VLC 107526 | 539.98 272.39 137.79 70.06 35.85 18.45 9.65 5.08 4.16
Inverse Quantization 123.19 6191 31.20 15.78 8.02 4.10 211 1.10 0.58 0.47
Inverse DCT 508.28 255.43 128.70 65.12 33.15 16.97 8.78 457 241 1.98
Calculation of Statistics 237.07 119.63 60.73 31.43 16.07 8.97 553 371 261 2.30
“Calculation of Others 16.23 14.91 12.49 17.09 15.56 16.60 16.55 15.66 16.84 1553
Total 16537.78 | 8320.14 | 4196.05 | 212947 | 108351 558.75 292.90 157.11 92.26 77.21
TABLE VIII
Timings (ms) for Football Sequence: Logarithmic Search
Name of module Number of Processors
1 2 4 3 16 32 64 128 256 330
Motion Estimation 166848 #T1.36 73713 21332 10870 55.04 7912 15.32 812 669
Motion-Comp. Prediction 164.00 81.82 43.12 21.80 10.82 535 2.76 1.46 0.87 0.76
DCT Type Estimation 149.19 74.65 38.96 19.52 9.75 4.90 2.44 1.27 0.73 0.63
Discrete Cosine Transform 606.98 303.42 158.69 79.38 39.80 19.76 9.86 5.14 3.00 2.59
Quantization and VLC 1176.28 762.08 462.44 226.01 10561 | 4392 21.68 11.27 5.84 4.76
Inverse Quantization 124.78 62.61 31.64 16.02 815 417 2.15 1.1 0.58 0.48
Inverse DCT 632.06 316.09 165.07 82.58 41.25 20.59 10.36 5.34 3.10 2.67
Calculation of Statistics 235.65 11795 | '59.32 30.43 16.15 9.11 5.58 3.52 2.55 220
Calculation of Others 17.31 18.60 10.99 15.00 10.30 12.82 14.14 17.04 12.34 14.24
Total 477473 | 257958 | 1393.36 78456 350.53 176.56 98.09 61.47 37.14 35.02
TABLE IX
Timings (ms) for Table Tennis Sequence: Logarithmic Search
i Number of Processors
Name of module 1 2 3 8 16 32 & 138 756 330
Motion Estimation 1620.74 B16.62 413.86 210.65 107.62 55.65 72896 15.23 8.07 6.61
Motion-Comp. Prediction 184.98 92.81 46.67 23.72 12.16 6.29 327 171 091 0.76
DCT Type Estimation 153.66 77.27 39.27 19.88 10.12 5.20 2.69 1.41 0.75 0.63
Discrete Cosine Transform 625.76 314.25 158.18 79.95 40.68 20.90 1088 5.72 303 2.54
Quantization and VLC 1131.88 569.10 288.68 147.11 75.45 38.96 20.28 10.59 5.58 4.64
Inverse Quantization 117.37 58.85 29.61 15.04 7.72 3.98 2.07 1.09 0.58 0.48
Inverse DCT 658.77 330.48 166.35 84.07 4273 21.82 11.28 5.89 3.14 262
Calculation of Statistics 234.07 117.47 59.40 30.44 16.16 8.99 5.64 353 2.56 241
Calculation of Others 15.34 12.37 10.52 16.66 16.22 11.16 14.47 11.41 14.16 13.14
Total 4742.57 | 2389.22 | 2254.02 627.52 328.86 172.95 99.54 56.58 38.78 33.83
TABLE X

Timings (ms) for Salesan Sequence: Logarithmic Search

Number of Processors

Name of module 1 3 3 8 16 ) 4 128 756 330

Mobion Estimation 167248 | 84042 | 42505 | 21862 | 11368 | 5930 | 312 | 1652 336 731
Motion-Comp. Prediction | 23250 | 11222 | 5687 | 2890 | 1481 766 201 711 11 0.95
DCT Type Estimation 17782 | 9018 | 4580 | 2366 | 125 637 335 177 0.95 081
Discrete Cosine Transform | 74007 | 37374 | 189.99 | 9768 | 5061 | 2644 | 1384 730 387 329
Ouantization and VLC 115379 | 57910 | 29264 | 14847 | 7547 | 3870 | 1995 | 1049 555 176
Tnverse Quantization 1510 | 5653 | 2866 | 1457 748 388 702 To7 057 049
Tnverse DCT 75547 | 39631 | 20192 | 10218 | 5349 | 2707 | 1410 7 A5 397 336
Calculation of Statishics 38001 | 13925 | 7061 | 3603 | 1903 | 1053 630 388 741 704
Calculation of Others 574 | 1188 | 1762 | 1980 | 1476 | 1339 | 1230 | 1237 | 1391 | 1426
Total 516407 | 260263 | 132945 | 68991 | 36058 | 19343 | 107.00 | 6296 | 4i2l | 3717
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TABLE XI
Timings (ms) for Miss America Sequence: Logarithmic Search
) Number of Processors

Name of module 1 3 3 8 16 3 & 128 75 | 330

Motion Estimation 1140.79 57429 | 29558 152.92 79.60 4186 2211 189 645 5.38

Motion-Comp. Prediction 188.36 94.65 47.70 24.13 12.28 6.31 3.27 171 0.90 0.75

DCT Type Estimation 140.84 71.25 36.50 18.75 9.69 5.04 2.64 1.39 0.74 0.62

Discrete Cosine Transform | 589.07 | 301.04 | 154.58 79.58 41.04 21.23 11.05 578 3.07 2.56

Quantization and VLC 1014.21 515.59 263.68 135.69 70.22 36.62 19.19 10.14 5.40 4.62

Inverse Quantization 106.35 54.36 27.94 14.41 7.45 3.88 2.03 1.07 0.57 0.47

Inverse DCT 60491 | 31018 | 159.38 81.91 42.37 21.96 11.43 5.98 315 263

Calculation of Statistics 273.05 136.34 69.10 35.26 18.66 10.41 6.24 3.88 2.88 277

Calculation of Others 12.34 14.22 17.76 11.13 12.80 17.52 18.49 13.95 11.05 12.83

Total 406992 | 2071.92 | 107222 | 55378 | 29411 164.83 96.45 55.79 3421 32.63

TABLE XII
Timings (ms) for Swing Sequence: Logarithmic Search
Name of module Number of Processors
1 2 4 8 16 32 64 128 256 330

“Motion Estimation 1114.07 566.44 28943 148.90 77.30 4043 21.26 11.24 6.02 491

Motion-Comp. Prediction 178.22 89.67 4555 23.28 11.94 6.16 3.20 1.67 0.88 0.74

DCT Type Estimation 149.16 75.54 38.45 19.61 10.03 5.17 2.68 1.40 0.74 0.61

Discrete Cosine Transform 604.16 303.80 153.70 78.15 40.19 20.77 10.80 5.69 3.02 2.54

Quantization and VLC 101233 | 51398 | 262.88 | 13536 70.02 36.59 19.24 10.21 5.48 459

Inverse Quantization 109.16 5492 2793 1428 7.29 3.76 1.95 1.02 0.54 0.46

Inverse DCT 61787 | 31066 | 157.60 80.16 41.04 21.31 11.12 5.85 3.10 2.61

Calculation of Statistics 273.00 137.04 69.11 35.26 18.57 10.40 6.24 3.88 2.76 2.50

Calculation of Others 12.36 16.15 11.04 1233 10.52 16.77 17.56 11.79 13.04 13.15

Total 407033 | 2068.20 | 1055.69 547.33 286.90 161.36 94.05 52.75 35.58 32.11

formed on an MIMD machine using the SPMD program-
ming model. Exploiting its advantages, different MPEG-
2 modules were parallelized. Noticeable improvements in
speedup were achieved for the individual modules as well
as the overall speedup of the MPEG-2 encoder. In our
implementation, the I/O was not handled by dedicated
processors, otherwise further improvement in speedup is
expected. We used full search and 2D logarithmic search
algorithms for motion estimation but our implementation
allows inclusion of faster algorithms which can further re-
duce the total computation time. Motion estimation tech-
niques have been reported in the literature, for example,
[7], which have underlying parallelism.

Our implementation is scalable -allowing the control of
granularity according to the available hardware. It is to be
noted, however, that the number of processors cannot be
increased indefinitely. Theoretically, this number is upper
bounded by the number of macroblocks in a frame. In our
experiments conducted on the Intel Paragon XP/S, we
have used this upper bound which is 330 processors. We
have achieved a maximum frame rate of 31.14 frames/s,
which is higher than real-time requirements.

The current implementation is done with Express mes-
sage-passing system allowing portability. The results of our
experiments and comparisons on various other architec-

tures have been reported elsewhere [2]. Current efforts,
in addition to investigating various code optimization strat-
egies, are directed towards testing diverse motion estima-
tion algorithms and using other message-passing libraries
such as PVM and MPL
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