
FARMER: A Novel Approach to File Access Correlation
Mining and Evaluation Reference Model for Optimizing

Peta-Scale File System Performance

Peng Xia
Computer College, HuaZhong

University of Science and
Technology

Wuhan National Laboratory for
Optoelectronics
Wuhan, China

sharp@smail.hust.edu.cn

Dan Feng
Computer College, HuaZhong

University of Science and
Technology

Wuhan National Laboratory for
Optoelectronics
Wuhan, China

dfeng@hust.edu.cn

Hong Jiang
Department of Computer
Science and Engineering,

University of Nebraska-Lincoln
Lincoln, NE

jiang@cse.unl.edu

Lei Tian
Computer College, HuaZhong

University of Science and
Technology

Wuhan National Laboratory for
Optoelectronics
Wuhan, China

Department of Computer
Science and Engineering,

University of Nebraska-Lincoln
Lincoln, NE

tian@cse.unl.edu

Fang Wang
Computer College, HuaZhong

University of Science and
Technology

Wuhan National Laboratory for
Optoelectronics
Wuhan, China

wangfang@hust.edu.cn

ABSTRACT
File correlation, which refers to a relationship among related files
that can manifest in the form of their common access locality (tem-
poral and/or spatial), has become an increasingly important con-
sideration for performance enhancement in peta-scale storage sys-
tems. Previous studies on file correlations mainly concern with two
aspects of files: file access sequence and semantic attribute. Based
on mining with regard to these two aspects of file systems, vari-
ous strategies have been proposed to optimize the overall system
performance. Unfortunately, all of these studies consider either file
access sequences or semantic attribute information separately and
in isolation, thus unable to accurately and effectively mine file cor-
relations, especially in large-scale distributed storage systems.

This paper introduces a novel File Access coRrelation Mining
and Evaluation Reference model (FARMER) for optimizing peta-
scale file system performance that judiciously considers both file
access sequences and semantic attributes simultaneously to evalu-
ate the degree of file correlations by leveraging the Vector Space
Model (VSM) technique adopted from the Information Retrieval
field. We extract the file correlation knowledge from some typi-
cal file system traces using FARMER, and incorporate FARMER
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into a real large-scale object-based storage system as a case study
to dynamically infer file correlations and evaluate the benefits and
costs of a FARMER-enabled prefetching algorithm for the meta-
data servers under real file system workloads. Experimental re-
sults show that FARMER can mine and evaluate file correlations
more accurately and effectively. More significantly, the FARMER-
enabled prefetching algorithm is shown to reduce the metadata op-
erations latency by approximately 24-35% when compared to a
state-of-the-art metadata prefetching algorithm and a commonly
used replacement policy.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: PERFORMANCE OF
SYSTEMS; D.4.2 [Software]: Operating Systems—Storage Man-
agement; H.2.8 [Information Systems]: Database Management-
Database Applications—Data Mining; H.3.m [Information Sys-
tems]: Information Storage and retrieval—Miscellaneous

General Terms
Algorithms, Performance, Management

Keywords
Storage Management File correlation, File System Management,
Mining method and algorithms

1. INTRODUCTION
Exploiting file or block correlations to benefit performance has

become an increasingly common practice in the design and opti-
mization of intelligent storage systems today. Most related studies
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focus on extracting semantic knowledge (including file and block
correlations) to guide and facilitate various performance enhancing
strategies (such as prefetching, caching, data layout and security-
awareness, etc.). Representative studies that exploit semantic knowl-
edge to enhance storage system performance include Active-disk [1]
, Self-* storage [2, 3], Semantically-Smart Disk System (SDS) [4],
Object-Based Storage architecture [5], etc. Moreover, the file sys-
tem level can provide more useful and insightful information about
access sequences and semantic attributes (e.g., process id, user id,
application, metadata, and certain file properties) than can the block
level because of the elaborate and rich I/O interface between stor-
age applications and file systems. Therefore, mining file correla-
tions can be very beneficial for exploiting application semantics
and has been widely used for performance optimization in file sys-
tems. Unfortunately, it is nontrivial to explore semantic knowledge
in file systems effectively and accurately because various factors af-
fecting this knowledge exploration may be intricately related with
one another as demonstrated later in this paper (Please see the Sec-
tion 2 for details).

The existing main approaches to mining file correlations can be
classified into two categories: access sequence mining and file se-
mantic attribute mining. By tracing file system activities, several
studies [6, 7, 8, 9, 10, 11] show that file accesses are strongly cor-
related to their preceding ones.

On the other hand, by extracting semantic attributes from file
systems, semantic attribute mining approaches [12, 13, 14, 15]
provide flexible associative accesses to documents, programs, ob-
ject codes, images and other files contained by the system auto-
matically. Recently, Ellard et al. [13] presented a very interesting
method to infer the correlation between semantic attributes and file
properties by using a decision tree technique. Nevertheless, this
approach is limited to predicting certain file properties (e.g., read-
only, size, etc.) from semantic attributes.

File correlations are typically more difficult to mine, and thus
richer, than block correlations because the former are impacted or
co-impacted by far more factors than the latter, as a result of the
interface and interactions between applications and the file system
that are far richer than those between data blocks and storage de-
vices. In such complex interface and interactions, storage appli-
cations perform file operations with various indications of access
sequences and semantic attributes. Further, while file correlations
are richer than block correlations, the former can also have more
negative impact if incorrectly inferred than the latter because block
correlations are typically inferred through I/O scheduling and block
access patterns that are relatively deterministic. Moreover, our pre-
liminary experimental studies also indicate that these two aspects
are mutually influencing factors on file correlations. Therefore, we
postulate that access sequence mining alone, without combining
the benefit of semantic attributes, can not fully reveal file correla-
tions, especially in large scale distributed storage systems, while
semantic attribute mining without considering access patterns is
equally inadequate to infer file correlations.

Unfortunately, all of the existing methods for mining file corre-
lations either solely rely on file access sequence or only take into
account semantic attributes in isolation, thus possibly failing to
fully exploit the potentially important correlation between access
sequences and semantic attributes that in turn may reveal more ac-
curate file correlations. This motivates us to propose a more pow-
erful mining approach in this paper, called a File Access coRre-
lation Mining and Evaluation Reference model (FARMER), that
can discover more complex file correlations by judiciously and ef-
fectively combining access sequence mining with file semantic at-
tribute mining. FARMER takes into account both file access se-

quences and semantic attributes simultaneously to evaluate file cor-
relations and uses a directed, weighted correlation-graph to capture
file access correlations. FARMER’s correlation graph is weighted
with the file correlation degree that is evaluated by the Vector Space
Model (VSM) technique adopted from the Information Retrieval
(IR) field [16, 17].

In this paper, we begin by presenting statistical evidences from
several typical distributed file system traces to indicate that both
access sequence and semantic attribute have strong collective and
joint impact on file correlations. We also incorporate FARMER
into a practical platform - HUSt [18] to validate our design goal
that FARMER is a useful and efficient tool to infer file correla-
tions with reasonable overhead. We utilize FARMER to improve
the intelligence in a metadata prefetching algorithm and optimize
the file layout in HUSt. Other potential applications of FARMER
such as security, reliability and consistency are also discussed and
pointed out as our future work. Furthermore, we conduct exten-
sive experiments to determine which semantic attributes or com-
binations of semantic attributes provide positive contributions and
which others provide negative ones. Based on these experimen-
tal results, our FARMER is shown to mine and evaluate file cor-
relations than existing evaluation algorithms more effectively and
accurately. More significantly, the FARMER-enabled prefetching
algorithm is shown to reduce the metadata server latency by ap-
proximately 24-35% when compared to a state-of-the-art metadata
prefetching algorithm and a commonly used replacement policy.

The remainder of this paper is organized as follows. In the next
section we briefly discuss further motivation for our research and
provides some background information. In Section 3, we present
our file correlation mining and evaluating model to infer file cor-
relations. Section 4 discusses how to take advantage of file corre-
lations revealed by FARMER for several potential applications. In
Section 5, we introduce a case study that utilizes FARMER to a
real storage system to improve the intelligence in prefetching and
discuss the experimental results. Section 6 reviews representative
research works in the literature that are more relavant to our pro-
posed work and Section 7 concludes the paper.

2. MOTIVATION AND BACKGROUND
Access sequence and semantic attributes are the two best known

factors influencing file correlations. We have reasons to believe
that these two factors are strongly correlated and by judiciously
combining them we can more effectively and accurately mine file
correlations. For example, when a user executes gcc, a well-known
C/C++ compiler in Linux, to compile a set of source files, it will
generate the corresponding object and executable files for the source
files. An interesting fact is that files are often generated in the same
access sequence and eventually deposited to the same directory.
It is intuitive from this example that there are strong correlations
among these source files with hints provided by user id, program
id, access sequence and directory information. Therefore, it is pos-
sible and necessary to utilize the hints provided by a combination
of file attributes and access sequences, such as those in the above
example, to improve the accuracy of inferring correlations between
the source files.

In this section, we present a discussion on some intuitive and sta-
tistical evidences to illustrate the effectiveness of integrating these
two factors to infer file correlations and thus further motivating our
research.

2.1 Intuitive Scenarios
Initially, we can consider the following intuitive scenarios that

provide hints to file correlations:
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Figure 1: The probabilities of inter-file access quantify the in-
fluence on the association between file correlations and seman-
tic attribute combinations (as indicated by the y-axis) for four
typical distributed storage system traces.

• Files accessed by the same user tend to have strong correla-
tions, because each user has an access domain in which files
possess strong correlations.

• Individual program typically access the same files in the same
order, and thus files invoked by individual programs tend to
have strong correlations.

• It is common for a user to deposit related files in one spe-
cific directory, thus leading to strong correlation among files
stored in the same directory.

• A frequent access sequence typically indicates that the in-
volved files are frequently accessed together. Thus, files be-
longing to one frequent access subsequence tend to have a
strong correlation.

The above scenarios include such hints as frequent access sequence
that belongs to the access sequence factor, and the user, program
and directory information that belong to the semantic attribute fac-
tor. All of these hints can be used to infer file correlations. Fur-
thermore, since semantic attributes can be used to filter out unre-
lated access sequences to narrow the mining scope and improve
the precision of inferring correlations among files, files with equal
or similar statistics obtained from their corresponding hints/factors
are most likely to be strongly correlated.

2.2 Statistical Evidences
Although above four scenarios are intuitive, they indicate that

both access sequence and semantic attributes can apparently be as-
sociated with file correlations, which inspires us to conduct further
experiments to verify this association with real file system traces.

We analyze four typical traces – LLNL, INS and RES, and HP,
taken from different distributed file system application environ-
ments:

• LLNL Trace [19] traces several typical parallel scientific
applications, which have heavy I/O demands with data ac-
cesses of varying size. The LLNL trace was collected from a
large Linux cluster with more than 800 dual-processor nodes

at the Lawrence Livermore National Laboratory (LLNL). It
consists of 6403 trace files with a total of 46,537,033 I/O
events.

• INS Trace and RES Trace: Drew Roselli and Thomas An-
derson [20] traced two groups of Hewlett-Packard series 700
workstations running HP-UX 9.05. INS was collected from
twenty machines located in laboratories for undergraduate
classes. RES was collected from 13 machines on the desktop
of graduate students, faculty, and administrative staff of their
research projects.

• HP Trace: The HP trace is a 10-day file system trace col-
lected on a time-sharing server with a total of 500GB storage
capacity and 236 users at the HP Lab [21].

Based on these collected traces, we quantify the association be-
tween file correlations and their possible influential factors (i.e.,
access sequence and semantic attributes). We keep track of ac-
cess sequences for different semantic attributes separately, and then
compute the probability of inter-file accesses within these different
sequences.

The probability of inter-file access of a file A to another file B
refer to the likelihood of file B being accessed given that file A has
been accessed. This is also called file successor probability. Our
observation shows that if the average access probability is large,
the corresponding file correlation is strong. By contrast, if there
is no association between file correlations and semantic attributes,
the access probability tends to be independent of the semantic at-
tributes. For example, if there is no association between file cor-
relations and semantic attributes, the access probability when con-
sidering a semantic attribute say process P that is meant to "fil-
ter out" unrelated file access sequence will not differ from the ac-
cess probability when none of the semantic attributes is considered.
Therefore, by comparing the probabilities of inter-file accesses for
different sequences, we can quantify the influence on the associa-
tion between file correlations and semantic attributes by different
semantic attributes.

Figure 1 compares the average probabilities of inter-file accesses
for different sequence. There are three important observations drawn
from this figure. The first observations is that the inter-file access
probabilities due to the same attribute in different traces are differ-
ent. For example, in RES trace, the pid attribute corresponds to a
37.6% access probability, but a probability of 52.7% results in the
HP trace for the same attribute. The second observation is that even
in the same trace, different attributes lead to different inter-file ac-
cess probabilities. For example, in the HP trace, the probability cor-
responding to the file path attribute (55.2%) is larger than that for
the uid attribute (45.8%). The last observation is that, while access
pattern alone (without considering any of the semantic attributes) is
not insignificant in affecting file access probability, integrating any
semantic attribute or attribute combination will increase the impact
on this probability on top of the access pattern.

From the statistical evidences we learn that we clearly stand to
gain benefits from finding an appropriate method to judiciously
combine the access sequence factor and the semantic attribute fac-
tors into an integrated scheme to mine and evaluate file correlations.
We also learn that different attributes or attribute combinations have
different influence on inferring file correlations.

Motivated by the above preliminary investigations and observa-
tions from experimental studies, we propose an integrated model
for file correlation mining and evaluation, which is detailed in the
next section.
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Figure 2: The FARMER Architecture

3. FARMER
In this section, we provide the details of the proposed File Access

coRrelation Mining and Evaluation Reference (FARMER) model
to quantify and evaluate file correlations. We start with an archi-
tectural overview of the FARMER model and its mining and eval-
uating approaches, followed by a discussion on how to address the
issues of building FARMER to mine file correlations. Finally, we
analyze the validity and efficiency of FARMER.

3.1 The FARMER Architecture
As shown in the previous section, access sequence and seman-

tic attributes collectively and jointly impact file correlations more
profoundly than can either alone. Nevertheless, to the best of our
knowledge, very few studies have been conducted to integrate ac-
cess sequence and semantic attributes to infer file correlations since
it is difficult to quantify semantic attributes and estimate the extent
to which they impact file correlations.

The proposed FARMER model is composed of a four-stage pro-
cess of Extracting, Constructing, Mining and Evaluating, as well
as Sorting, as shown in Figure 2. FARMER provides a "black-
box" approach to inferring file correlations without any assumption
and modification to the interface between applications and the file
systems (storage front-end). Therefore, FARMER is general and
independent of the front-end. More specifically, the Extracting
module collects file request information; the Constructing mod-
ule is deployed to construct a weighted and directed graph rep-
resenting file access sequences; the Mining and Evaluating mod-
ule, which houses the core mining algorithm of FARMER called
CoMiner, is responsible for mining and evaluating file correlations;
and the Sorting module organizes the quantified inter-file correla-
tions appropriately to facilitate performance enhancing strategies
that exploit file correlations obtained by FARMER. Our core algo-
rithm CoMiner, embedded in the Mining and Evaluating module,
mines and evaluates semantic attributes and access sequence coop-
eratively. By leveraging the Vector Space Model (VSM) [16] and

similarity estimation techniques, CoMiner quantifies semantic at-
tributes and evaluates file correlations. Based on the evaluation,
FARMER can infer inter-file correlations with a relatively high de-
gree of accuracy in storage systems.

The functions of and workflow among the four FARMER mod-
ules are elaborated below:

• Stage 1: Extracting. In this stage, we collect file attributes
such as timestamp, file name, user, group, program informa-
tion, etc. by extracting from each file request. A set of such
attributes that identify a certain file request pattern help mine
and evaluate file correlations effectively and accurately.

• Stage 2: Constructing. Once the appropriate file attributes
are obtained, a weighted, directed correlation-graph is con-
structed to represent file access sequences. This graph con-
sists of a set of directed edges and a set of nodes, where
a node represents an accessed file and a directed edge that
starts from a predecessor node and ends at a successor node
represents an access order. The weight on each edge equals
the value of correlation degree between the predecessor and
the successor.

If a newly requested file is already in the graph, only the
inter-file access count is increased and the file correlation de-
gree is updated accordingly. Obviously, if the weight on an
edge is large, the corresponding nodes (files) are likely corre-
lated. Therefore, this graph representation is able to capture
access sequences and mine file correlations.

• Stage 3: Mining and Evaluating. This stage contains the
core of FARMER. After Stage 1 and Stage 2, the file at-
tributes and frequent sequence information between the cur-
rent file and its successors have been extracted from the file
requests. FARMER then mines and integrates this informa-
tion to evaluate file correlations.

To help quantify the file correlation, we define file correlation
degree as the extent to which two or more files are related.
It can be obtained through mining and evaluation for each
file-successor pair is recorded in the corresponding Correla-
tor List that is associated with each file having one or more
successors. In addition, this list contains relevant informa-
tion extracted in Stage 1 and 2 of certain successors of the
current file and is indexed by these succesors’ file IDs. Sub-
section 3.2 presents in details the FARMER core mining and
evaluating algorithm, called CoMiner, which also includes a
description of the Correlator List and it’s update operations.

• Stage 4: Sorting. In this stage, the Correlator List for each
file is sorted and organized by file correlation degree. Conse-
quently, each file with one or more successors is associated
with a sorted Correlator List in deceasing order of the inter-
file correlation degree from head to tail. Thus, if a file is
closer to the head in the Correlator List, there will likely be
a stronger correlation between the file and its owner.

This is an iterative process that repeats itself for each incoming
request. Therefore, it is possible to infer file correlations by auto-
matically and dynamically mining and evaluating the semantic at-
tributes and access sequence information contained in the requests.

3.2 The Core Mining and Evaluating Algorithm
- CoMiner

Existing file correlations mining algorithms include semantic at-
tribute mining and access sequence mining. These two approaches
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focus on the statistical analysis for access history information in
their respective fields and mine these hints by using various data
mining techniques to infer file correlations. However, their ef-
fectiveness is limited by either the lack or difficulty of integrating
the hints of semantic attribute and access sequence to evaluate and
quantify file correlations.

To combine semantic attributes with access sequence to maxi-
mize the efficiency and accuracy of inferring file correlations, we
propose CoMiner, a method that leverages the state of the art ap-
proaches including the Vector Space Model (VSM) techniques in
the Information Retrievel area to mine and evaluate file correla-
tions quantitatively in storage systems. In particular, in order to
estimate the similarity of semantic attributes, we utilize Semantic
Distance to denote how far apart two files are semantically in the
correlation-graph. We also identify the validity of file correlations
by specifying an appropriate threshold.

CoMiner mainly consists of three steps: (1) Mining and quan-
tifying similarity of semantic attributes and access frequency; (2)
Evaluating file correlations by using similarity of semantic attributes
and access frequency; and (3) Filtering out weak or false file corre-
lations. A pseudo code describing the process of CoMiner is pre-
sented as Algorithm CoMiner.

Algorithm 1 CoMiner

Parameters:
Semantic Distance between files sd
access frequency f
file correlation degree e
Input:
A request file file1,
successor files of request file successor,
valid threshold max strength
Output:
Correlator List l
for i = 0 to i < successor.length do

compute sd
compute f
compute e
if e > max strength then

l← pair(successor[i].id, e)
end if
l.sort

end for

3.2.1 Semantic Attribute Mining
File semantics can be exposed at various levels, such as defi-

nitional, associative, structural, behavioral, environmental level or
through other information related to the files [22], where various
hints can be obtained. Many of these hints can help improve the
precision of inferring file correlations. SD graph [9] presents Se-
mantic Distance and attempts to use this concept to estimate the
degree of similarity between two files. However, effectiveness of
Semantic Distance in SD graph is limited to only exploiting access
sequence, thus failing to quantify the rich semantic attributes that
can potentially improve the similarity measurement between files.

An approach, called Vector Space Model (VSM), is widely and
successfully deployed in the area of information retrieval [16] for
text representation and searching. Inspired by Vector Space Model
(VSM)’s successes, we believe that it can be deployed in our CoMiner
to estimate file correlations accurately. In Vector Space Model
(VSM), a vector represents a text document and basic vector op-
erations are used to compute similarity between two documents. In

adopting VSM to our CoMiner, vectors are used to represent files
and similarity estimation algorithms are used to quantify the simi-
larity between semantic attributes that can be extracted from a set
of metadata attributes representing a file.

More specifically, a vector represents a file and each item of the
vector represents one particular attribute of the given file. Vectors
are stored as columns of a single matrix. Then basic vector opera-
tions can be used to evaluate Semantic Distance between files. The
computation of Semantic Distance is based on a common similarity
computation function:

sim(A, B) =
|A ∩ B|
|max(A,B)| (1)

In this function, set A and set B represent semantic vectors (SVs)
spaces of files, sim(A,B) represents the semantic distance of two
SVs. Let A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn}.
Table 1 demonstrates how to transform file semantic entries to se-
mantic vectors. Here, a semantic vector item Ax corresponds to
one attribute, such as the user id. Therefore, semantic distance of
files can be defined by sim(A,B).

User Process Host File Path
user1 p1 host1 /home/user1/paper/a
user1 p2 host1 /home/user1/paper/b
user2 p3 host2 /home/user2/c

⇓
A = {user1, p1, host1, home, user1, paper, a}
B = {user1, p2, host1, home, user1, paper, b}
C = {user2, p3, host2, home, user2, c}

Table 1: transform file semantic entries to semantic vectors
(DPA).

Divided Path Algorithm (DPA) vs. Integrated Path Algo-
rithm (IPA). According to Function 1, we can compute the se-
mantic distance between files. All semantic attributes except for
the file path attribute, present their corresponding values directly;
To handle the more complex file path attribute, two methods can be
used to compute the Semantic Distance. The first one is to parse a
full file path to several subdirectories. Each subdirectory is repre-
sented as one item in SV. We call this method Divided Path Algo-
rithm (DPA). The other approach is to regard the entire file path as
one item, which is called the Integrated Path Algorithm (IPA). Ta-
ble 2 depicts the application of Function 1 to calculate the Semantic
Distance in DPA and IPA respectively. The value contained at the
intersection between the vectors A and B acts as the numerator of
the function. The denominator is the max count of items of A or B.

Divided Path Algorithm Integrated Path Algorithm
sim(B,C) = 1/7 sim(A, C) = 0.25/4
sim(A,C) = 1/7 sim(B, C) = 0.25/4
sim(A,B) = 5/7 sim(A,B) = 2.75/4

Table 2: DPA vs IPA

Table 2 demonstrates how DPA and IPA can be used to compute
Semantic Distance among files. For DPA on the left, each subdirec-
tory or attributes is represented as one item in a vector. Therefore,
max (A,B) is 7. Moreover, 5 attribute items between A and B are
the same, which means that A ∩B equals 5. For IPA on the right,
the similarity of directories is computed first. For A and B, the
maximal count of subdirectories is 4, and the intersection of direc-
tories is 3. Thus, the directory similarity is 3/4 = 0.75. Then,
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since the entire file path is regarded as a single item, max (A,B)
is 4 and A ∩B is 2.75.

However, the drawback of the DPA algorithm is that if files are
in a deep directory, the directory attribute becomes the main influ-
ential factor in determining the result while other attributes such
as process and user IDs are significantly weakened. As a result,
file correlations that are actually strong by virtue of the weakened
attributes will be considered weak and thus filtered out. For exam-
ple, consider A that is an executable file and B that is a library file
linked by A. Although the intersection of file path between them
is null, their correlation is nevertheless very strong. The file cor-
relation degree of file A and B computed by DPA will surely be
smaller than the specified max strength (threshold), thus resulting
in file B being removed from file A’s Correlator List. Based on
this analysis, we decide to use the IPA algorithm to compute the
Semantic Distance.

3.2.2 Access Sequence Mining
There is pronounced regularity in file access sequence, a well-

known observation in file systems. This observation can help dis-
cover file correlations between two or more files. Probability Graph
and Semantic Distance (SD) keep frequent counts of file accesses
that follow within a window of a specific length. In these two tech-
niques, all the successors of a file are assigned the same importance.
The limitation of this approach is that it fails to distinguish the im-
portance of the successors which have different access distance. To
overcome this limitation, we apply the Liner Decremented Assign-
ment algorithm [11] to count the inter-file access number, where
the farther the access distance between file and its successor is, the
weaker their file correlation will be.

CoMiner keeps track of the predecessor’s, successor’s informa-
tion of a file, and computes the access frequency F (A,B) for a
pair of files. Here, F (A,B) = NAB/N , where NAB is the number
of times that file B is the successor of A. N is the total access count
of file A. Thus, F (A, B) represents the frequency of accesses in
which file B is a successor of A. A high value of F (A,B) means
that if access to file A occurs, file B is very likely to be accessed
soon. So, we use F (A, B) to describe file correlations. For exam-
ple, given an access sequence of ABCD, B is a closed successor of
A, 1 will be added to NAB . For C and D, their access distance from
A are 2 and 3 respectively and, according to the linear decremented
assignment the additional value is 0.9 for C, and 0.8 for D.

3.2.3 Computing File Correlation Degree
The file correlation degree for files x and y is defined as:

R(x, y) = sim(x, y) · p + F (x, y)· (1− p) (2)

In Function 2, sim(x, y) and F (x, y) represent semantic distance
and access frequency between x and y respectively. p is a tun-
able weight that can be adjusted to an appropriate value to judi-
ciously combine semantic distance and access frequency to more
effectively exploit inter-file correlations.

Semantic distance is a function of several semantic attributes
such as user id, process id, host id and file path. Once these at-
tributes are determined, they are rarely modified. However, access
frequency varies with access count of a file and its successors. So,
the access count information for each file and its successors must
be updated in time to compute the latest access frequency.

3.2.4 Threshold for Valid File Correlation Degree
An important issue to consider is the threshold for valid file cor-

relation degree. If the correlation degree between two files is very
small, such a correlation may not be valid in that the two files may

only occasionally inter-access and their correlation, if present at all,
may merely be random and offers very little to be exploited for per-
formance improvement. For example, two otherwise unrelated files
may belong to a random access sequence, with a file correlation de-
gree of 0.0001 as evaluated by FARMER. This correlation degree is
so weak that it is generally meaningless to be considered for an ex-
ploitable file correlation. Therefore, in order to describe the validity
of file correlations, we define strength to measure the file correla-
tion degree. Moreover, we specify a valid threshold for correlation
degree, denoted as max strength. After evaluating the correlation
degree, we compare the file correlation degree of a candidate file
with max strength. If the file correlation degree is smaller than max
strength, this correlation will be considered invalid and thus filtered
out, and vice versa.

3.3 Efficiency of FARMER
Compared with existing file access sequence mining algorithm

such as SD Graph , Probability Graph and Nexus, FARMER can
more effectively and accurately infer file correlations in distributed
storage systems while requiring less overhead. These algorithms
need to keep the correlative information for every file during the
process of graph building, whereas FARMER does not need to
maintain any correlative information for weak correlations due to
its filtering ability. In practice, only active file correlations are up-
dated and thus FARMER needs much smaller memory footprint
to store file correlations information. Moreover, since each file is
stored as a row in the database, FARMER computes the inter-file
correlation degree row by row in the file metadata table. As a result,
the computational complexity of FARMER is O(nm), n is the num-
ber of files stored in the database and m is the number of successor
for each file (Generally, m is a small constant [23]). Therefore,
FARMER is more efficient than the approaches mentioned above
because less correlative information needs to be processed.

Therefore, we argue that FARMER is much more efficient than
these existing algorithms.

4. FARMER APPLICATIONS
FARMER as a mining and evaluating tool can infer and reveal

hidden file correlations that can be potentially used and exploited
by a number of performance enhancing strategies directly or indi-
rectly, as explained in more details in this section.

4.1 FARMER-enabled Prefetching
The file correlation information mined and evaluated by FARMER

can be used to help prefetch files data, especially file metadata ac-
curately in large distributed storage systems. It is a well recognized
fact that metadata accesses and operations account for a majority
of all I/O operations in a typical storage system [20], because hun-
dreds of thousands of pieces of file metadata need to be updated
simultaneously, which often means that metadata servers are severe
performance bottlenecks of distributed storage systems. This meta-
data bottleneck has been addressed generally in two directions. The
first is to use multiple metadata servers to co-ordinate the metadata
requests to metadata servers for load balancing. The second is to
reduce the overhead incurred by metadata operations by improving
storage cache hit ratio. FARMER helps exploit inter-file correla-
tions and offers an enhanced prefetching algorithm to reduce the
overhead incurred on metadata servers and effectively alleviate the
bottleneck effect of metadata servers.

In general, a conservative prefetching algorithm attempts to avoid
prefetching inaccuracy and cache pollution by reducing the fre-
quency and amount of prefetching. By contrast, an aggressive prefetch-
ing algorithm prefers to hoard more entries to scale up overall sys-
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Figure 3: Impact of varying weight p for different traces

tem performance. In modern storage systems, more than 50% of
all I/O operations are related to metadata access [20] while the typ-
ical size of file metadata is no more than 5% of the size of file
data [24]. This observation implies that storage systems stand to
gain greatly by aggressive metadata prefetching while incurring
relatively small mis-prefetching penalties. However, the benefit
of aggressive prefetching can be quickly offset by mis-prefetching
penalties if it is not accurate and brings in too many unrelated meta-
data files. To alleviate this problem, FARMER filters out unrelated
or weakly correlated files from Correlator List by comparing the
correlation degree with a valid correlation degree threshold max
strength. By appropriately configuring the max strength threshold,
FARMER can potentially optimize the prefetching size at a mini-
mal mis-prefetching penalty.

The capability of metadata operations for metadata server plays
a critical role in scaling up performance in a peta-scale distributed
storage system. We identify demanding requests and prefetching
requests by setting a request attribute and provide a priority-based
request-scheduling model, as elaborated in Section 5. In particular,
a metadata server uses two request queues to guarantee the avail-
ability of service for the demand requests queue that is of higher
priority than the prefetching request queue.

4.2 FARMER-enabled File Data Layout
File correlations can also be exploited to improve the efficiency

of file data layout. We can merge several small files into one group
to scale up the overall system performance by enhancing the correl-
ative file data locality. The average file size of modern workstation
cluster is 108 KB - 189 KB [24], so file data layout has a great
impact on the batched I/O operations that, as a result of exploit-
ing file correlations and thus data locality, are transformed from
random I/Os to sequential I/Os, thus significantly improving data
access performance.

Several design issues should be considered while exploiting file
correlations to optimize file data layout. One of the most impor-
tant issues is to determine which files should be integrated into one
group. We can use the sorted Correlator List of each file to address
this issue. However, if file data are frequently modified, the data
layout management of such a grouping scheme will become very
complex. Therefore, as an initial attempt, only read_only files are
considered to be stored in the same group.

Metadata servers can organize files based on inter-file correla-
tions and file attributes. After evaluating and sorting based on file
correlation degree to obtain a group of strongly correlated files in
the Correlator List, a metadata server may try to allocate these files
in one group contiguously. Thus, whenever the predecessor is ac-
cessed, its correlated files are batch read into the cache by a single
I/O request.

4.3 FARMER-enabled Security and
FARMER-enabled Reliability

File correlations can also be exploited to improve storage sys-
tem security and reliability, for example, in cases such as secured
delete and denial of malicious access [25]. In intelligent secure
storage systems, once a user configures rule-based accesses for a
file or directory, this rule may be applied to other files that have
strong file correlations with this file or directory automatically. In
addition, file replication and the corresponding consistency man-
agement can also take advantage of file correlations by grouping
files with strong inter-file correlations in the same logical replica
group. Each backup and recovery task on a replica group can be an
atomic operation so that we can guarantee the strong consistency
of files in the same replica group.

5. CASE STUDY: FARMER-ENABLE
PREFETCHING FOR IMPROVED
ACCURACY ON HUST

We have discussed several useful potential applications of ex-
ploiting file correlations mined and evaluated by FARMER in the
previous section. Here, we apply FARMER to improve the intelli-
gence of the prefetching algorithm in our object-based storage sys-
tem – HUSt to verify the feasibility and effectiveness of our algo-
rithm. In this section, we will present the FARMER framework
and how it works with our system. To evaluate the benefits and
overheads of the FARMER-enabled Prefetching Algorithm (FPA)
and demonstrate FARMER’s applicability to a wide range of work-
loads, we use four typical traces taken from distributed file system
(including LLNL, INS, RES, and HP traces). Based on the four
distributed file system traces (see Section 2 for more detailed de-
scriptions of these traces), we conduct experiments to show the im-
pact of FARMER on performance. We compare FPA with Nexus
(because Nexus performs better than any of the existing algorithms
for metadata prefetching [11]), and LRU (because LRU is the most
commonly-used algorithm for cache replacement) in terms of the
cache hit ratio, prefetching accuracy and average response time.

5.1 The HUSt System Architecture
Figure 4 shows the architecture of HUSt with FARMER inte-

grated. The system comprises three major components: (1) MDSs
are mainly responsible for managing security authorization and file
metadata information. The latter, which involves the Correlator
List if there are several successors for a corresponding container
(file/directory), is stored as a row in Berkeley DataBase. Particu-
larly, when a file accessed by a coming request is not in the cache,
we will retrieve the database and load the file metadata information
including the Correlator List. (2) OSDs are actual storage depos-
itories for object data, and provide the object-based interface for
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Figure 4: Architecture of HUSt
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Figure 5: Impact of max strength

clients’ accesses. (3) Clients run applications and provide general
access interfaces for applications.

In order to support FARMER, we have added two major compo-
nents into HUSt: extractor and mining and evaluating utility. ex-
tractor is a file-type specific filter that takes as input the request for
a file from a client and outputs the corresponding semantic vector
of this file. The functionality of mining and evaluating utility that
implements the CoMiner is to mine and evaluate file correlation ac-
cording to semantic vector. The mining and evaluating utility also
interacts with the Berkeley DB to store the file correlation informa-
tion such as Correlator List for the files.

5.2 Impact of FARMER Parameters on
Design Decisions

Through analyzing experimental results obtained from the HUSt
prototype implementation of FARMER, we evaluate how various
FARMER parameters impact some design decisions.

5.2.1 Weight Factor p

To find out what value of weight p can achieve the best perfor-
mance, we conduct some experiments to evaluate the performance
of the overall system as a function of p (varying from 0.0 to 1.0 with
step of 0.1). Figure 3 shows the cache hit ratios of the FARMER-
enabled prefetching algorithm as a function of the max strength

with different p values of 0, 0.3, 0.7 and 1, respectively. We notice
that when the weight factor p is 0.7, the cache hit rate reaches the
highest value. So, the default value of p is configured 0.7 in our
subsequent experiments.

5.2.2 Attribute Combination

HP Trace
Combination Hit Ratio
{Process} 54.1%
{File Path} 53.6%
{Process, File path} 55.2%

(a)
INS Trace (2nd column), RES Trace (3rd column)
Combination Hit Ratio
{User} 93.4% 38.4%
{Process} 93.3% 37.6%
{Host} 89.1% 35.1%
{File ID} 86.4% 36.7%
{User, File ID} 87.7% 36.7%
{Process, File ID} 87.2% 35.3%
{User, Process} 93.1% 40.6%
{Host, process} 90.9% 40.6%
{Host, User} 91.1% 41.7%
{Host, File ID} 88.7% 41.0%
{Host, Process, File ID} 90.3% 36.7%
{Host, User, File ID} 90.2% 37.9%
{User, Process, File ID} 93.2% 42.0%
{Host, Process, User} 92.8% 41.4%
{Host, User, Process, File ID} 93.9% 43.9%

(b)

Table 3: Cache Hit Ratios with different attribute combinations

In section 2, analysis of different attribute combinations demon-
strates that not all of file attributes have the same effect on file cor-
relation. By analyzing the experimental result, we can determine
attribute combinations that are more effective than others and po-
tentially identify the most influential combinations.

In Table 3(a) and Table 3(b), the Table 3(a) enumerates all com-
binations of the two attributes (Process ID and File path) in the HP
Trace, the Table 3(b) enumerates all combinations of the four at-
tributes (User, Process, Host and File ID) in the INS and RES trace.
The last row presents the result when considering all the semantic
attributes. From Table 3(a) and Table 3(b), we observe that the dif-
ference of cache hit ratio among different attribute combinations
range from 0.1% to about 13%.

This result proves our conjecture that different attribute has dif-
ferent contribution to file correlation evaluation. Therefore, for
each specific application, we always adopt a relatively optimum
semantic combination to improve prefetching accuracy and cache
hit ratios.

5.2.3 Valid threshold
Valid threshold – max strength may affect the prefetching pol-

icy. We run the prefetching algorithm experiment under the HP
traces. In this experiment, two files, with their file correlation de-
gree larger than the validity threshold, will be prefetched to the
system cache. The range of max strength varies from 0.0 to 1.0. A
larger max strength corresponds to more a conservative prefetch-
ing policy. From Figure 5, we can see that if the max strength is
smaller than 0.4 the response time tends to be stable.It indicates
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Figure 6: Cache hit ratio and Response Time comparison for
LLNL, RES and HP Trace

that prefetching files with file correlation degree lower than 0.4 is
unlikely to benefit overall system performance.

5.3 Performance Evaluation of The
FARMER-enabled Prefetching Algorithm

Aggressive prefetching algorithms can improve cache hit ratio
and reduce response time by increasing the prefetching size, pro-
vided that prefetching accuracy is reasonably high. With poor prefetch-
ing accuracy, however, this approach can suffer from severe cache
pollution and misprefetching penalty, making it ineffective and even
counter-productive. The FARMER-enabled prefetching algorithm
(FPA) improves prefetching accuracy significantly by eliminating
prefetching candidates with low inter-files similarities.

Figure 6 shows that FPA has the highest cache hit ratio under
all traces when compared with Nexus and LRU. In particular, the
cache hit ratio of FPA is 13% higher than that by Nexus in the
HP trace. This improvement is the best among all traces (7.8% in
INS and 3.1% in RES). The reason is that, in the HP trace, besides
the basic information about requests (user id, process id, device
id and so on), full file path information is also included, which
enables FPA to more accurately mine and evaluate file correlations.
However, in INS and RES, the fields of fid and dev id are used to
identify the different location between the files. The INS and RES
trace lack the file directory information that is critical in identifying
locality and inter-file correlations effectively.

Trace Prefetching Accuracy
FARMER 64.1%

Nexus 43.1%

Table 4: Prefetching Accuracy for HP Trace

We conduct our experiments on the HP trace to compare the
prefetching accuracy. From Table 4, experimental results show that
about 65% of all predictions provided by FPA are correct. In con-
trast, Nexus’ predictions are only about 43% correct. The higher
prefetching accuracy of FPA translates into significantly reduced
metadata access latency (i.e., average response time), as shown in
Figure 6, where FPA can improve the average response time in
metadata server over Nexus by up to 24% and over LRU by up
to 35%.

5.4 Memory Overhead
Table 5 shows the overhead for FARMER processing the file re-

quest with different traces. The results show that additional mem-
ory footprint sizes for corresponding traces are no more than 100
MB. The reason is that, first, valid threshold max strength limit the
size of Correlator List, thus FARMER only need to maintain a few
members for each Correlator List. Second, only several additional

entries such as file’IDs, Semantic Distance, file correlation degree,
etc., are required to be recorded for active files. Both of them guar-
antee that FARMER can effectively discover file correlations for
different typical workloads.

Trace LLNL INS RES HP
Space (MB) 98.4 1.4 2.5 9.8

Table 5: Space Overhead (max strength is 0.4)

6. RELATED WORK
Data and file correlations can be exploited to improve the per-

formance of distributed storage systems. We investigate previous
works about block correlations and file correlations to provide the
necessary background for our study reported in this paper. This
section briefly discusses the most closely related and representative
works in the literature on exploring correlations at the block or file
level respectively.

Block correlations: Researches on block correlations has typi-
cally been conducted at the disk block abstraction level, obtaining
more complex semantic patterns at the block level in storage sys-
tems.

C-Miner [26] uses data mining techniques to mine the frequent
sequences from a set of short sequences, which in turn infers the
block correlations and presents approaches of block correlation-
directed prefetching and data layout. C-Miner uses a black-box
approach that is similar to FARMER’s, although HUSt on which
FARMER is prototyped provides an object-based interface to ren-
der it a white-box approach.

[4] proposed semantically-smart disk systems (SDS) by using a
gray-box approach. SDS exploits the on disk data structure infor-
mation and categorizes data to transparently improve performance
or enhance functionality beneath a standard block read/write in-
terface. Similarly, Type-Safe Disks (TSD) [27] expose the block
relationship by a specific interface (special system call functions)
between the file system and the underlying block device. TSD uses
block correlation information to enforce active constraints on data
access.

File correlations: Previous studies on file correlations entail an-
alyzing file access pattern or extracting semantic information.

File access patterns, which reflect user behaviors, can infer cor-
relations among files. It is widely observed that access patterns
follow previous patterns with a high probability. Based on this ob-
servation, several prefetching algorithms, such as Last Successor
(LS), First Successor (FS) and Recent Popularity [23], predict files
that are likely to follow recently accessed files. However, accord-
ing to (PULS) [28], in distributed storage systems with multiple
users, multiple programs and multiple hosts, the interactions among
the different users, programs and hosts can render the overlapped
file access sequence much less informative in revealing file corre-
lations, thus adversely affecting prediction accuracy. File access
patterns, we believe, are not impertinent to file attributes (such as
program id, user id, host id, etc.).

FARMER considers such file attributes as user, program and
host to estimate the inter-file access relationship. Program-based
Successors (PBS) and Program- and User-based Last Successor
(PULS) [28] also identify the relationships between file access pat-
terns and the programs/users accessing them. PBS and PULS apply
the LS/LnS algorithms under the Program- and User-based con-
ditions. However, in addition to program and user information,
we consider other file attributes that influence file correlations in
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FARMER, since different users or programs may also follow a sim-
ilar file access pattern in distributed storage system.

Semantic Distance (SD) [9], Probability Graph[10] and Nexus [11]
attempt to evaluate file access relationships by means of a weight-
based graph. In the graph, each node represents a file and a back-
link represents a file access sequence. The initial weight value of
the weight-based graph is determined intuitively, and it is increased
according to the request sequence. There are two potential prob-
lems for this approach. The first problem is that when multiple
processes execute concurrently, the file access sequence will be in-
terleaved by the scheduler of OS, which will reduce the accuracy
of the collected statistics. The second problem, particularly related
to Nexus, is that it attempts to decrease the response time by in-
creasing the amount of prefetching, which reduces the prefetching
accuracy and generates significant cache pollution.

While FARMER also evaluates file correlations to facilitate a
prefetching algorithm, it differs from Nexus in that our approach
considers both access sequence and semantic distance derived from
file attributes such as user id, process id and other semantic infor-
mation. Moreover, our prediction algorithm guarantees that suc-
cessors that are not up to the mustard will not be prefetched.

An MIT team [12] developed a semantic file system to automat-
ically extract the attribute information from files and index the key
properties of file system objects. Gifford and Jouvelot provide as-
sociative attribute-based access to the content of information stor-
age system with the help of file type specific transducers. A trans-
ducer’s function is to extract the attributes of files from the upper
level user-interface. Other semantic file systems such as SFS [12]
and HAC [29] have been proposed to support both name-based and
content-based access to file objects, allowing users to organize their
files by content and present them with alternative views of data
through the concept of semantic directories.

[13] shows that the statistical evidence of attribute association
and provides useful hints to the file system in the form of file names
and other attributes so that the file system can successfully predict
many file properties from these hints.

7. CONCLUSION AND FUTURE WORK
Integrating a semantic-based methodology into file access se-

quence is a novel and effective way to discover file correlations.
In this paper, we introduce a File Access coRrelation Mining and
Evaluation Reference (FARMER) model for inferring the file cor-
relations.

Simply using file access sequence (weight-based or not) can not
avoid many incorrect predictions, especially in a multiple-user and
multiple-process environment. Compared to the existing studies,
FARMER judiciously combines file access sequence mining and
semantic attribute mining to effectively mine and evaluate file cor-
relations by leveraging Vector Space Model (VSM) technique.

We apply FARMER into a practical platform - HUSt [18] as a
case study. Based on several typical distributed storage system
traces, our experimental results show that FARMER is a useful
and efficient tool to infer file correlations with reasonable over-
head. More specifically, by comparing the effectiveness of con-
sidering different semantic attribute combinations, the result shows
that which attribute combinations are more useful to exploit the
maximum benefit of system.

In our proposed evaluation scheme, we consider two factors: se-
mantic distance and file access frequency. The trade-off between
them is controlled by a weight parameter. Experimental results in-
dicate that the best performance is achieved when the weight of
semantic distance is set to 0.7, implying that the semantic factor
plays a more significant role in mining file correlations.

Nexus and PBS are special cases of FARMER-enabled prefetch-
ing algorithm (FPA). If the weight value is 0, FARMER is reduced
to Nexus; If only the process or user attribute factor is considered
in our similarity computation, FARMER reduces to PBS or PULS.
As shown in Figure 6 and Figure 6, FARMER is shown to improve
the cache hit ratio of Nexus by up to about 30% while reducing
average response time by up to 24%.

Our study still has several limitations: first, even though FARMER
is a useful tool that can be incorporated into general storage system,
our evaluation of FARMER-enabled prefetching algorithm is based
on our object-based system. We are in the process of implementing
FARMER as a library to provide for other storage systems. Sec-
ond, other proposed applications including FARMER-enabled data
layout, security and reliability will be integrated into our system to
improve the overall performance.

In this paper, we have shown some intuitive and statistical ev-
idences to illustrate that various attributes have the impact on file
correlations and compared the influence of different semantic at-
tributes or attributes combinations. Furthermore, multiple regres-
sion analysis can be used to learn more about association between
file correlations and attributes.
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"Semantic file systems". In the 13th ACM Symposium on Operating
Systems Principles (SOSP’91). Pacific Grove, CA, USA. October
1991.

[13] D. Ellard, M. Mesnier, E. Thereska, G. R. Ganger, M. Seltzer.
"Attribute-Based Prediction of File Properties". Harvard Computer
Science Group Technical Report TR-14-03. December 2003.

[14] C. A. N. Soules, and G. R. Ganger. "Toward automatic
context-based attribute assignment for semantic file systems".
Parallel data laboratory, Carnegie Mellon University. June 2004.

[15] D. Bhagwat, and N. Polyzotis. "Searching a file system using
inferred semantic links". In Proceedings of the 6th ACM conference
on Hypertext and Hypermedia. Salzburg, AU. September 2005.

[16] G. Z. Liu. "Semantic Vector Space Model: Implementation and
Evaluation". In Journal of the American Society of Information
Science and Technology. 1997.

[17] M. S. Charikar. "Similarity estimation techniques from rounding
algorithms". In Proceedings of the thiry-fourth annual ACM
Symposium on Theory of Computing (STOC’02). Montreal,
Quebec, Canada, May 2002.

[18] L. F. Zeng, K. Zhou, Z. Shi, D. Feng, F. Wang, C. Xie, Z. Li, Z. Yu,
J. Y. Gong, Q. Cao, Z. Y. Niu, L. J. Qin, Q. Liu, Y. Li, and H. Jiang.
"HUSt: A Heterogeneous Unified Storage System for GIS Grid".
HPC Storage Challenge of Supercomputing, In the 2006
International Conference for High Performance Computing. Tampa,
FL, USA. November 2006.

[19] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long,
and T. T. McLarty. "File system workload analysis for large scale
scientific computing applications". In Proceedings of the 21st IEEE /
12th NASA Goddard Conference on Mass Storage Systems and
Technologies (MSST’04). College Park, MD, USA. April 2004.

[20] D. Roselli, J. R. Lorch, and T. E. Anderson. "A comparison of file
system workloads". In Proceedings of the 2000 USENIX Technical
Conference (USENIX’00). Berkeley, CA, USA. June 2000.

[21] E. Riedel, M. Kallahalla, and R. Swaminathan, "A framework for
evaluating storage system security". In Proceedings of the 1st
USENIX Conference on File and Storage Technologies (FAST’02).
Monterey, CA, USA. January 2002.

[22] Semantic file systems, http://www.objs.com/survey/OFSExt.htm
[23] A. Amer, D. D. E. Long, J. F. Paris, and R. Burns. "File access

prediction with adjustable accuracy". In Proceedings of the
International Performance Conference on Computers and
Communication (IPCCC’02). Phoenix, AZ, USA. April 2002.

[24] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, "A
Five-Year Study of File-System Metadata". In Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST’07).
San Jose, CA, USA. February 2007.

[25] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R.
H. Arpaci-Dusseau. "Life or Death at Block Level". In Proceedings
of the 6th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’04). San Francisco, CA, USA. December
2004.

[26] Zh. M. Li, Zh. F. Chen, S. M. Srinivasan, and Y. Zhou. "C-Miner:
Mining Block Correlations in Storage Systems". In Proceedings of
the 3rd USENIX Conference on File and Storage Technologies
(FAST’04). San Francisco, CA, USA. April 2004.

[27] G. Sivathanu, S. Sundararaman, and E. Zadok. "Type-safe disks". In
Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’06). Seattle, WA, USA.
November 2006

[28] T. Yeh, D. D. E. Long, S. A. Brandt, "Using program and user
information to improve file prediction performance". In Proceedings
of the International Symposium on Performance Analysis of Systems
and Software (ISPASS’01). Tucson, AR, USA. November 2001.

[29] B. Gopal and U. Manber. "Integrating content-based access
mechanisms with hierarchical file systems". In Proceedings of the
3th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’99). New Orleans, LA, USA. February 1999.

195



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


