
Isoefficiency : 
Measuring the 
Scalability of Parallel 
Algorithms and 
Architectures 
Ananth Y. Grama, Anshul Gupta, and Vipin Kumar 
University of Minnesota 

Isoeffiency 
analysis helps us 
determine the best 
akorith m/a rch itecture 
combination for a 
particular p ro blem 
without explicitly 
analyzing all possible 
combinations under 
all possible conditions. 

An earlier version of this article appeared as 
“Analyzing Performance of Large-scale 
Parallel Systems” by Anshul Gupta and Vipin 
Kumar on pp. 144-153 of the Proceedings ofthe 
26th Hawaii International Confwence MI System 
Sciences, published in 1993 by IEEE 
Computer Society Press, Los Alamitos, Calif. 

T he fastest sequential algorithm for a given problem is the 
best sequential algorithm. But determining the best par- 
allel algorithm is considerably more complicated. A par- 
allel algorithm that solves a problem well using a fixed 
number of processors on a particular architecture may 

perform poorly if either of these parameters changes. Analyzing the per- 
formance of a given parallel algorithdarchitecture calls for a compre- 
hensive method that accounts for scalability: the system’s ability to 
increase speedup as the number of processors increases. 

The  isoefficiency function is one of many parallel performance met- 
rics that measure It relates problem size to the number of 
processors required to maintain a system’s efficiency, and it lets us deter- 
mine scalability with respect to the number of processors, their speed, 
and the communication bandwidth of the interconnection network. The  
isoefficiency function also succinctly captures the characteristics of a par- 
ticular algorithdarchitecture combination in a single expression, letting 
us compare various combinations for a range of problem sizes and num- 
bers of processors. Thus, we can determine the best combination for a 
problem without explicitly analyzing all possible combinations under all 
possible conditions. (The sidebar on page 14 defines many basic concepts 
of scalability analysis and presents an example that is revisited through- 
out the article.) 

12 1063-6SS2/93/0800-0012 $3.000 1993 IEEE IEEE Parallel & Distributed Technology 



Scalable parallel systems 
The number of processors limits a par- 
allel system's speedup: The  speedup 
for a single processor is one, but if 
more are used, the speedup is usually 
less than the number of processors. 

Let's again consider the example in 
the sidebar. Figure 1 shows the speedup 
for a few values of n on up to 3 2 proces- 
sors; Table 1 shows the corresponding 
efficiencies. The speedup does not 
increase linearly with the number of 

6? 10 'T 

igure 1. Speedup versus number of processors for adding a l i s t  of 
numbers on a hypercube. 

processors; instead, it tends to saturate. In other words, the 
efficiency drops as the number of processors increases. Tlus 
is true for all parallel systems, and is often referred to as 
Amdahl's law. But the figure and table also show a higher 
speedup (efficiency) as the problem size increases on the 
same number of processors. 

If increasing the number of processors reduces effi- 
ciency, and increasing the problem size increases effi- 
ciency, we should be able to keep efficiency constant by 
increasing both simultaneously. For example, the table 
shows that the efficiency of adding 64 numbers on a 
four-processor hypercube is 0.80. When we increase p 
to eight and n to 192, the efficiency remains 0.80, as it 
does when we further increase p to 16 and n to 512. 
Many parallel systems behave in this way. We call them 
scalable parallel systems. 

The isoefficiency function 
A natural question at this point is: At what rate should 
we increase the problem size with respect to the num- 
ber of processors to keep the efficiency fixed? The  
answer varies depending on the system. 

In the sidebar, we noted that the sequential execution 
time T,  equals the problem size Wmultiplied by the 
cost of executing each operation (t,). Making this sub- 
stitution in the efficiency equation gives us 

If the problem size Wis constant while p increases, 
then the efficiency decreases because the total overhead 
T, increases with p .  If Wincreases while p is constant, 
then, for scalable parallel systems, the efficiency increas- 
es because To grows slower than @(w) (that is, slower 
than all functions with the same growth rate as LV). We 
can maintain the efficiency for these parallel systems at 

Table 1. Efficiency as a function of n and p for adding 
n numbers on p-processor hypercubes. 

n =  64 1.0 3 0  .57 .33 .17 

n=320 1.0 .95 .87 .71 .50 
n=512 1.0 .97 .91 .80 .62 

n =  192 1.0 .92 .80 .60 .38 

a desired value (between 0 and 1) by increasingp, pro- 
vided W also increases. For different parallel systems, 
we must increase Wat  different rates with respect top 
to maintain a fixed efficiency. For example, W might 
need to grow as an exponential function ofp. Such sys- 
tems are poorly scalable: It is difficult to obtain good 
speedups for a large number of processors on such sys- 
tems unless the problem size is enormous. On the other 
hand, if Wneeds to grow only linearly with respect to 
p ,  then the system is highly scalable: Its speedups 
increase linearly with respect to the number of proces- 
sors for problem sizes increasing at reasonable rates. 

For scalable parallel systems, we can maintain effi- 
ciency at a desired value (0 < E < 1) if T,/Wis constant: 

w='(").. t r  1 - E  

If K = E/(t,( 1 - E ) )  is a constant that depends on the 
efficiency, then we can reduce the last equation to 

W =  KT, 

August 1993 13 



Through algebraic manipulations, we can use this 
equation to obtain Was a function ofp. This function 
dictates how Wmust grow to maintain a fixed efficien- 
cy as p increases. This is the system’s isoeficienqificnc- 
tion. It determines the ease with which the system yields 
speedup in proportion to the number of processors. A 
small isoefficiency function implies that small incre- 
ments in the problem size are sufficient to use an 
increasing number of processors efficiently; hence, the 
system is highly scalable. Conversely, a large isoeffi- 
ciency function indicates a poorly scalable parallel sys- 
tem. Furthermore, the isoefficiency function does not 
exist for some parallel systems, because their efficiency 
cannot be kept constant as p increases, no matter how 
fast the problem size increases. 

For the equation above, if we substitute the value of 
T, from the example in the sidebar, we get W = 
2 Kp log p .  Thus, this system’s isoefficiency function is 
@( p log p) .  If the number of processors increases from 
p top’, the problem size (in this case n) must increase by 
a factor of (p’ logp’)/( p logp) to maintain the same effi- 
ciency. In other words, increasing the number of proces- 

sors by a factor of p’/p requires n to be increased by a 
factor of (p’ logp’)/(p logp) to increase the speedup by 
a factor ofp‘/p. 

In this simple example of adding n numbers, the com- 
munication overhead is a function of onlyp. But a typ- 
ical overhead function can have several terms of differ- 
ent orders of magnitude with respect to both the 
problem size and the number of processors, making it 
impossible (or a t  least cumbersome) to obtain the iso- 
efficiency function as a closed form function ofp. 

Consider a parallel system for which 
T - - p3/2 +p3/4w3/4 

The equation W =  KT, becomes 
W =  Kp3/2 + Kp3/4W3/4 

For this system, it is difficult to solve for Win terms of 
p .  However, since the condition for constant efficiency 
is that the ratio of T, and Wremains fixed, then ifp and 
Wincrease, the efficiency will not drop if none of the 
terms of T, grows faster than W. W e  thus balance each 
term of T, against Wto compute the corresponding iso- 

14 IEEE Parallel & Distributed Technology 



3 7 11 15 
2 6 10 14 
1 5 9 1 3  
0 4 8 1 2  

~- ~~~~ ___ 

efficiency function. The term that causes the problem 
size to grow fastest with respect top determines the sys- 
tem’s overall isoefficiency function. Solving for the first 
term in the above equation gives us 

Solving for the second term gives us 
W =  Kp3/4W3/4 
Wv4 = Kp3/4 

W =  K4p3 = 0 ( p 3 )  

So if the problem size grows as 0 ( p 3 / ’ )  and @ ( p 3 ) ,  
respectively, for the first two terms of T,, then efficien- 
cy will not decrease as p increases The  isoefficiency 
function for this system is therefore O(p3),  which is the 
higher rate. If Wgrows as 0 ( p 3 ) ,  then T, will remain of 
the same order as W. 

OFTIMUKNG COST 
A parallel system is cost-optimal if the product of the 
number of processors and the parallel execution time is 

proportional to the execution time of the best serial 
algorithm on a single processor: 

In the sidebar, we noted that pTp = TI + T,, so 

T I + T , =  W 

Since TI = Wt,, we have 

wt,+T,- w 
W- T, 

This suggests that a parallel system is cost-optimal if its 
overhead function and the problem size are of the same 
order of magnitude. This is exactly the condition 
required to maintain a fixed efficiency while increasing 
the number of processors. So, conforming to the isoef- 
ficiency relation between Wand p keeps a parallel sys- 
tem cost-optimal as it is scaled up. 

How small can an isoefficiency function be, and what 
is an ideally scalable parallel system? If a problem con- 

August 1993 15 



sists of Wbasic operations, then a cost-optimal system 
can use no more than Wprocessors. If the problem size 
grows a t  a rate slower than @ ( p )  as the number of 
processors increases, then the number of processors will 
eventually exceed W. Even in an ideal parallel system 
with no communication or other overhead, the effi- 
ciency will drop because the processors exceeding W 
will have no work to do. So, the problem size has to 
increase a t  least as fast as @ ( p )  to maintain a constant 
efficiency; hence @ ( p )  is the lower bound on the isoef- 
ficiency function. It follows that the isoefficiency func- 
tion of an ideally scalable parallel system is @ ( p ) .  

DEGREE OF CONCURRENCY 
The  lower bound of @ ( p )  is imposed on the isoeffi- 
ciency function by the algorithm's degree of commen- 
cy: the maximum number of tasks that can be execut- 
ed simultaneously in a problem of size W. This 
measure is independent of the architecture. If C( W )  is 
an algorithm's degree of concurrency, then given a 
problem of size W, at most C( W )  processors can be 
employed effectively. For example, using Gaussian 
elimination to solve a system of n equations with n vari- 
ables, the total amount of computation is @(1z3). How- 
ever, the n variables have to be eliminated one after 
the other, and eliminating each variable requires @(n') 

Vector 

computations. Thus, at most @(n') processors can be 
kept busy at a time. 

Now if W =  @(n3) for this problem, then the degree 
of concurrency is @(W2'j). Given a problem of size W, 
at most @(W?/') processors can be used, so given p 
processors, the size of the problem should be at least 
@( p3'?) in order to use all the processors. Thus, the iso- 
efficiency function of this computation due to concur- 
rency is @( p 3 l 2 ) .  

The isoefficiency function due to concurrency is opti- 
mal - @ ( p )  - only if the algorithm's degree of con- 
currency is @( W).  If it is less than @( W),  then the iso- 
efficiency function due to concurrency is worse (greater) 
than @ ( p ) .  In such cases, the system's overall isoeffi- 
ciency function is the maximum of the isoefficiency 
functions due to concurrency, communication, and 
other overhead. 

Isoefficiency analysis 
Isoefficiency analysis lets us test a program's perfor- 
mance on a few processors and then predict its perfor- 
mance on a larger number of processors. It also lets us 
study system behavior when other hardware parame- 
ters change, such as processor and communication 
speeds. 

Figure 2. Multiplication of an n x n matrix with an n x 1 vector using 
"rowwise" striped data partitioning. 

COMPARING ALGORITHMS 
W e  often must compare the perfor- 
mance of two parallel algorithms for a 
large number of processors. The  iso- 
efficiency function gives us the tool to 
do so. The  algorithm with the small- 
er isoefficiency function ylelds better 
performance as the number of proces- 
sors increases. 

Consider the problem of multiply- 
ing an i z  x n matrix with an n x 1 vec- 
tor. The  number of basic operations 
(the problem size ur) for this matrix- 
vector product is n?. If the time taken 
by a single addition and multiplication 
operation together is t,, then the 
sequential execution time of this algo- 
rithm is rz't, (that is, TI = n2t,). 

Figure 2 illustrates a parallel version 
of this algorithm based on a striped 
partitioning of the matrix and the vec- 
tor. Each processor is assigned n/p 
rows of the matrix and n/p elements of 

16 IEEE Parallel & Distributed Technology 



the vector. Since the multiplication 
requires the vector to be multiplied 
with each row of the matrix, every 
processor needs the entire vector. T o  
accomplish this, each processor broad- 
casts its n/p elements of the vector to 
every other processor (this is called an 
all-to-allbroahrt). Each processor then 
has the vector available locally and n/p 
rows of the matrix. Using these, it com- 
putes the dot products locally, gwing it 
n/p elements of the resulting vector. 

Let's now analyze this algorithm on 
a hypercube. The  all-to-all broadcast 
can be performed in ts logp + twn(pl)/p 
(t, is the startup time of the communi- 

Figure 3. Matrix-vector multiplication using checkerboard partitioning. 

cation network, and tw is the per-word transfer time).7 
For large values of p we can approximate this as ts log p 
+ twn. Assuming that an additiodmultiplication pair takes 
tcunits of time, each processor spends tcn2/p units of time 
in multiplying its n/p rows with the vector. Thus, the 
parallel execution time of this procedure is 

Tp = tc(n2/p) + t, logp + t,n 

The  speedup and efficiency are 

P S =  1 + P(t,l%P+twn) 
t,n' 

Using the relation T, =pTp- TI, the total overhead is 

To = tsp logp + twnp 

Now we can determine the isoefficiency function. 
Rewriting the equation W= Do using only the first term 
of T, gives the isoefficiency term due to the message 
startup time: 

W =  Ktsp logp 

Similarly, we can balance the second term of T, (due 
to per-word transfer time) against the problem size W: 

n2 = Ktwnp 

n = Kt,p 

W =  a2 = K2tw2p2 

From the equations for both terms, we can infer that 
the problem size needs to increase with the number of 

processors at  an overall rate of Ob2) to maintain a fixed 
efficiency. 

Another example 
Now instead of partitioning the matrix into stripes, let's 
use Checkerboard partitioning: divide it into p squares, 
each of dimensions (n/$) x (n/$).7 Figure 3 shows the 
algorithm. 

The vector is distributed along the last column of the 
mesh. In the first step, all processors of the last column 
send their n/$elements of the vector to the diagonal 
processor of their respective rows (Figure 3a). Then the 

erform a columnwise one-to-all broadcast 
processo? of the n/ p elements (Figure 3b). The  vector is then 
aligned along the rows of the matrix. Each processor er- 

of products. Each processor now has n/$partial sums 
that need to be accumulated along each row to obtain the 
product vector (Figure 3c). The last step is a single-node 
accumulation of the n/$values in each row, with the last 
processor of the row as the destination (Figure 3d). 

On a hypercube with store-and-forward routing, the 
first step can be performed in at most ts + t,(n/$) log $ 
time.7 The  second step can be performed in (t, + 
t,n/$) log $time. If a multiplication and an addition 
are assumed to take tc units of time, then each processor 
spends about tcn2/p time performing computation. If the 
product vector must be placed in the last column (like 
the starting vector), then a single-node accumulation of 
vector components of size n/$must be performed in 
each row. Ignoring the time needed to perform addi- 
tions during this step, the accumulation can be per- 
formed with a communication time of (ts + t&$) 
log $. The total parallel execution time is 

forms n2/p multiplications and locally adds the n/ P p sets 

August 1993 17 



Figure 4. A 16-point fast Fourier transform on four processors. Pi  i s  
processor i and m is the iteration number. 

Tp = t,(n'/p) + t, + 2tJ log $+ 3t,.(12/43 log dF 
We can approximate this as 

TI, = t , (d/p)  + t, logp + ( 3 / 2 ) t 7 r ( ~ ~ / d 3  logp 

So, the total overhead To is 

To = t.p logp + (3/2)t,.17 dT10gp 

As before, we equate each term of TI with the problem 
size W. For the isoefficiency due to t,, we get W -  
Kt,p logp. For isoefficiency due to t::, we get 

I z ' t ,  = K( 3/2)t,.n dF10gp 

72 = K( 3/2)(t,./t,)$logp 

72' = K'( 9/4)(ti:.'/tL.') p log' p 
The isoefficiency due to t,. is O ( p  log? p ) ,  which is also 
the overall isoefficiency, since it dominates the 
O( p log p )  term due to t3.. 

Based on this and the previous example, the isoeffi- 
ciency function of the stripe-based algorithm is O(p') ,  
which is higher than the O( p log2 p) of the checkerhoard- 
based algorithm. This implies that the stripe-based ver- 
sion is less scalable; as the number of processors increas- 
es, it requires much larger problem sizes to yield the same 
efficiencies as the checkerboard-based version. 

MACHINE-SPECIFIC PARAMETERS 
Changing processor and communication speeds affects 
the scalability of some parallel systems only moderate- 
ly; it affects others significantly. Isoefficiency analysis 
can help predict the effects of changes in such niachine- 
specific parameters. 

Consider the Cooley-Tukey algorithm for computing 

~ 

18 

an 17 -point, single -di mensional , u n- 
ordered, radix-2 fast Fourier trans- 
form.:,' The  sequential complexity of 
this algorithm is O(n log 72). We'll use 
a parallel version based on the binary 
exchange method for a &dimensional 
( p  = 2n) hypercube (see Figure 4). W e  
partition the vectors into blocks of n/p 
contiguous elements (n = 2'-) and 
assign one block to each processor. In 
the mapping shown in Figure 4, the 
vector elements on different proces- 
sors are combined during the first d 
iterations while the pairs of elements 
combined during the last ( T - -  d) itera- 
tions reside on the same processors. 

Hence, this algorithm involves interprocessor commu- 
nication only during d = log p of the log 17 iterations. 
Each communication operation exchanges w'p words of 
data, so communication titne over the entire algorithm 
is (t,< + t;&) log p. During each iteration, a processor 
updates 77/p elements of vector R. If a complex multipli- 
cation and addition take time t(., then the parallel exe- 
cution time is 

Tp = t , ( 7 7 / " )  log I7  + t,  log^ + t::.(11/p) logp 
The total overhead TI is 

7;) = t3p logp + t ; : . /1 logp 

IZ'e know that the problem size for an n-point fast 
Fourier transform is 

rz/ = log 7z 

Using the same method as in the previous subsection, we 
can now determine the system's isoefficiency by equat- 
ing the problem size with each term in the total over- 
head. For the first term (t,J, W- tJp logp, which corre- 
sponds to an isoefficiency function of O( p log p ) .  W e  
can similarly determine the isoefficiency for the second 
term (t:?): 

For this last equation, if t7JZ/(tc.( I - E ) )  is less than 1, then 

-~ ~~~~ 

IEEE Parallel & Distributed Technology 



Ws rate of growth is less than O(p logp), so the overall 
isoefficiency function is O( p logp). But if t,E/(tc( 1 - E))  
is greater than 1, then the overall isoefficiency function 
is greater than O( p log p ) .  The isoefficiency function 
depends on the relative values of E/(1 - E) ,  t,, and t,. 
Thus, this algorithm is unique in that the isoefficiency 
function is a function not only of the desired efficiency, 
but also of the hardware-dependent parameters. In fact, 
the efficiency corresponding to t,E/(tc( 1 - E))  = 1 - that 
is, U(1 - E )  = t&,, or E = t,/(tc + t,) - acts as a thresh- 
old value for efficiency. For a 
hypercube, efficiencies up to this 
value can be obtained easily. But 
much higher efficiencies can be 
obtained only if the problem size is 
extremely large. 

Let’s examine the effect of the 
value of t,E/(tc( 1 - E ) )  on the iso- 
efficiency function. If t, = t,, then 
the isoefficiency function is 
E/( 1 - E)pE’(’ - log p .  Now for 
E/(l - E )  I 1 (that is, E 5 O.S), the 
overall isoefficiency is O ( p  logp), 
but for E > 0.5 it is much worse. 
For instance, if E = 0.9, then 
E/( 1 - E )  = 9 and the isoefficiency 
function is O( p9 log p). Now if t, = 
2tc and the threshold efficiency is 
0.3 3 ,  then the isoefficiency func- 
tion for E = 0.3 3 is O( p log. p ) ,  for 

Consider Dijkstra’s all-pairs shortest-path problem 
for a dense graph with n ~ertices.’,~ The  problem 
involves finding the shortest path between each pair of 
vertices. The  best-known serial algorithm takes O(n3) 
time. We can also solve this problem by executing one 
instance of the single-source shortest-path algorithm 
for each of the n vertices. The  latter algorithm deter- 
mines the shortest path from one vertex to every other 
vertex in the graph. Its sequential complexity is O(n2). 

We can derive a simple parallel version of this algo- 
rithm by executing a single-source 

Some parallel 
algorithms that 
seem attractive 
because of their 
low overhead 
have limited 
concurrency, 
making them 
perform poorly as 
the number of 
processors grows. 
IsoeMciency 
analysis can 
capture this effect. 

E = 0.5 it is 0(p2 log);), anYd for E 
= 0.9 it is O(p18 logp). 

These examples show that the efficiency we can obtain 
for reasonable problem sizes is limited by the ratio of the 
CPU speed to the hypercube’s communication band- 
width. We can raise this limit by increasing the band- 
width, but making the CPU faster without improving the 
bandwidth lowers this threshold. In other words, this algo- 
rithm performs poorly on a hypercube whose communi- 
cation and computation speeds are not balanced. How- 
ever, the algorithm is fairly scalable on a balanced 
hypercube with an overall isoefficiency function of 
O( p logp), and good efficiencies can be expected for a rea- 
sonably large number of processors. 

CONCURRENCY 
Some parallel algorithms that seem attractive because 
of their low overhead have limited concurrency, mahng 
them perform poorly as the number of processors grows. 
Isoefficiency analysis can capture this effect. 

- - 
shortest-path problem indepen- 
dently on each of n processors. 
Since each of these computations 
is independent of the others, the 
parallel algorithm requires no 
communication, mahng it seem 
that it is the best possible algo- 
rithm. But the algorithm can use 
at most n processors ( p  = n),  and 
since the problem size Wis @(a3), 
Wmust grow at least as O(p3) to 
use more processors. So the over- 
all isoefficiency is relatively high; 
other algorithms with better iso- 
efficiencies are available. 

CONTENTION FOR SHARED DATA 
STRUCruRES 
An algorithm can have low com- - 
munication overhead and high 
concurrency, but still have over- 

head from contention over shared data structures. Such 
overhead is difficult to model, malung it difficult to com- 
pute the parallel execution time. However, we can still 
use isoefficiency analysis to determine the scalability. 

Consider an application that solves discrete opti- 
mization problems by performing a depth-first search 
of large unstructured trees. Some parallel algorithms 
solve this problem by using a dynamic load-balancing 
strategy. ‘OJ’ All work is initially assigned to one proces- 
sor. An idle processor Pi selects a processor P, using 
some selection criterion and sends it a work request. If 
processor P, has no work, it responds with a reject mes- 
sage; otherwise, it partitions its work into two parts and 
sends one part to Pi (as long as the work is larger than 
some minimum size). This process continues until all 
processors exhaust the available work. 

One selection criterion -global round robin - main- 
tains a global pointer G at one of the processors. This 

August 1993 19 



pointer initially points to the first processor. When an 
idle processor needs to select Pa, it reads the current 
value of G, and requests work from Pc. The pointer is 
incremented by one (modulo p) before the next request 
is processed. The pointer distributes the work requests 
evenly over the processors. 

The nondeterministic nature of this algorithm makes 
it impossible to estimate the exact parallel execution 
time beforehand. We can, however, set an upper bound 
on the communication  COS^.'^^^ Under certain assump- 
tions,1° the upper bound on the number of communi- 
cations is O( p log W )  (that is, it is of the same order or 
smaller than p log W ) .  If each communication takes 
O(1ogp) time, then the total overhead from the com- 
munication of work is bounded by O( p logp log W).  As 
before, we can equate this term with the problem size to 
derive the isoefficiency due to communication overhead: 

W.. O(p logp log W )  

If we take the Won the right hand side of this expres- 
sion, put the value of Win its place, and ignore the dou- 
ble log terms, then the isoefficiency due to communi- 
cation overhead is O(p log2 p). 

But &s term does not specify the system’s overall iso- 
efficiency because the algorithm also has overhead due 
to contention: Only one processor can access the glob- 
al variable at a time; others must wait. So, we must also 
analyze the system’s isoefficiency due to contention. 

The  global variable is accessed a total of O(p log W )  
times (for the read and increment operations). If the 
processors are used efficiently, then the total execution 
time is O(W/p). If there is no contention while solving 
a problem of size Wonp processors, then W/p is much 
greater than the total time during whch the shared vari- 
able is accessed. Now, as we increase the number of 
processors, the total execution time (W/p) decreases, 
but the number of times the shared variable is accessed 
increases. At some point, the shared variable access 
becomes a bottleneck, and the overall execution time 
cannot be reduced further. We can eliminate this bot- 
tleneck by increasing W at a rate such that the ratio 
between W/p and O ( p  log W )  remains the same. 
Equating W/p and O(p log W )  and then simplifying 
yields an isoefficiency of O( p 2  log p ) .  Thus, since the 
isoefficiency due to contention dominates the isoeffi- 
ciency due to communication, the overall isoefficiency 
is O(p2 logp). (It has been shown elsewhere that dynam- 
ic load-balancing schemes with better isoefficiency 
functions outperform those with poorer isoefficiency 
functions. lo) 

20 

T he isoefficiency metric is useful when we 
want performance to increase at a linear 
rate with the number of processors: If 
the problem size grows at the rate spec- 
ified by the isoefficiency function, then 

the system’s speedup is linear. In some cases, though, 
we might not want (or be able) to increase the problem 
size at the rate specified by the isoefficiency function; if 
the problem size grows at a smaller rate, then the 
speedup is sublinear. 

For a grven growth rate, we can use the speedup curve 
as a scalability metric. If the problem size increases at a 
linear rate with the number of processors, the curve 
shows scaled speedup.2 The growth rate can also be con- 
strained by the computer’s memory, in which case the 
problem size increases at the fastest rate allowed by the 
available m e m ~ r y . ~ ~ ~ , ~  

In many situations, the growth rate is dictated by the 
time available to solve the problem, in which case the 
problem size increases with the number of processors 
in such a way that the run time remains ~ o n s t a n t . ~ , ~ , ~  
W e  can also keep the problem size fixed and use the 
speedup curve as a scalability metric.12 

There are interesting relationships between isoeffi- 
ciency and some of these metrics. If the isoefficiency 
function is greater than O(p), then the problem size for 
a scalable parallel system cannot increase indefinitely 
while maintaining a fixed execution time, no matter how 
many processors are used.’J2 Also, for a class of paral- 
lel systems, the isoefficiency function specifies the rela- 
tionship between the problem size’s growth rate and the 
number of processors on which the problem executes 
in minimum time.12 

ACKNOWLEDGMENTS 
This work was supported by Army Research Office grant 28408-MA- 
SDI to the University of Minnesota, and by the Army High Perfor- 
mance Computing Research Center at the University of Minnesota. 
We also thank Daniel Challou and Tom Nurkkala for their help in 
preparing this article. 

REFERENCES 
1. V. Kumar and A. Gupta, “Analyzing Scalability of Parallel Algo- 

rithms and Architectures,” Tech. Report 91-18, Computer Sci- 
ence Dept., Univ. of Minnesota, Minneapolis, 1991. 

2. J.L. Gustafson, “Reevaluating Amdahl’s Law,” Cmm. ACM, Vol. 
31, NO. 5 ,  1988, pp. 532-533. 

3. J.L. Gustafson, “The Consequences of Fixed-Time Performance 
Measurement,” Pror. 25th Hawaii Int’l ConJ System Sciences, Vol. 

IEEE Parallel & Distributed Technology 



III, IEEE Computer Soc. Press, Los 
Alamitos, Calif., 1992, pp. 113-124. 

4. X.-H. Sun and L.M. Ni, “Another 
View of Parallel Speedup,” Proc. Super- 
computing ‘90, IEEE Computer Soc. 
Press, Los Alamitos, Calif., 1990, pp. 

5. X.-H. Sun and D.T. Rover, “Scalabil- 
ity of Parallel Algorithm-Machine 
Combinations,” Tech. Report IS- 
5057, Ames Lab., Iowa State Univ., 
1991. 

6. P.H. Worley, “The Effect of Time 
Constraints on Scaled Speedup,” 
SIAMJ. Scientific and Statistical Com- 
puting, Vol. 11, No. 5, Sept. 1990, pp. 

7. V. Kumar et al., Introduction to Parallel 
Computing: Algm’th Design and Analy- 
sis, BenjaminXummings, Redwood 
City, Calif., to be published (1994). 

8. A. Gupta and V. Kumar, “The Scala- 
bility of FIT on Parallel Computers,” 
IEEE Trans. Parallel and Distributed 
System, Vol. 4, No. 7, July 1993. 

9. V. Kumar and V. Singh, “Scalability of 
Parallel Algorithms for the All-Pairs 
Shortest-Path Problem,”J. Parallel and 
Distributed Computing, Vol. 13, No. 2, 
Oct. 1991, pp. 124-138. 

10. V. Kumar, A. Grama, and V.N. Rao, 
“Scalable Load-Balancing Techniques 
for Parallel Computers,” Tech. Report 
91-55, Computer Science Dept., Univ. 
of Minnesota, Minneapolis, 1991. 

11. V. Kumar and V.N. Rao, “Parallel 
Depth-First Search, Part 11: Analysis,” 
Int’lJ. Parallel Programming, Vol. 16, 
No. 6, Dec. 1987, pp. 501-519. 

12. A. Gupta and V. Kumar, “Performance 
Properties of Large-scale Parallel Sys- 
tems,” to appear in3. Parallel and Dis- 
tributed Computing, Nov. 1993. 

324-333. 

838-858. 

architecture-inde- 
pendent parallel programming. He received 
his MS in computer engineering from 
Wayne State University, Detroit, in 1990, 
and his BE in computer science from the 
University of Roorkee, India, in 1989. 

Anshul Gupta is a doctoral candidate in computer science at the Uni- 
versity of Minnesota. His research interests include parallel algorithms, 
scientific computing, and scalability and performance evaluation of par- 
allel and distributed systems. He received his B.Tech. degree in com- 
puter science from the Indian Institute of Technology, New Delhi, in 
1988. 

Vipin Kumar is an associate professor in the Department of Comput- 
er Science at the University of Minnesota. His research interests include 
parallel processing and artificial intelligence. He is coeditor of Search in 
ArtijGial Intelligence, Parallel Algorithmsfbr Machine Intelligme and Vision, 
and Introduction to Parallel Computing. Kumar received his PhD in com- 
puter science from the University of Maryland, College Park, in 1982; 
his ME in electronics engineering from Philips International Institute, 
Eindhoven, The Netherlands, in 1979; and his BE in electronics and 
communication engineering from the University of Roorkee, India, in 
1977. He is a senior member of IEEE, and a member of ACM and the 
American Association for Artificial Intelligence. 

The authors can be reached at the Department of Computer Science, 200 Union St. SE, Uni- 
versity of Minnesota, Minneapolis, MN 55455; Internet: kumar, ananth, or aguptaQcs.umn.edu 

PARAUELCOMPWATIONAL 
FLUID DYNAMlcS 
Implementations and Results 
edited b y  Horst D. Simon 
Computational Fluid Dynamics (CFD) is 
setting the pace for developments in 
scientific computing. Anyone who wonts 
to design a new parallel computer or 
develop o new software tool must 
understand the issues involved in CFD in 
order to be successful. 
Scientific and En ineering Computation series 
390pp $4!?00 

UNSTRUCTURED XlENnFK 
COMPWAllONON 
XALABLE 
MULllPROCESSORS 
edited b y  Piyush Mehrotra, 
Joel Saltz, and Robert Voigt 
This book focuses on the implementation 
of such algorithms on parallel computers, 
such os hypercubes and the Connection 
Machine, that con be scaled up to 
incredible performances. 
Scientific and En ineering Com utation 
series 432 pp., 58 illus. $36.95 

To order call toll-free 1-800-356-0: 
Prices will k 

“ ~ m  M I T  
ENTERPRISE INTEGRATION 
MODELING 
Proceedings of the First 
International Conference 
edited b y  Charles J. Petrie, Jr. 
These roceedings, the first on El modeling 
technoLgies, provide a synthesis of the technical 
issues involved; describe the various approaches 
and where they overlap, complement, or conflict 
with each other; and identify problems and gaps 
in the current technologies that point to new 
research. 
Scientific and En ineering Computation series 
650 pp. $45.80 

DATA-PARAUEL PROGRAMMING 
ON MlMD COMPUTERS 
PhilipJ. Hatcher and MichaelJ. Quinn 
Data-Parallel Programming on MIMD Computers 
demonstrates that architectureindependent 
parallel programming is possible by describing in 
detail how programs written in a high-level SlMD 
programming language may be compiled and 
efficiently executed on both shared-memory 
multiprocessors and distributed-memory 
multicomputers. 
Scientific and En ineering Computation series 
231 pp. $30.80 

I or /6 17) 625-8569. MosferCord ond VISA. 
iigher outside the U.S 

The MIT Press 
55 Hayward Street, Cambridge, MA 02 142 

August 1993 Reader Service Number 4 

http://aguptaQcs.umn.edu

