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Abstract—In this paper, we propose a static scheduling algorithm for allocating task graphs to fully connected multiprocessors. We
discuss six recently reported scheduling algorithms and show that they possess one drawback or the other which can lead to poor
performance. The proposed algorithm, which is called the Dynamic Critical-Path (DCP) scheduling algorithm, is different from the
previously proposed algorithms in a number of ways. First, it determines the critical path of the task graph and selects the next node
to be scheduled in a dynamic fashion. Second, it rearranges the schedule on each processor dynamically in the sense that the
positions of the nodes in the partial schedules are not fixed until all nodes have been considered. Third, it selects a suitable
processor for a node by looking ahead the potential start times of the remaining nodes on that processor, and schedules relatively
less important nodes to the processors already in use. A global as well as a pair-wise comparison is carried out for all seven
algorithms under various scheduling conditions. The DCP algorithm outperforms the previous algorithms by a considerable margin.
Despite having a number of new features, the DCP algorithm has admissible time complexity, is economical in terms of the number
of processors used and is suitable for a wide range of graph structures.

Index Terms—Algorithms, clustering, list scheduling, multiprocessors, processor allocation, parallel scheduling, task graphs.
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1 INTRODUCTION

N efficient scheduling of a parallel program onto the

processors is vital for achieving a high performance
from a parallel computer system. When the structure of the
parallel program in terms of its task execution times, task
dependencies, task communications and synchronization, is
known a priori, scheduling can be accomplished statically at
compile time. The objective is to minimize the schedule
length. It is well known, however, that multiprocessor
scheduling for most precedence-constrained task graphs is an
NP-complete problem in its general form [12], [21]. To tackle
the problem, simplifying assumptions have been made re-
garding the task graph structure representing the program
and the model for the parallel processor systems [7], [14].
However, the problem is NP-complete even in two simple
cases: 1) scheduling unit-time tasks to an arbitrary number of
processors [15]; 2) scheduling one or two time unit tasks to
two processors [9]. There are only two special cases for which
optimal polynomial-time algorithms exist. These cases are:
scheduling tree-structured task graphs with identical com-
putation costs on an arbitrary number of processors and
scheduling arbitrary task graphs with identical computation
costs on two processors [18], [33]. However, even in these
cases, no communication is assumed among the tasks of the
parallel program. It has been shown that scheduling an arbi-
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trary task graph with intertask communication onto two
processors is NP-complete and scheduling a tree-structured
task graph with intertask communication onto a system with
an arbitrary number of processors is also NP-complete [25].

For more realistic cases, a scheduling algorithm needs to ad-
dress a number of issues. It should exploit the parallelism by
identifying the task graph structure, and take into consideration
task granularity, arbitrary computation and communication
costs. Moreover, in order to be of practical use, a scheduting
algorithm should have low complexity and should be economi-
cal in terms of the number of processors used [3], [11]. Because
of its vital importance, the scheduling problem continues to be a
focus of attention from the research community [4], [5], [8], [13],
[16], (17, [19], [20], [22], [23], [24], [27], [28], [29], [30], [31], [34].
In this paper, we propose a new static scheduling algorithm. The
proposed algorithm, which is called the Dynamic Critical Path
(DCP) algorithm, schedules task graphs with arbitrary compu-
tation and communication costs to a multiprocessor system with
unlimited number of fully-connected identical processors. The
DCP algorithm tackles the drawbacks of previous approaches
and outperforms them by a considerable margin. The algorithm
has admissible time complexity. It is also economical in terms of
the number of processors used and is suitable for different types
of graph structures.

The remainder of this paper is organized as follows. In the
next section, we describe the background of the scheduling
problem including some of the major issues involved. In Sec-
tion 3, we describe six recently reported scheduling algo-
rithms. The merits and limitations of these algorithms are
discussed briefly. In Section 4, we describe our DCP sched-
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uling algorithm and discuss its design principles as well as its
properties. In Section 5, we use an example to illustrate the
functionality of all seven algorithms. In Section 6, we provide
the experimental results and a comparison of all algorithms.
Section 7 provides the concluding remarks.

2 BACKGROUND

A paralle] program can be represented by a directed acy-
clic graph G = (V, E), where V is the set of nodes ( V] =0

and E is the set of edges (IE| = o). A node in the parallel
program graph represents a task which is a set of instruc-
tions that must be executed serially in the same processor.
Associated with each node is its computation cost, denoted

by w(n;) which indicates the task execution time. The
edges in the parallel program graph correspond to the
communication messages and precedence constraints
among the nodes. Associated with each edge is a number
indicating the time required for communicating the data
from one node to another. This number is called the com-

munication cost of the edge and is denoted by c;;. Here, the
subscript ij indicates that the directed edge emerges from

the source node 7; and incidents on the destination node

n;. The source node and the destination node of an edge is
called the parent node and the child node respectively. In a
task graph, a noce which does not have any parent is
called an entry ncde while a node which does not have
any child is called an exit node. A node cannot start exe-
cution before it gathers all of the messages from its parent
nodes. The communication-to-computation ratio (CCR) of a
parallel program is defined as its average communication
cost divided by its average computation cost on a given
system. We assume each processor in the system pos-
sesses dedicated hardware to deal with communication so
that communication can take place simultaneously with
computation. The communication cost among two nodes
assigned to the same processor is assumed to be zero.

The objective of static scheduling is to assign the nodes
of the task graph to the processors such that the schedule
length or makespan is minimized without violating the
precedence constraints. A schedule is considered efficient if
the schedule length is short and the number of processors
used is reasonable. There are many approaches that can be
employed in static scheduling. These include queuing the-
ory, graph theoretic approaches, mathematical program-
ming and state-space search [6], [14]. In the classical ap-
proach [1], [9], which is also called list scheduling, the basic
idea is to make an ordered list of nodes by assigning them
some priorities, and then repeatedly execute the following
two steps until a valid schedule is obtained.

1) Select from the list the node with the highest priority
for scheduling.
2) Select a processor to accommodate this node.

The priorities are determined statically before the sched-
uling process begins. In the scheduling process, the node
with the highest priority is chosen for scheduling. In the
second step, the best possible processor, that is, the one

which allows the earliest start time, is selected to accom-
modate this node. Most of the reported scheduling algo-
rithms based on this concept [15], [18], [30] employ varia-
tions in the priority assignment methods such as HLF
(Highest level First), LP (Longest Path), LPT (Longest Proc-
essing Time) and CP (Critical Path).

The main problem with list scheduling algorithms is
that static priority assignment may not always order the
nodes for scheduling according to their relative impor-
tance. A node is more important than other nodes if
timely scheduling of the node can lead to a better sched-
ule eventually. The drawback of a static approach is that
an inefficient schedule may be generated if a relatively
less important node is chosen for scheduling before the
more important ones. Static priority assignment may not
capture the variation in relative importance of nodes
during the scheduling process. For example, consider the
task graph shown in Fig. 1 (top left). Here, a schedule is
produced using the HLFET (Highest Levels First with
Estimated Times) algorithm [1], [18], which determines
the priority of a node by computing its level. The level of
a node is the largest sum of computation costs along a
path from the node to an exit node. The node with a
higher level gets a higher priority. The HLFET algorithm
schedules nodes in the order: n;, n,, ns, ny. The schedule
is shown in Fig. 1 (top right) in which all the nodes are
scheduled to one processor (PE denotes a processor); the
schedule length is 43 time units. However, the schedule
length can be reduced, as shown in Fig. 1 (bottom left), if
we schedule the nodes in the order: ny, n3, n,, ny. At the
second scheduling step, 13 is a relatively more important
node than 1, because if it is not scheduled to start earlier
on a processor, the start time of n, will be delayed due to
the large communication costs along the path n; — 13 — 1.
Thus, the HLFET algorithm does not precisely identify
the most important node at each scheduling step as it
orders nodes by assigning each of them a static attribute
which does not depend on the communication among
nodes.

As can be seen from the above simple example, a
scheduling algorithm may generate very inefficient
schedules if it cannot assign accurate priorities to nodes.
One important attribute of a task graph that can be used
to determine node priorities accurately is explained in
the following definition.

DEFINITION 1. A Critical Path (CP) of a task graph is a set of
nodes and edges, forming a path from an entry node to an
exit node, of which the sum of computation costs and
communication costs is the maximum.

The CP of a task graph potentially determines the schedule
length because the cumulative computation costs of the nodes
on the CP is the lower bound on the schedule length. Indeed,
the final schedule length is the length of the “Critical Path” of
the scheduled task graph. For example, the CP of the task
graph shown in Fig. 1 (top left) is the path n; — 13 — 114 (shown
in thick arrows); while the CP of the scheduled graph shown
in Fig. 1 (bottom right) is the path n; — 1, — 1. Thus, generating
an efficient schedule requires proper scheduling of the nodes
on the CP. We will further elaborate this issue in Section 4.
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Fig. 1. (Top left) A task graph; (top right) the schedule generated by
HLFET, MCP, ETF, and DLS algorithms (schedule length = 43 time
units); (bottom left) the schedule generated by the DSC algorithm
(schedule length = 34 time units); (bottom right) the schedule gen-
erated by the EZ and MD algotithm (schedule length = 35 time units).

In order to avoid scheduling less important nodes before
the more important ones, node priorities can be determined
dynamically during the scheduling process. The priorities
of nodes are recomputed after a node has been scheduled in
order to capture the changes in the relative importance of
nodes. Thus, the following three steps are repeatedly exe-
cuted in such kind of scheduling algorithms:

1) Determine new priorities of all unscheduled nodes.

2) Select the node with the highest priority for scheduling,

3) Select the most suitable processor to accommodate
this node.

Scheduling algorithms which employ the above three step
approach can potentially generate better schedules [13], [35].
However, this can increase the complexity of the algorithm.

3 RELATED WORK

In this section, six recently reported scheduling algorithms
and their characteristics are described. These are the Edge-
Zeroing (EZ) algorithm [32], the Modified Critical Path
(MCP) algorithm [37], the Mobility Directed (MD) algo-
rithm [37], the Earliest Task First (ETF) algorithm [16], the
Dynamic Level Scheduling (DLS) algorithm [35], and the
Dominant Sequence Clustering (DSC) algorithm [36].

3.1 The EZ Algorithm

As opposed to the CP-based algorithms, the EZ algorithm
attempts to reduce the partial schedule length at each step
by considering the highest cost edge in the task graph. At
each scheduling step, the algorithm schedules the two
nodes with the heaviest communication edge to the same
processor provided the partial schedule length does not
increase. To do this, the EZ algorithm first constructs a list

of edges in decreasing order of communication costs. It
then removes the first edge from the list and schedules the
two incident nodes to the same processor if the partial
schedule length is not increased. If the partial schedule
length is increased by such scheduling, the two nodes are
scheduled to two distinct processors. The nodes within the
same processor are maintained in a decreasing order of
their levels (levels are computed with the same method as
used by the HLFET algorithm). The process is repeated until
all nodes are scheduled. The complexity of the EZ algo-
rithm is shown to be Ofe (e + v)).

For the task graph shown in Fig. 1 (top left), the EZ algorithm
generates the schedule shown in Fig. 1 (bottom right). It is ap-
parent from this example that the criterion used by the EZ algo-
rithm to select node for scheduling does not properly identify
the most important node at each scheduling step. For this task
graph, the EZ algorithm schedules the nodes in the order: 1y, 113,
11y, 1. After n) and 1, are scheduled, the highest cost edge is (115, 11).
Thus, ny is scheduled to PE 0. However, 11, cannot be scheduled
to PE 0 afterwards in order not to increase the schedule length.
This results in an inefficient schedule.

3.2 The MCP Algorithm

The MCP algorithm is designed based on an attribute called
the latest possible start time of a node. A node’s latest possi-
ble start time is determined through the as-late-as-possible
(ALAP) binding, which is done by traversing the task graph
upward from the exit nodes to the entry nodes and by
pulling the nodes downwards as much as possible con-
strained by the length of the CP. The MCP algorithm first
computes all the Jatest possible start times for all nodes.
Then, each node is associated with a list of latest possible
start times which consists of the latest possible start time of
the node itself, followed by a decreasing order of the latest
possible start times of its children nodes. The MCP algo-
rithm then constructs a list of nodes in an increasing lexicog-
raphical order of the latest possible start times lists. At each
scheduling step, the first node is removed from the list and
scheduled to a processor that allows for the earliest start
time. The MCP algorithm was originally designed for a
bounded number of processors. The complexity of the MCP
algorithm is shown to be O logo).

The MCP algorithm assigns higher priorities to nodes
which have smaller latest possible start times. However, the
MCP algorithm does not necessarily schedule nodes on the CP
first. For example, consider the task graph in Fig. 1(top left)
again. Here, the MCP algorithm schedules nodes in the same
order as the HLFET algorithm and hence generates the same
schedule (shown in Fig. 1 (top right)). The MCP algorithm
does not assign node priorities accurately even though it takes
communication among nodes into account for computing the
priorities.

3.3 The MD Algorithm

The MD algorithm selects a node at each step for scheduling
based on an attribute called the relative mobility. Mobility of a
node is defined as the difference between a node's earliest
start time and latest start time. Similar to the ALAP binding
mentioned above, the earliest possible start time is assigned
to each node through the as-soon-as-possible (ASAP) binding
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which is done by traversing the task graph downward from
the entry nodes to the exit nodes and by pulling the nodes
upward as much as possible. Relative mobility is obtained by
dividing the mobility with the node's computation cost.
Essentially, a node with zero mobility is a node on the CP. At
each step, the MD algorithm schedules the node with the
smallest mobility to the first processor which has a large
enough time slot to accommodate the node without consid-
ering the minimization of the node's start time. After a node
is scheduled, all the relative mobilities are updated. The

complexity of the MD algorithm is O(vs) .

As opposed to the MCP algorithm, the MD algorithm de-
termines node priorities dynamically. Although the MD algo-
rithm can correctly identify the CP nodes for scheduling at
each step, the selection of a suitable time slot and a processor
are not done properly. The major problem with the MD algo-
rithm is that it pushes scheduled nodes downwards to create a
large enough time slot to accommodate a new node without
paying any regard to the degradation in the schedule length. It
may happen that pushing down the nodes may increase the
final schedule length. The second drawback of the MD algo-
rithm is that it looks for a suitable processor by scanning the
processors one by one starting with the first processor. This
processor selection criterion does not precisely make any effort
to minimize the start time of nodes at each step. Another
problem with the MDD algorithm is that it inserts a node into an
idle time slot on a processor without considering whether the
descendants of that node can be scheduled in a timely manner.
The schedule generated by the MD algorithm for the task
graph in Fig. 1 (top left) is the same as the one generated by
the EZ algorithm (shown in Fig. 1 (bottom right)). When node
n4 is considered, it is found that there is a time slot on PE 0
large enough to accommodate it. The MD algorithm schedules
1, to PE 0 without considering other processors. As a result, a
longer schedule length is obtained.

3.4 The ETF Algorithm

Similar to the MCP algorithm, the ETF algorithm uses static
node priorities and assumes only a bounded number of proc-
essors. However, a node with a higher priority may not neces-
sarily get scheduled before the nodes with lower priorities.
This is because at each scheduling step, the ETF algorithm first
computes the earliest start times for all the ready nodes and
then selects the one with the smallest value of the earliest start
time. A node is ready if all its parent nodes have been sched-
uled. The earliest start time of a node is computed by examin-
ing the start time of the node on all processors exhaustively.
When two nodes have the same value of the earliest start
times, the ETF algorithm breaks the tie by scheduling the one
with a higher static priority. The static node priorities can be
computed based on the node levels as in the HLFET algorithm
or the latest possible start times as in the MCP algorithm. The
complexity of the ETF algorithm is described to be O(pvQ),
where p is the number of processors given.

The major deficiency of the ETF algorithm is that it may
not be able to reduce the partial schedule length at every
scheduling step. This is because a node which has the small-
est value of the earliest start time may not necessarily lie on
the CP. An adverse effect of scheduling such nodes before the

CP nodes is that the earlier time slots on the processors may
be occupied and hence the CP nodes may not get scheduled
in a timely manner. It is in this respect that the ETF algorithm
works in a similar way as the MCP algorithm. For the task
graph shown in Fig. 1(top left), the ETF algorithm generates
the same schedule as the MCP algorithm (shown in Fig. 1
(top right)). This is expected because both algorithms attempt
to minimize the start time of a node at each step in a greedy
fashion.

3.5 The DLS Algorithm

Similar to the MD algorithm, the DLS algorithm determines
node priorities dynamically by assigning an attribute called
the dynamic level (DL) to all unscheduled nodes at each
scheduling step. The DL is computed by using two quanti-

ties. The first quantity is the static level SL(n) of a node n;
which is defined as the maximum sum of computation costs

along a path from #; to an exit node. The second quantity is
the start time ST(n;, ]) of n; on processor J. The dynamic level
DL(n;, ]) for the node-processor pair (n;, ]) is then defined as

SL(n;) — ST(n;, ). At each scheduling step, the DLS algorithm
computes the DL for each ready node on every processors.
Then, the node-processor pair which constitutes the largest
DL among all other pairs is selected so that the node is
scheduled to the processor. This process is repeated until all
the nodes are scheduled. The complexity of the DLS algo-

rithm is shown to be O@’pf(p)), where p is the number of
processors given and f(p) is the complexity of the data rout-
ing algorithm to calculating the ST of a node at each step.

The DLS algorithm does not assign priorities based on the
CP. It performs exhaustive pair matching' of nodes to proces-
sors at each step to find the highest priority node. The idea of
the DLS algorithm is to use a composite parameter DL to select
a node with a higher static level and a smaller start time to
schedule. However, it should be noted that the level of the
selected node may not be the highest and its start time may
not be the earliest among all the ready nodes. This is the subtle
difference between the DLS algorithm and the ETF algorithm
(note that the ETF algorithm tries to schedule a node that can
start earlier and breaks ties by using the static levels). At the
beginning of the scheduling process, the DLs of ready nodes
are dominated by the SLs because the ready nodes are in
higher levels in the task graph; and their start times are likely
to be small. On the other hand, when scheduling the nodes in
a lower level (say, the exit nodes), the DLs of the ready nodes
are dominated by their start times on the processors because
their SLs are small whereas their start times are large. This
reveals the flaw in the behavior of the DLS algorithm. A node
with a large SL may be scheduled first even though its start
time is not small. This may block the early scheduling of more
important nodes. For the task graph in Fig, 1 (top left), the DLS
algorithm generates the schedule shown in Fig. 1 (top right). The
DLS algorithm schedules the nodes in the same order as the
MCP algorithm and therefore the same schedule is produced.

1. It should be noted that lower complexity versions of the DLS algorithm
are reported in [35]. Those versions are streamlined to run faster with de-
graded performance. However, in our study, we have chosen the version
that can give the best performance in terms of schedule lengths.
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3.6 The DSC Algorithm

The DSC algorithm is based on an attribute called the dominant
sequence which is essentially the critical path of the partially
scheduled task graph at each step. At each step, the DSC algo-
rithm checks whether the highest CP node is a ready node. If
the highest CP node is a ready node, the DSC algorithm sched-
ules it to a processor that allows the minimum start time. Such
minimum start time may be achieved by “rescheduling” some
of the node's parent nodes to the same processor. On the other
hand, if the highest CP node is not a ready node, the DSC algo-
rithm does not select it for scheduling. Instead, the DSC algo-
rithm selects the highest node that lies on a path reaching the
CP for scheduling. The DSC algorithm schedules it to the proc-
essor that allows the minimum start time of the node provided
that such processor selection will not delay the start time of a
not yet scheduled CP node. The delayed scheduling of the CP
nodes allows the DSC algorithm to incrementally determine the
next highest CP node. This strategy also leads to the low com-
plexity of the DSC algorithm.

Although the DSC algorithm can identify the most important
node at each scheduling step, it does not schedule a CP node if it
is not a ready node. However, delaying the scheduling of a CP
node may prevent it from occupying an earlier idle time slot in
the subsequent scheduling steps. Another deficiency of the DSC
algorithm is that it uses more processors than necessary because it
schedules a node to a new processor if its start time cannot be
reduced by scheduling to any processor already in use. However,
it is possible to save processors by scheduling nodes to processors
already in use without degrading the schedule length. The com-
plexity of the DSC algorithm is shown to be O((e + v) log v). For
the task graph in Fig. 1 (top left), the DSC algorithm generates the
schedule shown in Fig. 1 (bottom left). The deficiencies mentioned
above are not revealed by this example.

4 THE PROPOSED ALGORITHM

In this section, we present the proposed DCP scheduling
algorithm. As discussed earlier, although the six scheduling
algorithms described above can produce efficient sched-
ules, each of them has its own deficiencies. The proposed
algorithm can overcome the deficiencies of these algorithms
and have the following features.

e It assigns dynamic priorities to the nodes at each step
based on the dynamic critical path (defined below) so
that the schedule length can be reduced monotonically.

e It changes the schedule on each processor dynamically
in that the start times of the nodes are not fixed until
all nodes have been scheduled.

e It selects a suitable processor for a node by looking
ahead the potential start time of the node's critical
child node on that processor.

e [t does not exhaustively examine all processors for a
node. Instead, it only considers the processors that are
holding the nodes that communicate with this node.

o It schedules relatively unimportant nodes to the proc-
essors already in use in order not to waste processors.

In the following, we discuss some of the principles used in
the design of our algorithm. In the first part of the discussion, we

TABLE 1
SYMBOLS AND THEIR MEANINGS
Symbol Meaning
n; The node number of a task in the paraliel program task
graph
win) The computation cost of node n;
Cj The communication cost of the directed edge from node n;
to n;
e The number of edges in the task graph
v The number of nodes in the task graph
CCR Communication-to-computation ratio
CP A critical path of the task graph
DCP A dynamic critical path of the task graph
DCPL The dynamic critical path length
SL; The schedule length at scheduling step ¢
PE(n) The processor which contains node n;
AEST(ni, J) The absolute earliest possible start time of ry;in processor J
ALST(ni, J) The absolute latest possible start time of n;in processor J

describe the techniques used to select a node for scheduling.
In the second part, we discuss the criteria used for processor
selection. We formalize the DCP scheduling algorithm at the
end of this section. Table 1 provides some terms and their
meanings that will be used in the subsequent discussion.

4.1 Node Selection

As described in Definition 1, during the scheduling process,
the Critical Path (CP) of a task graph determines the partial
schedule length. Thus, the nodes on the CP have to be
scheduled properly in time and space. However, as the
scheduling process proceeds, the CP can change dynami-
cally. That is, a node on a CP at one step may not be on the
CP at the next step. This is because the communication cost
among two nodes is considered zero if the nodes are
scheduled to the same processor. In order to distinguish the
CP at an intermediate scheduling step from the original CP
in the task graph, we call it the dynamic critical path (DCP).
To reduce the intermediate schedule length monotonically
and hence achieve a shorter final schedule length, we need
to identify the unscheduled nodes on the DCP. In the fol-
lowing theorem, we formalize the condition for reducing
the schedule length monotonically.

THEOREM 1. Let SL; be the intermediate schedule length at step t
of the scheduling process. If n; is the highest unscheduled
node on the DCP whose start time is minimized at step t,
then SL,,, < SL,.

PROOF. Clearly, SL, is equal to the length of the DCP at
step t. If the start time of »; is minimized, then it
cannot be greater than the sum of computation costs
and communication costs (with the ones among two
nodes scheduled to the same processor taken as
zeros) along the DCP from the entry node to n;. It
follows that SIL,,; < SL,. 0

To minimize the final schedule length, we select a node
on the DCP for scheduling at each step in the proposed al-
gorithm. In order to identify the nodes on the DCP, we use
two attributes for each node: the lower bound and upper
bound on the start time of a node. The computation of the
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values of these two attributes is explained in the following
definitions. In our approach, the start times of nodes on a
processor are not fixed until scheduling completes. Thus, in
effect, the nodes are simply “clustered” together in a linear
order. The first definition described below gives the lower
bound on the start time of a node on a processor.

DEFINITION 2. The absolute earliest start time of a node n; in a
processor ], denoted by AEST (n,, ]) is recursively defined

as follows:

e AEST (1, PE(n, )) + wln, ) + r(PE(1, ) ) |
where n; has p parent nodes and n; is the kth parent node.
AEST(n,])=0 if it is an
r(PE(nik ), ]) =1if PE(nik) # | and zero otherwise.

According to Definition 2, the AEST values can be com-
puted by traversing the task graph in a breadth-first manner
beginning from the entry nodes so that when is to be com-

puted, all the AEST values of 1/s parent nodes are available.

entry node, and

The AEST of n; is then simply the latest data arrival time
among all its parent nodes. Note that the above definition
captures the condition that the communication among two
nodes are taken to be zero if they are in the same processor.

DEFINITION 3. The dynamic critical path length, denoted by
DCPL, is defined as:

max, {AEST(n,. , PE(n, )) +w(n; )}

The value of the DCPL is simply the schedule length of
the partially scheduled task graph. This is because according
to Definition 3, it is computed by taking the maximum
value across all the earliest finish times. The value of the
DCPL is useful in that it can be used to determine the upper
bound on the start time of a node. This is described in the
following definitior.

DEFINITION 4. The absolute latest start time of a node n; in a proc-

essor |, denoted by, ALST (n;, ]) is recursively defined as fol-
lows:

itz | ALST(m, , PE(, )) = (PE(m, ) T)es, = ()}
where n; has q children nodes and n; is the mth child node.
ALST(n;,]) = DCPL —w(n,) if it is an exit node, and
r(PE(nim ), ]) =11if PE(nim) # | and zero otherwise.

Similar to the computation of the AEST values, the val-
ues of the ALST can also be computed by traversing the
task graph in a breadth-first manner but in the reverse di-
rection. Note that the ALST values should be computed
after the DCPL has been computed. With each node as-
signed AEST and ALST, the nodes on the DCP can be easily
identified. In the fcllowing theorem, we formalize the con-
dition for a node to be a DCP node.

THEOREM 2. If, AEST(n;, PE(n,)) = ALST(n,, PE(n,)), then n;
is a node on the DCP.

PROOE. Assume on the contrary that #; is not on the DCP. This
implies that it does not lie on any path of which the sum
of computation costs and communication costs equals
DCPL. Consider the path with the largest sum of com-
putation costs and communication costs, from an entry
node 7, to an exit node ny, going through ;. Then, by the
definitions of AEST and ALST, AEST(ni, PE(ni )) is equal
to the sum of computation costs and communication
costs from 71, to ; excluding w(n); and ALST(n;, PE(n;))
is equal to the sum of computation costs and communi-
cation costs from 1, to 11 This can be deduced from the
fact that the path from 1y to n; is the longest path from
any entry node to n; and the path from 7; to n; is the
longest path from n; to any exit node. Thus,
AEST(n;, PE(n;))+ ALST(n;, PE(n;))< DCPL which in
turn implies that AEST(ni,PE(ni));t ALST(ni,PE(nI.)).
Thus, 1; is on the DCP. O

Based on Theorem 2, we can identify a DCP node simply
by checking for equality of its AEST and ALST. In order to
reduce the value of the DCPL at each scheduling step, the

DCP node selected for scheduling is the one that has no

unscheduled parent node on the DCP. We call this the highest

node in the DCP. This gives a well-defined order of sched-

uling DCP nodes so that each DCP node is examined for
scheduling after its parent DCP node.

4.2 Processor Selection

While we are able to identify a DCP node, we still need a
method to select an appropriate processor for scheduling that
node into the most suitable idle time slot. As discussed ear-
lier, the scheduled nodes are not assigned fixed start times.
Rather, they are still assigned values of AEST and ALST. The
only constraint on the scheduled nodes on the same proces-
sor is that there is a total order among them which will not be
affected by the subsequent scheduling. The unfixed start
times of the nodes allow us to insert an important node con-
sidered in later steps into an earlier time slot by adjusting the
AESTs and ALSTs of the scheduled nodes on a processor. At
each step, the algorithm needs to find the most suitable proc-
essor which contains the most suitable place in time for a
node. We formalize a rule below governing the selection of a
valid place in time within a processor for a node.

RULE I. A node n; can be inserted into a processor ], which
contains the sequence of nodes {nh ow ...,n]m}, if there

exists some “k” such that
minf ALST(n,, )+ w(n), ALST(N,_,J)} -
max{ AEST(n,, J), AEST(n; , J)+w(n )} = w(n;)
where, k = 0,...,m, ALST(n, ,])= oo, and;
AEST(n; ,J)+w(n, ) = O provided none of the nodes in

{nh,njz,.‘.,n]k} is a descendant node of n; and none of

the nodes in \n, ,1, ,...,n }is an ancestor node of n;.
]k+l ]2 Im
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The above rule states that #; can be inserted into a processor
if it has a sufficiently large idle time slot, possibly created
by delaying the AESTs of some nodes, to accommodate it.
In order not to violate the precedence constraints among
nodes, a node must not be inserted in a time slot before
which there is a child node scheduled, or after which there
is an ancestor node scheduled. Note that as the only criterion
for a node to be a candidate for scheduling is that it is the
highest node on the DCP, it can happen that not all of its
parent nodes have been scheduled.

After n; is inserted into a processor, the communication
costs among the nodes in the processor are set to zero. In ad-
dition, to preserve the linearity, a zero cost edge is added
from the preceding node to #; and another zero cost edge is
added from #; to the succeeding node. Thus, n/s AEST and
ALST can change due to the linear ordering of the nodes ac-
cording to the start times within the processor. The determi-
nation of their new values is explained in the following rule.

RULEIL If a node n; is inserted to the processor ], then
AEST(n,, ) = max{ AEST(n,, J), AEST(n; , ]) + w(n; )}
and
ALST(n, J) = min{ ALST(n, ]), + w(n;), ALST(n, ,])}
where 1 is a value of k satisfying Rule I.

Using Rule I and Rule II, we can determine the set of

processors that can accommodate a node 7; at each step. We
can create an idle time slot in a processor by delaying the

AESTs of the scheduled nodes to accommodate #;. However,
{his is not done arbitrarily in our proposed algorithm. When
finding an idle time slot in a processor to accommodate a
node, in order to minimize the length of the DCP, we do not
delay the AESTSs of the scheduled nodes in a processor if pos-
sible. That is, we first search if there is already a large enough
idle time slot in the processor. This is because delaying the
AESTs of the scheduled nodes is likely to increase the final
schedule length since the final DCP may contain previously
scheduled nodes. Thus, when we consider inserting a node
into a processor, we first find if there is an idle time slot in the
processor under the constraint that all nodes are bounded to
start at their AESTs. If there is no such time slot, we ignore
the constraint and find another time slot.

Given a set of candidate processors that can accommodate
a node, we need to choose the best processor. As can be no-
ticed from the earlier discussion, the other scheduling algo-
rithms use a very straightforward criterion—selecting the
processor which gives the minimum start time for a node.
Although Theorem 1 states that the schedule length mono-
tonically decreases if we minimize the start time of nodes in
the scheduling process, this strategy can potentially generate
very inefficient schedules. For example, it can happen that
after a node is scheduled to a processor which gives the earli-
est start time, its heavily communicated children nodes can-
not be scheduled timely on the same processor possibly due
to the lack of valid idle time slots. In our proposed algorithm,
we do not employ this simple start time minimization strat-
egy. Instead, we use a start time looking-ahead strategy, which
is given in the following rule.

RULE III. Suppose that n, is being considered for scheduling. Let
1ic be the child node of n; which has the smallest difference

between its ALST and AEST. Then, n; should be scheduled
to the processor | which gives the smallest value of

AEST(n;, ])+ AEST(n,, )
where AEST(n,, [) is computed after tentatively inserting n; to .

Using Rule III, a node may not be inserted into a
processor which allows its earliest start time in the
scheduling process. This happens when it is found that
the start times of its children nodes are large. Thus, by
using this looking-ahead strategy for examining the
start times of critical children, the proposed algorithm
can avoid scheduling a node to an inappropriate proc-
essor. As a result, it avoids the danger of increasing the
schedule length in subsequent steps.

Exhaustively examining all the processors to select a suit-
able one can be very time consuming when the task graph is
very large (hence the number of processors to be examined is
also large). Observe that the start time of a node can only be
reduced by scheduling it to a processor which holds its par-
ent nodes. And, in order to reduce the start times of the
node's earlier scheduled children nodes, the processors
holding such children nodes are also candidates for exami-
nation. Thus, the set of processors to be examined can be re-
stricted to those holding the parent nodes and possibly chil-
dren nodes, together with a new processor.

It should be noted that at some scheduling step, there
may not be any unscheduled node with equal values of
AEST and ALST. This implies that the DCP contains only
the scheduled nodes and will not change in the subsequent
scheduling steps. Thus, in the subsequent scheduling steps,
there is no need to delay the AESTs of the scheduled nodes
into a processor when considering to insert an unscheduled
node. This is because making such a node to start earlier
will not improve the final schedule length. Consequently,
we can schedule each non-DCP node to any processor
which can accommodate it without increasing the DCPL.
That is, we can insert the non-DCP nodes to any processor
provided the schedule length is not increased.

4.3 The DCP Algorithm

The DCP algorithm is formalized in this section. It uses two
procedures: Find_Slot( ) and Select_Processor( ) which are
described below.

4.3.1 Find_Slot(n,, J, Condition)

1) Determine AEST(ni,]) and ALST(ni,I) on ] by taking
all communication costs among n; and its parent
nodes and children nodes scheduled on | to be zero

2) If Condition = DONT_PUSH, then check if there ex-
ists k satisfying Rule I without delaying the AEST
of any node in processor J; otherwise, check if there
exists k satisfying Rule I possibly by delaying the
AESTs of scme nodes in processor |

3) retum max{AEST(n, J), AEST(n; ,])+w(n; )} i there

exists such k with  being the smallest one; otherwise return oo,
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The procedure Find_Slot( ) checks whether there is a valid

time slot in the processor | to accommodate #; by using Rule
L. In addition to a node and a processor number, Find_Slot( )
takes a Boolean parameter Condition which indicates if de-
laying of AESTs of scheduled nodes in the processor | is al-
lowed. The complexity of Find_Slot( ) is O(v) since there are
O(v) nodes in a processor to be examined in order to find a
valid time slot in the worst case.

4.3.2 Select_Processor(n, Location)

1) If Location = On_DCP, then construct Processor_List in
the order: processors holding the parent nodes of n;,
processors holding the children nodes of #; and a new
processor; otherwise, construct Processor_List by only
including all the processors already in use

2) Best_Processor «— NULL

3) Best_Composite_AEST <o

4) while Processor_List is not empty do

5) ] < remove the first processor from Processor_List

6)  This_AEST « Find_Slot(n;, J, DONT_PUSH)

7)  if This_AEST = o and Location = On_DCP then

8) This_AEST < Find_Slot(n,, ], PUSH)

9) endif

10)  if This_AEST #co then

1 1. <~ unscheduled child node of »; with the
smallest difference between its ALST and AEST

12) Tentatively insert #; into |

13) Child_AEST « Find_Slot(n,, |, DONT_PUSH)

14) if Child_AEST + This_AEST <
Best_Composite_AEST then

15) Best_Frocessor < |

16) Best_Composite_ AEST « Child_AEST
+ This_AEST

17) end if

18) end if

19) end while
20) Schedule #; to Best_Processor. If n; cannot get scheduled
(n;is not a DCP node), schedule it to a new processor.

The procedure Select_Processor( ) first constructs a proc-
essors list in order to find the most suitable one to accom-

modate n;. If #; is on the DCP, only the processors contain-
ing its parent nodes and children nodes are considered be-
cause only these processors can possibly satisfy Rule III as
discussed earlier. The processors containing the parent

nodes of n; are given higher priorities to accommodate #;.
This will help reducing the start times of other descendant

nodes of 7; that are examined later. If #; is not on the DCP,
Select_Processor( ) tries all the processors already in use be-
cause a processor which does not contain any of its parent
nodes and children nodes is also suitable, provided that it
has a large enough time slot. However, no delaying is al-
lowed for scheduling such a node since it is undesirable to
increase the start times of the scheduled nodes. In selecting
the most suitable processor, a parameter composed of the
node's AEST and also its critical child node's AEST is used.
Using this parameter can avoid scheduling the node too
early to a processor that cannot accommodate the node's
critical child node. The complexity of Select_Processor( ) is

O(vz). With the procedures Find_Slot( ) and Select_Processor(),
the DCP algorithm is formalized below.

4.3.3 The DCP Algorithm

1) Compute AEST and ALST for all nodes

2) while not all nodes scheduled do

3)  n; « the highest node with the smallest difference
between its ALST and AEST; break ties by choosing
the one with a smaller AEST

4) If n/s ALST is equal to its AEST, then call
Select_Processor(n;, On_DCP); otherwise,
call Select_Processor(n;, Not_On_DCP)

5)  Update AEST and ALST for all nodes

6) end while

7) Make all nodes’ start times to be their respective AESTs

The DCP algorithm continues to perform scheduling all the
DCP nodes first. It updates the AEST and ALST values dy-
namically after each scheduling step in order to determine the
next DCP node. Finally, it assigns the actual start times of each
node to be its AEST. The complexity of the algorithm is

O(v3 ) because there is v calls to the procedure Select_Processor().

5 AN APPLICATION EXAMPLE

In this section, an example task graph is used to illustrate the
effectiveness of the proposed algorithm. For comparison, the
schedules generated by the other six scheduling algorithms
discussed earlier are also presented. The task graph used is a
macro data-flow graph which represents the parallel Gaussian
elimination algorithm written in an SPMD style [10], [37] and
is shown in Fig. 2. Note that the edges in the two CPs in this
task graph are shown with thick arrows.

)
80
S
%0 120
"5
(30 J

Fig. 2. A parallel Gaussian elimination task graph.
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The schedule of the Gaussian elimination task graph gener-
ated by the EZ algorithm is shown in Fig. 3(left). The EZ algo-
rithm, as mentioned above, creates a list of edges sorted in a
descending order of communication costs. According to the
edge list for this example, it schedules nodes in the order: n,,
Tz, Mg, N5, Ny, T3, Ty, Flyg, Mgy, Thor g, Mg, Mgy Mas, Mg, Mz, Thg, M7
Note that the nodes scheduled to the processor are ordered in
decreasing static levels. Thus, for example, although , is se-
lected for scheduling earlier than 7;,, it is scheduled as the last
node in the processor eventually because it has the smallest
static level (which is equal to its computation cost). It can be
seen that most of the CP nodes are not scheduled to occupy
earlier time slots. Instead, the relatively less important nodes,
such as #s, 1, are scheduled to occupy the important time
slots. The task graph in this example is "over-clustered" by the
EZ algorithm. The EZ algorithm has the tendency of packing
tasks together by reducing parallelism. This is because the EZ
aJgorithm assigns higher priorities to the nodes of the edge
having the highest communication cost. These nodes, which
may not necessarily be on the CP, may then be scheduled to
occupy earlier time slots. It should be noted that the final
schedule length may not be reduced by such edge-zeroing
action. When the more important nodes are considered at later
steps, they may have to be scheduled within later idle time
slots. This effect propagates downward along the CP and can
eventually lead to a longer schedule length.

The schedule of the Gaussian elimination task graph
generated by the MCP algorithm is shown in Fig. 3(right).
The MCP algorithm schedules the task graph in the order:
1y, Nz, g, My, Mg, s, T2, Mg, Mer M1y M1, Mie, Mass Mo, Mg, Mg, Tz,
n1g. The MCP algorithm schedules nodes properly until it
considers node 1,y The nodes n, to 1y, are scheduled to
start at the earliest possible times. However, when 4 is
considered, it is found that its start time on PE 1 is 300
while its start time on PE 0 is 320. Thus, #,, is scheduled to
PE 1. Consider the scheduling of the node n,4. Since 1y has
been scheduled to PE 1, ny, can start only at time 410 on
either PE O or PE 1 because of the data dependency from
nodes 1,5 and 1y,. The MCP algorithm schedules it to PE 0
since it selects processors from left to right. If n;, were
scheduled to PE 0 instead of PE 1, ny4 could have started
earlier. Thus, scheduling 7,5 to PE 1 is not an intelligent
decision because this delays the start time of 1,43 descen-
dants. Similar to 710, the node 1y, is scheduled to start at its
earliest possible time on PE 2. Similarly, 7, is scheduled to
PE 0 which gives the smallest start time (as 74 is scheduled
to PE 0). Notice that the adverse effect of inappropriate
scheduling of ny, propagates downward. In subsequent
steps, ny5 is scheduled on PE 1, to which ny; has been
scheduled. The nodes n,, ng, 15 and n;, are scheduled to
start at the earliest times. However, it should be noted that
ny; can start earlier if 1,4 is properly scheduled. Similar to
the case of 7y, the improper scheduling of n;5 affects the
scheduling of nyg. It is apparent from this example that the
MCP algorithm does not take care of the scheduling of the
descendants of a node due to the straightforward start time
minimization greedy strategy.
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Fig. 3. The schedule of the Gaussian elimination taskgraph generated
by (left) the EZ algorithm (schedule length = 600 time units); (right) the
ETF, DLS, and MCP algorithms (schedule length = 520 time units).

The DLS algorithm schedules nodes in the order: ny, 13, ny,
Hy, M5, Mg, o, Ty, 1o, Mg M1y, Mg, M3, Myg, Mys, Mg M1z, Mg and
generates the same schedule as the MCP algorithm. Similar
to the MCP algorithm, the DLS algorithm schedules nodes
properly until it considers 71y The critical nodes, such as ny,
and ny5 are also not scheduled properly. As discussed above,
the DLS algorithm schedules a node to a processor which
gives the minimum start time without paying any regard to
handling the descendant nodes. In this respect, the DLS algo-
rithm has the same problems as the MCP algorithm, as
shown in this example. The ETF algorithm also generates the
same schedule as the MCP algorithm with the following or-
der: 1y, 113, 17, 1y, s, Mg, Ty, Mg, Ty, Mg, Moy M1, Tz, Mg, Mys, Thig,
717, 1113. The ETF algorithm selects nodes for scheduling based
on start times only. For example, 1, is selected for scheduling
before ng because it has a smaller start time.

The schedule generated by the DSC algorithm is shown in
Fig. 4. The schedule length is shorter than those of the MCP,
DLS, and ETF algorithms. The DSC algorithm schedules the
nodes in the order: 1y 1y, 117, 1y, N, N1y, Myz, Mg, Mg, M5, Mg, Mg Mg
717, N11, Ty, T1g, . Similar to the MCP and DLS algorithms, g
is not properly scheduled because of the same reason—the
DSC algorithm tries to minimize the start time of a node at
each step without considering the effect on subsequent sched-
uling of the descendant nodes. As can be seen, 11,4 and 744 can-
not start earlier due to the inappropriate scheduling of 7.
When 75 is considered, it is scheduled to start at time 410 on
PE 5. However, when ny5 is considered, it is found that its start
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time can be reduced from 550 (on PE 4) to 480 (also on PE 4) by
rescheduling 75 to PE 0 from PE 5. This rescheduling process
causes the DSC algorithm to generate a better schedule than
the MCP, DLS, and ETF algorithms. Note that this process is
not applicable to the scheduling of 1,4 because the DSC algo-
rithm finds that n,4's start time cannot be reduced even if 7y, is
rescheduled. It can be seen that the set of nodes {n4, n5, 1136,
147, nyg) is scheduled to PE 0 but these nodes still cannot start at
the earliest times. This is because after 7,y has to wait for the
data from ns. Although n5 can start at its earliest time, the
schedule Jength cannot be improved. Similar to the MCP, DLS,
and ETF algorithms, the straightforward start time minimization
strategy of the DSC algorithm also makes it unable to reduce
the start times of the CP nodes {1y, 114 1,7, 1135} by delaying
the start times of nodes 715 and 1,5 even though it can avoid the
problem of scheduling node ;5 too early. Furthermore, the
DSC algorithm wastes processors without improving the
schedule length.

300

460 = %

Fig. 4. The schedule of the Gaussian elimination task graph generated
by the DSC algorithm (schedule length = 460 time units).

The schedule generated by the MD algorithm is shown
in Fig. 5(left). The MD algorithm generates a better sched-
ule compared to the above five algorithms. The MD algo-
rithm schedules nodes in the order: ny, ns, 1y, 1y, 1y, Nyo,
N5, Mg, Mug, Mg, Mes M11, Mis, Hig, iy, N1z, Mg, M. As can be
seen, all the CP nodes are scheduled to the same processor
PE 0. The MD algorithm is able to avoid scheduling nodes
19 and 1,5 too early so that the set of nodes {nyy, ny4 197,
nygt can start immediately after the previous one finishes.
However, it has one major problem which makes the
schedule length still longer than the best possible. As
mentioned in earlier discussion, the MD algorithm scans
for a suitable processor for a node from left to right. It
schedules the node to a processor which has a large
enough idle time slot to accommodate that node without
making any effort to minimize the start time. Notice that

o is scheduled to PE 0 instead of PE 1 because the MD
algorithm scans for suitable processor from left to right.
Thus, 1y is "accidentally" scheduled to occupy a proper
idle time slot. Consequently, nodes #,, and 14 can start at
their earliest possible times. Consider, for example, the
scheduling of ng. As there is a large enough slot, which is
created by pushing nodes downward, on PE 0 to accom-
modate ng, it is scheduled to PE 0. Obviously, ng is a rela-
tively unimportant node compared with the nodes ny, ny,
T12, Mg, N4 and nye. Pushing these nodes downward leads
to an inefficient schedule. The MD algorithm also acci-
dentally schedules 75 to the proper processor so that n,g
can also be properly scheduled.

The schedule generated by the DCP algorithm is shown in
Fig. 5(right). Let us examine the scheduling process of the
DCP algorithm step by step. The AEST and ALST values of
all nodes are shown in Table 2a. As can be noticed, the nodes
on the CP can be identified by those having equal values of
AEST and ALST. At this step, the highest CP node n, is
selected for scheduling. After scheduling the first three CP
nodes {ny, n3, n7}, the AEST and ALST values of all nodes are
shown in Table 2b. The scheduled nodes are marked by as-
terisks. From this table, we can observe that the CP changes
to become {n,, ny, ny, 11y, My, g 117} (note that the last node
can also be 75). The DCP algorithm then selects n, to be the
next node for scheduling. It is apparent from this scenario
that using the AEST and ALST values, the DCP algorithm can
always select the most important node for scheduling. The
scheduling steps of the DCP algorithm are depicted in Table 3.
In the table, we show the node selected for scheduling as well
as its critical child at each step. There are also four columns
showing the "composite AEST" values with the first number
of each entry being the AEST of the node to be scheduled,
whereas the second number being the AEST of its critical
child. Although the DCP algorithm assumes the availability
of unlimited number of processors, only one new processor is
considered at each step. This is because the AEST value of a
node cannot be improved even if more new processors are
considered. One related point is that the schedule length
cannot be improved whenever a node is scheduled to a new
processor. This is obvious because no communication cost of
the edges to the node can be zeroed. Also note that only the
processors holding the parent and children nodes of a node
are considered. Thus, for example, PE 1 is not considered for
scheduling of the node #y,. Similarly, PE 1 and PE 2 are not
considered for scheduling of the node n,. To see how the
"looking ahead" processor selection strategy works, consider
the scheduling of the node n;. As can be noticed, its AEST
value is the smallest if it is scheduled to PE 1. However, since
its critical child node #4 has a much larger AEST value on PE
1 than on PE 0, the node 7y, is consequently scheduled to PE
0 instead of PE 1. Finally, it should be noted that after the
node 43 is scheduled, all the CP nodes have been scheduled
and the schedule length cannot be improved any further.
And, the DCP algorithm only examines the three processors
already in use (i.e., PE 0, PE 1 and PE 2) for the scheduling of
the remaining three relatively unimportant nodes #,3, ng and
n, (if this is not done, the node n, will be scheduled to a new
processor which can allow a smaller AEST value). Eventu-
ally, a schedule length of 440 time units is obtained.
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460

Fig. 5. The schedules of the Gaussian elimination task graph gener-
ated by (left) the MD algorithm (schedule length = 460 time units);
(right) the DCP algorithm (schedule length = 440 time units).

TABLE 2
THE AEST AND ALST VALUES OF THE NODES
IN THE GAUSSIAN ELIMINATION TASK GRAPH

(a) (b)

Node AEST ALST Node AEST ALST
717 (CP) 0 0 *n; (CP) 0 0
ny 200 980 ny 200 800
n3 (CP) 200 200 13 80 100
ng 200 380 n4 (CP) 200 200
15 200 540 ns 200 360
ng 200 680 g 200 500
17 {CP) 320 320 *ny 120 140
ng 500 990 ng 300 810
1 (CP) 500 500 119 (CP) 320 320
g 500 660 n10 320 480
n 500 800 ny 320 620
nyy (CP) | 610 610 ny; (CP) | 430 430
g3 770 1000 ng3 590 820
ny4 (CP) 770 770 114 (CP) 590 590
s 770 910 nys 590 730
n16 (CP) 870 870 115 (CP) 690 690
ny7 (CP) 1010 1010 197 (CP) 830 830
1115 (CP) 1010 1010 113 (CP) 830 830

(a) before scheduling the first node,
(b) after scheduling three nodes.

6 PERFORMANCE AND COMPARISON

In this section, we present a performance comparison of all
seven algorithms. For this purpose, we consider a large set of
task graphs as the workload for testing the algorithms. The
set contains regular task graphs representing various parallel
algorithms and also synthetic task graphs representing com-
monly encountered algorithmic structures. The generation of
the workload is described in the first subsection. The per-
formance comparison is carried out in four contexts. First, we
compare the schedule lengths generated by the algorithms.
Second, we present a global pair-wise comparison of all

algorithms so that we can rank the algorithms by their per-
formance. Third, we compare the number of processors used
by the algorithms. Finally, we compare the average running
times of these algorithms on a Sun SPARC IPX workstation.

TABLE 3
THE SCHEDULING STEPS OF THE DCP ALGORITHM
FOR THE TASK GRAPH IN FIGURE 2

Step Node |Critical Composite AEST Sch. | SL
Child | PEO PE1 PE2 PE3 to
1 ny ny 0+320 N.C N.C. N.C. PEC | 1020
2 n3 ny 80+120 {200+240 | N.C. N.C. PEO | 900
3 ny 12 120 + 490 | 200 +490 | N.C. NC. PEO | 840
4 ny g 180 +220 | 200 + 300 [ N.C. N.C. PEC | 820
5 ng n1p 220 +250 | 300 +330 | N.C. N.C. PEC | 740
6 1 16 250 +590 | 330 + 590 | N.C. N.C. PEO | 680
7 s ne | NR 200 +300 | N.C. NC. PE1 | 680
8 w0 Img | 3204350 | 300 +410 | 320 +410 | N.C. PEO | 680
9 na  |my | 3504670 (N.C. 430 + 670 | N.C. PEO | 600
10 ne |ms | 3704530 | NC. 450+ 530 | N.C. PEO | 540
1 e . NR. N.C. 200 +300 | N.C. PE2 | 540
12 g s N.C. NC. 300 +410 | 320+ 410 | PE2 | 520
13 ny; NIL 390 +0 N.C. N.C. 510+0 PEO | 520
14 15 n1g 410+ 430 | N.C. 410+ 510 | 410+ 510 | PEO | 520
15 n1g NIL 430+0 |N.C N.C. 510+0 | PEO | 440
16 n13 NIL 290+0 410+0 410+0 NC. PEO | 440
17 ng NIL NR. 300+0 330+0 N.C. PEL | 440
18 7y NIL N.R. 240+0 | 240+0 | N.C. PE2 | 440

(SL denotes schedule length; “N.R.” indicates there is “no room” for the node
on the processor; “N.C.” indicates the processor is “not considered”)

6.1 Workload

In our study, we first considered the macro data-flow graphs
for the Gaussian elimination algorithm of different sizes. We
also considered the macro data-flow graphs for three other
parallel algorithms: fast Fourier transform (FFT) [2], mean
value analysis LU-decomposition [26], and Laplace equation
solver [37]. These task graphs correspond to the macro data-
flow graphs for the corresponding parallel algorithms written
in a SPMD style for distributed-memory systems. In addition,
we generated synthetic task graphs of various commonly en-
countered structures: in-tree, out-tree, fork-join, and com-
pletely random task graphs [2]. For each category, we gener-
ated a number of graphs by varying the number of nodes and
values of CCR. For the in-tree, out-tree and fork-join task
graphs, edges between two levels were randomly placed. The
cost of each node was randomly selected from a normal distri-
bution with mean equal to the specified average computation
cost. The cost of each edge was also randomly selected from a
normal distribution with mean equal to the product of the
average computation cost and the CCR. Miniature examples of
each type of graph are shown in Fig. 6.

The Gaussian elimination, LU-decomposition, mean value
analysis, and Laplace equation solver algorithms can be charac-
terized by the size of the input data matrix because the number
of nodes and edges in the task graph depends on the size of this
matrix. For example, the task graph for Gaussian elimination
algorithm shown in Fig. 2 is for a matrix of size 4. The number
of nodes in the task graphs of these algorithms is roughly

O(Nz) where N is the size of the matrix. For our experiments,

we varied the matrix sizes so that the graph size ranged from
about 20 to 200 nodes. For FFT task graphs, the graph size is
roughly OM2™) where M is the number of input points which
is called the order of the FFT. Again, we varied the orders so that
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() (d)

(g)

Fig. 6. Miniature example for (a) an in-tree task graph; (b) an out-tree
task graph; (c) a fork-join task graph; (d) a LU-decomposition task
graph; (e) a mean value analysis task graph; (f) a Laplace equation
solver task graph; and (g) a FFT task graph.

the graph size ranged from about 20 to 200 nodes. For the in-
tree, out-tree, fork-join, and completely random task graphs, we
varied the number of nodes from 20 to 200 with increments of
20. For each size of the task graph, we generated six different
graphs for CCR equal t0 0.1, 0.5, 1.0, 2.0, 5.0 and 10.0.

6.2 Comparison of Schedule Lengths

For the first comparison, we present the schedule lengths pro-
duced by each algorithm for various types of task graphs. The
normalized schedule lengths (NSL) for each type of graph
structure are given in the charts shown in Fig. 7 to Fig. 15,
which were obtained by normalizing the schedule lengths
produced by each algorithms to the lower bound. This lower
bound was determined by taking the sum of computation
costs of the nodes on the original critical path. It should be
noted that the lower bound may not always be possible to

achieve, and the optimal schedule length may be greater than
this bound. Each of these figures also contains a ranking of the
algorithms based on the observed schedule lengths for that
particular task graph structure. This ranking indicates how
each algorithm performed for that type of task graphs.

As can be observed from Fig. 7 to Fig. 15, the ranking of the
DLS, MCP, MD, ETF, DSC, and EZ algorithms varies from
graph to graph while the DCP algorithm ranks as the best for
all types of graphs. From these charts, we also observe that
the values of the NSL for all algorithms show a slightly in-
creasing trend if the task graph size is increased. This is due to
the fact that the proportion of nodes other than those on the
CP increases which makes it difficult to reach the lower
bound. In the following, we discuss the relative performance
of all the algorithms for each type of task graph.

o Gaussian elimination graphs. For the Gaussian elimi-
nation task graphs, the CP-based algorithms (DCP,
MD, MCP, and DSC) have better performance (see
Fig. 7). This is because each Gaussian elimination
task graph has only one or two dominating CPs.
Thus, an efficient scheduling of nodes on the CPs can
lead to good schedules. However, we found that the
re-scheduling process in DSC can lead to generating
very inefficient schedules, especially when the task
graph is large. As EZ only attempts to reduce the
communication instead of fully exploiting the paral-
lelism, it also generates very inefficient schedules.

e Laplace equation solver graphs. For the Laplace equa-
tion solver task graphs (see Fig. 8), MD, MCP and
DSC did not show good performance because these
algorithms cannot efficiently schedule nodes on the
CPs. The reason is that there are many intervening
CPs in every Laplace equation solver task graph. It
can be seen that DCP outperformed other algorithms
by a very large margin. This is because DCP can ex-
ploit the inherent parallelism by not scheduling some
of the CP nodes too early in the Laplace equation task
graphs by the looking-ahead strategy. DSC per-
formed better than both MD and MCP because it
schedules CP nodes as soon as possible by making
use of more processors. On the other hand, ETF and
DLS produced a similar performance.

o LU-decomposition graphs. As can be noticed from Fig. 9,
in the case of LU-decomposition, DCP again per-
formed the best out of all other algorithms. The ranking
of other algorithms is almost the same as in the case of
Gaussian elimination task graph probably because the
LU-decomposition task graph also has only one CP. We
can observe that DLS and MCP yielded a similar per-
formance. Also, DSC, MD and ETF gave a similar per-
formance that is slightly worse than DLS and MCP.

o FFT graphs. For the FFT task graphs, we can see from Fig. 10
that the CP-based algorithms performed slightly better.
This is due to the fact that although all paths in a FFT
task graph are CPs, there is not much intervention
among them. DCP and MD performed slightly better
than the other CP-based algorittuns probably because
both of them do not delay the scheduling of the CP
nodes.
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Fig. 15. Average normalized schedule lengths (with respect to lower
bounds at various graph sizes for completely random graphs; algorithm
ranking: DCP, MD, (MCP, DLS, ETF), EZ, DSC.

o Mean value analysis graphs. For the mean value analy-
sis task graphs, all CP-based algorithms, except MD,
performed better (see Fig. 11). Similar to the FFT task
graphs, all paths are CPs but they intervene largely
with each other. MD cannot handle this kind of situa-
tion efficiently due to its processor selection criterion.
ETF, which gave a similar performance as MCP, per-
formed the best among other non-CP-based algo-
rithms.

o Fork-join graphs. For the fork-join task graphs, all CP-
based algorithms performed considerably better than
the other two algorithms (see Fig. 12). As discussed
above, the reason is that there is only one CP in every
fork-join task graph. Here, ETF once again performed
the best among other non-CP-based algorithms.

e In-tree graphs. For the in-tree task graphs, with the ex-
ception of the DCP algorithm, the other CP-based algo-
rithms did not perform well (see Fig. 13). This is because
although there is only one CP in each in-tree task graph,
there are many inward algorithm can schedule different
sections of the CPs to different nodes incident on the CP.
The DCP pracessors to avoid delaying their start times
by an efficient scheduling of the inward nodes to the CP.
The other CP-based algorithms do not handle these
cases very well because they try to start every node on
the CP as early as possible.

o Out-tree graphs. In each out-tree task graph, there is no
inward node but many outward nodes emerging
from the single CP. Again, the other CP-based algo-
rithms did not perform well because they tend to
schedule the only CP to one processor. The results
shown in Fig. 14 indicate that the final schedule
lengths do not always depend on the CP only but also
on the outward nodes from the CP.

o Completely random graphs. For completely random task
graphs, the DSC and EZ algorithms performed worse in
general compared with other algorithms (see Fig. 15).
DSC performed considerably worse in quite a number
of cases due to the fact that the re-scheduling process
can severely block the subsequent scheduling of
lower level nodes on the CP.

In general, we can conclude from the above observa-
tion that when a task graph has only a few intervening
CPs, the CP-based algorithms can perform better. On the
other hand, if the task graph contains many CPs, the CP-

based algorithms can be "confused" by a particular CP in
that the algorithms attempt to start all nodes on that CP
as early as possible without noting that the nodes on
other intervening CPs are delayed. The DCP algorithm
tackles this drawback because it always performs a
looking ahead processor selection so that it can avoid
being confused by a particular CP.

6.3 A Global Comparison

In order to rank all the algorithms in terms of the sched-
uled lengths, we made a global comparison in which we
observed the number of times each algorithm performed
better, worse or the same compared to each of the other
six algorithms. This comparison is given in a graphical
form shown in Fig. 16. Here, each bcx compares two al-
gorithms—the algorithm on the left side and the algo-
rithm on the top. Each comparison is based on a total of
966 task graphs which were generated by using the com-
bination of all of the graph structures mentioned above
with various number of nodes and CCRs. Each box con-
tains three numbers preceded by “>”, “<”, and “=" signs
which indicate the number of times the algorithm on the
left performed better, worse, and the same, respectively,
compared to the algorithm shown on the top. For exam-
ple, the DCP algorithm performed better than the MD
algorithm in 699 cases, performed worse in 73 cases, and
performed the same in 194 cases. Similarly, the DSC al-
gorithm performed better than the DLS algorithm in 362
cases, performed worse in 427 cases, and performed the
same in 177 cases. An additional box for each algorithm
compares that algorithm with all other algorithms com-
bined. We can notice that the proposed DCP algorithm
outperformed all other algorithms. Furthermore, the
numbers given in Fig. 16 indicate that the difference
between the performance of DCP and other algorithms
was much higher compared to the difference between the
performance of the other six algorithms when compared
amongst each other. Based on these experiments, we can
rank all seven algorithms in the following order: DCP,
MCP, DLS, ETF, MD, DSC, and EZ. It should be noted
that ETF gave a performance close to DLS, even though
the complexity of DLS is higher.
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Fig. 16. A global comparison of the seven algorithms in terms of better,
worse and equal performance.
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6.4 Number of Processors

Another quality of measure for a scheduling algorithm is the
number of processors used because each algorithm "spends”
a processor in a different way.* Fig. 17 shows the average
number of processors used by each algorithm for different
graph sizes. These averages were taken across all types of
task graphs and values of CCR. We observe that DSC used
considerably large number of processors compared to the
other algorithms while DLS and MCP used approximately
the same number of processors. Here, MD outperformed all
other algorithms while DCP used slightly more processors
than MD. However, this is due to the deficiency of MD be-
cause it tries to cluster task on fewer processors. As a results,
the schedules generated by MD are not very well load bal-
anced. On the other hand, DCP overcomes this deficiency of
MD and produces better schedule lengths by performing
some load balancing at the expense of a few more processors.
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Fig. 17. Average number of processors used by each afgorithm; algo-
rithm ranking; MD, DCP, MCP, ETF, DLS, EZ, DSC.

6.5 Comparison of Running Times

Finally, we compare the running times of these algorithms
which are given in Fig. 18. From this figure, we can immedi-
ately notice that DLS is slower than the other algorithms. It
should be noted that the version of DLS used by us was the
one that generates the best solution but has a higher complex-
ity. Both DSC and MCP are Jow complexity algorithms. How-
ever, they do not always produce short schedule lengths. The
running times of DCP were comparable to MD but more than
DSC and MCP. However, the running times of DCP were ad-
missible. Note that the algorithm ranking shown in Fig. 18 is
consistent with the given complexities of these algorithms.
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Fig. 18. Average running time for each aigorithm; algorithm ranking;

DSC, ETF, MCP, EZ, DCP, MD, DLS.

2. Although MCP, DLS, and ETF assume a limited number of processors,
they are given a very large number of processors in our experiment so that
this is not a limiting factor to their performance.

7 CONCLUSIONS

In this paper, we have presented a new scheduling algo-
rithm which outperforms six other algorithms. The dif-
ference between the performance of our algorithm and
the other algorithms is also much higher than the differ-
ence between the performance of other algorithms when
compared against each other. The proposed algorithm
works better on various types of graph structures. The
number of processors used and the running time of the
proposed algorithm makes it a viable choice for static
compile-time scheduling of macro-data flow graphs and
other task graphs onto multiprocessors. The proposed
algorithm in its present form assumes a network of fully
connected processors but can be generalized to other
networks such as hypercube, mesh, etc. In order to ac-
complish that, the procedure for computing the start
times of nodes on the processors will need to be modi-
fied and it will need to take into account the hop dis-
tances of the processors holding the parent nodes.
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