
MAD2: A Scalable High-Throughput Exact Deduplication
Approach for Network Backup Services

Jiansheng Wei†, Hong Jiang‡, Ke Zhou† , Dan Feng†

†School of Computer, Huazhong University of Science and Technology, Wuhan, China
Wuhan National Laboratory for Optoelectronics, Wuhan, China

‡Dept. of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
jianshengwei@gmail.com, jiang@cse.unl.edu, k.zhou@hust.edu.cn, dfeng@hust.edu.cn

Abstract—Deduplication has been widely used in
disk-based secondary storage systems to improve space
efficiency. However, there are two challenges facing
scalable high-throughput deduplication storage. The first
is the duplicate-lookup disk bottleneck due to the large size
of data index that usually exceeds the available RAM
space, which limits the deduplication throughput. The
second is the storage node island effect resulting from
duplicate data among multiple storage nodes that are
difficult to eliminate. Existing approaches fail to
completely eliminate the duplicates while simultaneously
addressing the challenges.

This paper proposes MAD2, a scalable
high-throughput exact deduplication approach for
network backup services. MAD2 eliminates duplicate data
both at the file level and at the chunk level by employing
four techniques to accelerate the deduplication process
and evenly distribute data. First, MAD2 organizes
fingerprints into a Hash Bucket Matrix (HBM), whose
rows can be used to preserve the data locality in backups.
Second, MAD2 uses Bloom Filter Array (BFA) as a quick
index to quickly identify non-duplicate incoming data
objects or indicate where to find a possible duplicate.
Third, Dual Cache is integrated in MAD2 to effectively
capture and exploit data locality. Finally, MAD2 employs
a DHT-based Load-Balance technique to evenly distribute
data objects among multiple storage nodes in their backup
sequences to further enhance performance with a
well-balanced load.

We evaluate our MAD2 approach on the backend
storage of B-Cloud, a research-oriented distributed system
that provides network backup services. Experimental
results show that MAD2 significantly outperforms the
state-of-the-art approximate deduplication approaches in
terms of deduplication efficiency, supporting a
deduplication throughput of at least 100MB/s for each
storage component.

I. INTRODUCTION
Although backup storage systems have been widely

deployed in enterprises, there remains a great need for
providing network backup services to individuals and
organizations for whom maintaining their own backup
systems is either too expensive or cost ineffective.
Existing network backup services can be classified into
two categories, centralized storage provided by storage
service providers (SSPs) and decentralized peer-to-peer

schemes based on peer-cooperation over distributed
network. The former allows user to trade money for
reliable backup and provides better quality-of-service
(QoS), while the latter allows user to trade local
resources for remote storage capacity. Because forming
a cooperative storage network that is large enough to run
security policy is difficult in practice [1], Internet
backup sites operated by SSPs remain the main
providers of network backup services.

One of the main challenges facing centralized
backup services is scalability. To reduce the total cost of
ownership (TCO), which is one of the key factors
affecting a SSP’s competitiveness, the system must be
both scalable and cost-effective.

The deduplication technology has been widely
applied in disk-based secondary storage systems to
improve cost-effectiveness via space efficiency [2-4].
However, there are two technical challenges that limit its
application. The first is the duplicate-lookup disk
bottleneck. Traditional approaches keep a full index in
RAM to determine if an incoming data object is a
duplicate. As data volume grows, the index can become
too large for RAM to hold in its entirety, forcing the
deduplicate process to lookup fingerprints in an on-disk
index and degrading the system performance. The
second challenge, which we refer to as the storage node
island effect, stems from the fact that most early
approaches eliminate duplicates within individual
storage nodes but not among multiple servers.

It is clearly important for the network backup
services overcome these challenges as they directly
impact their scalability and cost-effectiveness.

Two recent studies, DDFS [5] and Sparse Indexing
[6], proposed novel schemes to effectively eliminate the
duplicate-lookup disk bottleneck by exploiting chunk
localities in disk-to-disk (D2D) backup streams. Their
approaches are based on one basic observation that
chunks tend to reappear in the same or very similar
sequences in backup streams. They store the chunks in a
locality-preserving manner and then exploit the locality
to accelerate duplicate detection. However, none of these
approaches is targeted at scalable storage systems such
as network backup services where there are a potentially
large number of storage server nodes.

978-1-4244-7153-9/10/$26.00 © 2010 IEEE

HYDRAstor [4] utilizes distributed hash table (DHT)
to distribute data blocks among multiple storage nodes
according to their hash-keys. Global deduplication can
be achieved by eliminating duplicate blocks inside each
node. HYDRAstor attempts to avoid the
duplicate-lookup disk bottleneck by adopting a block
size of 64KB on average, among other constraints, to
keep all the metadata in memory.

Extreme Binning [7] exploits file similarity to
eliminate duplicates in non-traditional backup workloads
that are composed of files with little or no locality.
Similar files sharing the same signature, called the
representative fingerprint, are compressed into a
compact structure called bin that maintains only
non-duplicate chunks. Representative fingerprints of all
the bins are organized into primary index that is
sufficiently small to be kept in RAM, thus requiring only
one disk access for each incoming file to locate its
corresponding bin to eliminate duplicates. Further,
Extreme Binning distributes bins among multiple
storage nodes according to their representative
fingerprints to enable scalable parallel deduplication.
However, it allows duplicates to exist in different bins,
which results in approximate deduplication as opposed
to exact deduplication that completely eliminates
duplicates at all levels.

To overcome the shortcomings of the above
state-of-the-art deduplication approaches, we propose in
this paper MAD2, a new scalable high-throughput exact
deduplication approach aimed at backend storage system
of network backup service. MAD2 completely
eliminates duplicate data both at the file level and at the
chunk level. Specifically, it employs four key techniques
to accelerate the deduplication process and evenly
distribute data. First, MAD2 organizes fingerprints into
Hash Bucket Matrix (HBM), whose rows can be used to
preserve the data locality in backups. Second, MAD2
uses Bloom Filter Array (BFA) as a quick index to
quickly identify a non-duplicate incoming data object or
indicate where to find a possible duplicate. Third,
MAD2 integrates Dual Cache, one of which is
implemented as a directly-mapped cache to buffer
incoming non-duplicate fingerprints and capture locality
while the other is implemented as a set-associative cache
to reduce disk accesses by exploiting locality and
maintaining a high hit rate for duplicate fingerprints.
Finally, MAD2 employs a DHT-based Load-Balance
technique to evenly distribute data objects among
multiple storage nodes in their backup sequences to
further enhance performance with a well-balanced load.

The first three techniques are effective in avoiding the
duplicate-lookup disk bottleneck, while the last technique
eliminates the storage node island effect and enables
scalable parallel deduplication. Most importantly, MAD2
eliminates all duplicates while simultaneously addressing
the key deduplication challenges.

We evaluate our MAD2 approach on the backend

storage of B-Cloud, a research-oriented distributed
system that provides network backup services.
Deduplication efficiency results show that MAD2
achieves compression ratios of 16.73 and 18.52
respectively for our two backup data sets with
exploitable locality, which significantly outperforms the
state-of-the-art Extreme Binning approach with the
corresponding ratios of 14.10 and 9.71. Storage load is
shown to be perfectly balanced while using 4 storage
components. Performance evaluation shows that MAD2
is about 3.7 times faster than Extreme Binning in
identifying duplicate fingerprints and supports a
deduplication throughput of at least 100MB/s for each
storage component. Further, we observed the existence
of extremely hot zero-chunks that may be widely shared
even among dissimilar files. This observation is very
helpful in further improving our approach.

The remainder of this paper is organized as follows.
In the next section, we provide the necessary
background information to further motivate our MAD2
research. The MAD2 architecture and its detailed design
are presented in Section 3. Section 4 evaluates MAD2
by comparing and analyzing the extensive experimental
results obtained from our MAD2 prototype
implementation. Section 5 reviews the research in the
literature that is most relevant to MAD2 and Section 6
concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Duplicate Detection Methods

Deduplication is one of the main techniques to
eliminate redundancy in datasets. Different from
sequential compression and delta encoding, it usually
works at the KB or larger granularity.

Traditional backup software usually detects possible
duplicate transmission by examining the file system
metadata. For example, incremental backup omits the
files that reside in the same path and with a timestamp
earlier than the last backup. Since the timestamp of a file
may be modified by virus or special user command such
as ‘touch’ and the clock of the user host can also be at
risk of being illegally tampered, simply identifying
duplicate files by the associated file system metadata is
far from being reliable.

The emergence of highly reliable hash algorithms
such as MD5 and SHA-1 has enabled many recent
approaches to adopt content-based duplicate detection,
which is more efficient than byte-to-byte comparison
and more reliable than metadata-based duplicate
identification. For a given data object, a hash algorithm
is used in content-based duplicate detection to generate a
unique identifier, also referred to as a fingerprint, to
identify duplicate data objects.

In general, content-based deduplication can be carried
out at one of the three levels of granularity, namely,
whole files, fixed-size blocks, or variable-sized chunks

generated by a content-defined chunking algorithm.
Previous research shows that variable-sized chunk-level
deduplication is more space efficient than the other two
methods [8]. It is more sensitive to duplicates than the
whole-file hashing approach and can detect duplicate
data chunks among similar files. On the other hand, it is
far more effective than the fixed-size blocking approach
in solving the block-shifting problem [9].

B. Duplicate Lookup Acceleration Methods
Previous studies [8, 10] have shown that the storage

efficiency of variable-sized chunk-level deduplication is
highly dependent on the average chunk size, and smaller
chunks usually detect more duplicate information.
However, smaller average chunk size also means that
more chunks will be generated for a given data set,
resulting in a chunk index that may be too large for
RAM to hold and leading to the duplicate-lookup disk
bottleneck. For example, an average chunk size of 4KB
implies 2.25×230 unique chunks in a 10TB deduplicated
dataset. Considering that each fingerprint consumes 40
bytes, an approximately 100GB memory will be needed
to hold the whole index, which is prohibitively
expensive for today’s systems and thus forces the
deduplication process to frequently access an on-disk
index. In this case, fingerprint lookup acceleration
becomes critically important.

Currently, there are generally two approaches to
improving the fingerprint lookup efficiency. The first
approach exploits data locality, which has been used in
DDFS and Sparse Indexing. DDFS [5] exploits chunk
locality in D2D backup streams. It utilizes
Stream-Informed Segment Layout (SISL) to create
spatial localities for both chunk fingerprints and chunk
contents, and then employs Locality Preserved Caching
(LPC) to exploit locality and accelerate duplicate chunk
detection. DDFS also uses Bloom Filter to quickly
identify incoming non-duplicate chunks.

Sparse Indexing [6] divides a data stream into 4KB
average-sized chunks and then partitions chunk
sequences into 10MB average-sized segments. For each
segment, a few representative fingerprints are sampled
and inserted into an in-memory structure called sparse
index, which is used to estimate similarity between
segments. Once a new segment arrives, it is sampled and
deduplicated against several most similar existing
segments. Although Sparse Indexing consumes smaller
RAM space than DDFS, its duplication efficiency can be
affected by the sample rate and a few other factors,
which makes it an approximate deduplication approach.

Both DDFS and Sparse Indexing are targeted at D2D
backup workloads, where scalability is not as important
a concern as in a network backup-service environment.

The second approach exploits file similarity, which
has been used in Extreme Binning [7], a deduplication
approach targeting at non-traditional backup workloads
that are composed of individual files with little or no

locality. For each file, Extreme Binning chooses the
smallest chunk hash as the representative fingerprint.
Files sharing the same representative fingerprint are
grouped into a bin, which is the basic scope of chunk
level deduplication. Representative fingerprints of all the
bins are organized into a primary index that is sufficiently
small to remain in RAM, so that only one disk access to
its corresponding bin is needed for each incoming file.

Since Extreme Binning samples only one fingerprint
for each file, the probability of similar files being
grouped into the same bin is highly dependent on their
similarity degree. According to Broder's Theorem [11],
the probability that different files share the same
representative fingerprint will decrease as the number of
files grows. For example, consider two chunk sets S1 and
S2 generated from two different files respectively. Let
H(Sn) denote the corresponding fingerprint set of Sn and
min(H(Sn)) denote the smallest element of H(Sn). Then:

21

21
21))](min())(Pr[min(

SS
SS

SHSH
∪

∩
==

Now, introducing a new chunk set S3. We have:

21

21

321

321

321))](min())(min())(Pr[min(

SS
SS

SSS
SSS

SHSHSH

∪

∩
≤

∪∪

∩∩
=

==

As a result, it can be speculated that the number of bins
will increase rapidly as the number of files grows,
resulting in more duplicate chunks to remain among bins.

In the final analysis, the key in fingerprint lookup
acceleration lies in the fast membership determination of
incoming data objects and the fast identification of the
potential existing duplicates.

C. Scalable Deduplication
Existing approaches to scaling up the deduplication

storage are generally based on the use of distributed hash
table.

HYDRAstor [4] uses a modified version of the fixed
prefix network (FPN) DHT to distribute data blocks
according to their hash-keys among logical supernodes.
Data blocks assigned to different supernodes have
different hash prefixes and can be deduplicated in parallel.
Different from HYDRAstor, Extreme Binning [7]
distributes bins among storage nodes according to their
representative fingerprints to enable scalable parallel
deduplication. Each storage node is only responsible for
files with specified representative fingerprints and files
belonging to different bins can be deduplicated in parallel.
However, both HYDRAstor and Extreme Binning are
considered approximate deduplication schemes as they
fail to completely eliminate duplicates.

In summary, the key for scalable deduplication lies
in finding an effective way to partition data into
dissimilar or less similar groups. Moreover, the
redundancy degree between less similar groups must be
acceptable and controllable.

III. THE MAD2 ARCHITECTURE AND DESIGN
This section presents the architecture and design of

MAD2, our approach to providing scalable
high-throughput exact deduplication in the backend
storage of network backup services.

To provide the necessary context for presenting
MAD2, we first describe the architecture of its
underlying storage system, the backend storage of
network backup services. While MAD2 is designed to
be applicable to general network backup services, we
use the B-Cloud system as an example to illustrate the
key architectural features of a typical backend storage of
network backup services since our MAD2 is prototyped
on B-Cloud. B-Cloud is a research-oriented distributed
system that provides network backup services for user
files and other binary data.

SNSNSN

Metadata Server Group

Backup Server

SC 1 SC 2 SC 3 SC k

Storage Proxy

 metadata

High-speed Network

…

incoming data from Backup Client

…

<file fingerprints,
file recipes>

prefix1

MDS MDS

<chunk fingerprints,
chunk contents>

prefix2 prefix3 prefixk

(a) Data Distribution among Multiple Storage Nodes

file recipes

chunk contents

(b) Deduplication inside Storage Component

Figure 1: The Application of MAD2 in B-Cloud

As shown in Figure 1-(a), the B-Cloud front end
consists of backup servers (BSs), storage proxies (SPs)
and metadata servers (MDSs). BS and SP are
independent software components, and they usually run
in pairs on the same physical node to avoid unnecessary
network traffic. When the user initiates a backup job, one
BS is chosen to control the job status and receive
incoming files. BS splits metadata from files and sends

them to the responsible MDS along with the job
information. On the other hand, SP receives file contents
from BS and divides them into content-defined chunks
using the Rabin fingerprinting algorithm [12]. Meanwhile,
both file fingerprints and chunk fingerprints are
calculated, and file recipes are generated for file
reconstruction purposes. The chunking and fingerprinting
processes can also be done by the backup client (BC),
depending on the hardware environment of the user host
and whether there is a bandwidth-saving requirement.

The backend of B-Cloud is built of clustered storage
nodes. Based on the availability of physical resources,
each storage node (SN) can run a single or multiple
storage components (SCs) to deduplicate and maintain
distributed backup data.

MAD2 employs DHT-based load balancing to
distribute file recipes and chunk contents among
multiple SCs in their backup sequences. As shown in
Figure 1-(b), both file fingerprints and chunk
fingerprints are organized into locality-preserved Hash
Bucket Matrixes (HBMs) inside each SC. MAD2
utilizes Bloom Filter Array (BFA) to quickly identify
incoming non-duplicate fingerprints and indicate in
which row of HBM to find a possible duplicate. Because
BFA has an unavoidable false positive probability and
possible duplicates must be confirmed by checking
HBM, MAD2 integrates Dual Cache to capture and
exploit the fingerprint locality and further accelerate the
duplicate confirmation process. In the remainder of this
section, the design of MAD2 will be detailed by the
descriptions of its main functional components.

A. Locality-Preserved Hash Bucket Matrix
As previous research shows, exploiting data locality

is an effective approach to accelerating duplicate
detection process, and there exists substantial exploitable
locality in most backup workloads. For example, backup
clients usually transfer target files in the same sequence
in multiple backup jobs, and identical chunks tend to
appear in approximately the same sequence between
similar backup files. DDFS and Sparse Indexing preserve
locality in a D2D backup environment by storing chunk
fingerprints exactly in the order of their incoming
sequences. To achieve the goal of preserving fingerprint
locality in a distributed environment, we develop a novel
data structure called Hash Bucket Matrix (HBM) that is
scalable and conducive to parallel deduplication.

Figure 2 shows the structure of HBM. In this
structure, the fingerprint space is divided into n equal
parts called super buckets that are each further divided
into buckets of equal capacity. Buckets that belong to
different super buckets but are in the same logical row
are grouped into a tanker, the basic unit on which the
fingerprint locality is preserved. During backup, all the
incoming non-duplicate fingerprints will be appended
into HBM. If any super bucket is full, a new tanker will
be created to extend the capacity of HBM.

Figure 2: Structure of HBM and BFA

Now, we explain how HBM preserves fingerprint
locality in backup jobs. Consider the fact that the
fingerprint value of an incoming data object is totally
random and could be assigned to any super bucket with
the same probability, all the super buckets may hold
approximately the same amount of fingerprints at any
given time. This also implies that we can expect
consecutive fingerprints belonging to the same backup
job to have a high probability of being stored in the same
tanker. If a group of files or a group of chunks tends to
reappear together in backup jobs, their locality can be
preserved by tankers of HBM.

B. Using Bloom Filter Array as Quick Index
While HBM can preserve fingerprint locality, it does

not directly address the issue of the duplicate-lookup
disk bottleneck. A fast index is needed to identify
non-duplicate incoming fingerprints or determine in
which tanker to find possible duplicates in an
expeditious way. Bloom Filter (BF) [13] is a good tool
for building such a fast index, due to its efficiency in
recognizing unique fingerprints, and its controllable
probability of identifying duplicates.

However, a number of problems will arise when
recording the memberships of all the existing
fingerprints using a single BF. First, if the potential
number of fingerprints is underestimated, the false
positive rate of BF will increase rapidly as the number of
fingerprints exceeds the BF capacity, forcing a BF
reconstruction. Second, a single BF is ineffective in
locating possible duplicates. Third, every time a
fingerprint is physically removed, resulting in the
deletion of an element in BF, the whole BF must be
rebuilt. While a Counting Bloom Filter presents a
potential solution [14], its use will likely increase the
RAM requirement and decrease the performance.

Instead, MAD2 employs a Bloom Filter Array (BFA),
shown in Figure 2, where each tanker is associated with a
Bloom Filter recording the membership information for
the member fingerprints. All the Bloom Filters are
isomorphic and share the same hash functions. Once a
new fingerprint arrives, it can be quickly identified by a
BFA query. If any member of the BFA returns a positive
for the incoming fingerprint, there may be an existing

duplicate in the corresponding tanker. And the fingerprint
prefix can be used to determine the target bucket.
Conversely, all negatives denote that the incoming
fingerprint is definitively unique. If the HBM overflows,
we only need to add a Bloom Filter along with a new
tanker, which means the memory consumption will only
increase linearly with the amount of data.

According to Broder’s analysis [14], given Bloom
Filter’s bitwise m and total number of fingerprints n, the
optimal number of hash functions k can be expressed as
k=(m/n)×ln2, and the minimal false positive rate f can be
expressed as f=(1/2)(m/n)×ln2. If we bound false positive
rate to ε, i.e., f≤ε, then we can infer that the bitwise m
should satisfy m≥n×log2e×log2(1/ε). Consider the
situation in Section 2.2, where 10TB data result in
2.5×230 chunks with 4KB average size. The minimal
space requirement of BFA can be calculated in bytes
using n×log2e×log2(1/ε)×(2.5×230/n)×(1/8). Detailed
RAM consumption and memory saving methods will be
discussed later in Section 4.6.

C. Dual Cache Mechanism
Since BFA has an unavoidable false positive

probability, possible duplicates need to be confirmed by
checking the on-disk HBM. Dual Cache is designed to
improve disk access efficiency while locating duplicate
fingerprints.

To describe the mechanism of Dual Cache, we first
introduce the two possible states of a tanker, i.e.,
appendable state and reference-only state. An appendable
tanker appends incoming non-duplicate fingerprints to
the corresponding bucket and records the reference count
for each duplicate fingerprint, while a reference-only
tanker only maintains existing non-duplicate fingerprints.
An appendable tanker will gracefully transition to the
reference-only state when it is full. Before that,
fingerprints inside each bucket will be sorted to enable
binary search for future duplicate identification.

To capture the fingerprint locality in backup streams,
MAD2 utilizes a directly-mapped cache (DMC, Figure
1-(b)) to hold several appendable tankers in RAM, as
shown in Figure 3. All the incoming non-duplicate
fingerprints will be directly appended to the bottom of
the corresponding bucket. Once a tanker in DMC is full,
it will be changed to the reference-only state and saved
to the on-disk HBM. A new tanker will be created by
DMC if there is no space left for incoming fingerprints.

However, our experiments indicate that the super
buckets in HBM are not perfectly balanced in their
actual occupations and this imbalance increases as the
HBM capacity grows, which can decrease the
locality-capturing capability of a tanker. To solve this
problem, MAD2 introduces a periodic rebalancing
policy. Specifically, if the current imbalance among
super buckets exceeds a predefined threshold, all the
tankers in DMC will be changed to the reference-only
state and flushed to the on-disk HBM, meanwhile the

imbalance will be reset to zero and a new appendable
tanker will be created if necessary. Because of the
periodic rebalancing policy, there may be a small
number of empty cells in some reference-only tankers.
Fortunately, the number of tankers with empty cells can
be controlled by properly choosing the HBM
rebalancing threshold, and it is easy to avoid the waste
of disk space by compressing these empty cells.

Set-Associative Cache

Directly-Mapped Cache
tanker 1

…

tanker
set 2

tanker
set 1

tanker
set s

B11 B1w

…
B21 B2w

…
Bn1 Bnw

……

B11 B1w

…
B21 B2w

B1 B2 Bn

tanker k

…B3…

Bn1 Bnw

B4

B1 B2 Bn…B3 B4

… …

B11 B1w

…
B21 B2w Bn1 Bnw

… …

… ……
…

…

…

Figure 3: Dual Cache. The Directly-Mapped Cache is always
mapped to the appendable tankers at the bottom of HBM, and the
Set-Associative Cache is mapped to all the reference-only tankers
inside HBM. Their mapping range will change accordingly as the
HBM capacity changes.

To exploit the fingerprint locality in backup data,
MAD2 uses a set-associative cache (SAC, Figure 1-(b))
to cache the buckets of reference-only tankers and
maintain a high hit rate for duplicate fingerprints. As
Figure 3 shows, each tanker set consists of n bucket sets
that each further contains w buckets, where n is the
number of buckets inside each tanker and w is the
associativity (way count) of SAC. For a target bucket,
MAD2 can determine the mapped bucket set according
to its tanker ID and bucket ID.

MAD2 adopts two policies to improve the access
efficiency of SAC. First, it takes a bucket as the basic I/O
unit and executes LRU replacement policy inside each
bucket set. This policy can effectively reduce the disk
access cost caused by a BFA false positive, with only one
small disk read required for the target bucket. Second, it
executes a batch write-back policy to enhance the disk
access locality. Since logical insert or delete operations
can change the reference counts of the corresponding
fingerprints, dirty buckets will be generated. Once a dirty
bucket is going to be replaced, MAD2 flushes all the
cached buckets belonging to the same tanker back to disk.
Because of the locality-preserving capability of HBM,
buckets in the same tanker usually have correlated access
patterns and tend to be loaded or replaced in the same
time window. By performing a batch write-back policy,
both fingerprint locality and disk access locality are well
exploited.

D. DHT-based Load Balancing
Benefitting from the randomness of SHA-1, DHT is

a natural choice for partitioning data into dissimilar
groups and distributing them among multiple storage
components (SCs) with a well-balanced load.

In our approach, each SC is responsible for file
recipes and chunks with the same specific fingerprint
prefix, as shown in Figure 1. Because fingerprints with
different prefixes are collision free, multiple SCs can
deduplicate data in parallel and no duplicate files or
chunks will remain among them. If each SC performs
exact deduplication in its responsible hash sub-space, the
entire backend storage can achieve global exact
deduplication.

Moreover, both file recipes and chunk contents will
be distributed in their backup sequences to preserve
locality. Consider a sequence of fingerprints with two
different prefixes (a1, b0, c1, d1, e0, f1, g0). MAD2 divides
them into two sub-sequences (a1, c1, d1, f1) and (b0, e0,
g0), and distributes each sub-sequence to one responsible
SC. If the fingerprint sequence reappears in backup data,
the locality of each sub-sequence will be captured and
exploited.

E. Data Organization and Deletion Support
As shown in Figure 1-(b), there are four kinds of data

maintained by SCs, file fingerprints along with file
recipes and chunk fingerprints along with chunk contents.
Both the file fingerprints and the chunk fingerprints are
organized as on-disk HBMs that can be cached in RAM
by Dual Caches. And each HBM is associated with a
BFA that is kept in RAM in its entirety to accelerate
non-duplicate identification and duplicate locating.

File recipes and chunk contents are generally stored
on disk. In particular, all the chunk contents are kept in
chunk store, which consists of chunk tankers
corresponding to tankers in HBM. More specifically,
inside each chunk tanker, chunks are grouped and
packaged into chunk containers in a
stream-locality-preserved manner to improve the disk
access efficiency. Chunk containers can be further
compressed by a variation of the Ziv-Lempel algorithm
[15]. However, we do not have enough room in this paper
to describe the detailed organization of chunk store.

Supporting data deletion is difficult but important for
a deduplication storage targeting a network backup
workload. Files or chunks may be referenced by multiple
users after deduplication, and any associated user may
request to delete his/her own logical copy.

MAD2 exposes only a file-level delete interface to
SC clients and determines whether a file or chunk should
be physically deleted by means of a special data
structure called counting fingerprint. A counting
fingerprint is structured as <fingerprint, data length,
reference count>. Fingerprint is a 20-bytes SHA-1 hash
of the target data object. Both data length and reference
count are represented by 64-bit unsigned integers. A
logical file delete operation will decrease the reference

count of the corresponding file fingerprint, and a
physical file delete operation decreases reference counts
of all the chunk fingerprints belonging to that file. A file
or a chunk will not be physically deleted until the
associated reference count drops to zero.

Practically, a physical delete operation is executed in
a batch mode. When there are too many unreferenced
fingerprints in a tanker, the corresponding file recipes or
chunk contents will be physically deleted and the
associated Bloom Filter will be reconstructed. Adjacent
tankers can be merged if they are sparse enough and all
the involved Bloom Filters will be reconstructed. During
the physical deletion period, all involved tankers must be
changed to the read-only mode to maintain data
consistency, suggesting that it is better to reclaim spaces
in off-peak hours.

F. Workflow of the MAD2 Deduplication Approach
With the main functional components of MAD2

presented above, we now put them together to describe
the overall workflow of the MAD2 deduplication
process in the backend storage of B-Cloud.

SC (storage component) supports two inline
deduplication modes, the exclusive mode and round-robin
mode. The former targets at high-speed backup streams
that can finish data transmission in short time windows,
while the latter aims at low-speed backup streams that will
be buffered by SP (storage proxy). The purpose of this is
to avoid low-bandwidth concurrent write streams and
make sure that the locality of each data stream can be
captured and preserved. In general, deduplication can be
performed concurrently among multiple SCs.

Specifically, the MAD2 deduplication process
includes two phases. In the first phase, SP distributes file
fingerprints along with file recipes to their responsible
SCs to eliminate duplicate files. In particular, SC
performs the following steps for each file:

 Use the BFA to quickly check if the incoming
file fingerprint is unique.

 If the BFA indicates that a duplicate possibly
exists in a certain tanker, then the fingerprint is
handed to Dual Cache. According to the target
tanker ID, SAC or DMC will be chosen to
further lookup the potential duplicate.

 If a duplicate is found, then the corresponding
reference count is increased and the associated
file recipe will not be transferred.

 If the incoming file turns out to be unique, then
the fingerprint is appended to the appendable
tanker maintained by DMC and located at the
bottom of HBM, and the file recipe is
transferred and saved.

In the second phase, SP distributes chunk
fingerprints along with chunk contents of non-duplicate
files to multiple SCs to eliminate duplicate chunks. In
particular, SC performs the following steps:

 Detect duplicate chunks in the same way as

above.
 All identified non-duplicate chunk contents are

written into chunk store sequentially with their
fingerprints recorded.

Note that if a duplicate file is detected, then all the
chunks belonging to that file can be directly skipped.
Besides, SP can also work as a transparent proxy to
enable bandwidth saving between backup clients and
backup servers.

IV. PROTOTYPE IMPLEMENTATION AND EVALUATION
We evaluate MAD2 through a prototype of MAD2

running on a Windows environment that consists of 2
storage nodes that each in turn hosts 2 storage
components. The hardware configuration includes a
quad-core CPU running at 2 GHz, 16GB RAM, 2 gigabit
network interface cards, and 16 1TB hard disks organized
in a RAID5 system. The experimental front end of
B-Cloud is composed of a single metadata server and two
backup servers that is each coupled with a storage proxy.

Our data sets consist of files from two different
groups of users. The first data set was collected from an
engineering group consisting of 15 graduate students,
which we refer to as the Workgroup set. Each student
runs full or incremental backups independently using
their desktop PCs and workstations in a span of 31 days.
There are 12.1 million files that amount to a total of
6.0TB data in the Workgroup set.

The second data set was collected from 26 users on a
campus network, including personal website owners,
small file transfer site managers and other individuals.
Every user backs up their selected datasets in a span of
31 days independently, which is called the Campus set.
There are 15.4 million files for a total size of 4.7TB in
the Campus set.

A. Locality-Preserving Capability of HBM
To evaluate the locality-preserving capability of

HBM and its sensitivity to some key design parameters
such as the number of super buckets (the number of
columns in HBM) and the capacity of a physical bucket,
we first measure the load-balancing capability of HBM.
We define (super) bucket depth as the number of
fingerprints contained in a (super) bucket, and load
imbalance as the depth difference between the super
bucket with the most fingerprints and the super bucket
with the fewest fingerprints.

For the Workgroup set, by choosing an average
chunk size of 4KB, with a minimal threshold of 1KB
and a maximum threshold of 64KB, our chunking
algorithm generated 83,733,597 unique chunks for a
total size of 367.7GB. We use the distribution of the
fingerprints of these chunks among the super buckets to
measure the load imbalance.

By doubling the number of super buckets in HBM
from 128 to 2048 and setting the physical bucket
capacity as infinity, implying that each super bucket

consists of only one bucket, we examine five different
configurations of HBM (i.e., 128-, 256-, 512-, 1024-,
and 2048-super-bucket HBM). As Figure 4-(a) shows, at
the same average super bucket depth, a larger number of
super buckets in HBM tends to induce greater imbalance.
As the super bucket depth grows, the imbalance of a
HBM with more super buckets increases faster than a
HBM with fewer super buckets.

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960
0

256

512

768

1024

1280

1536

Im
ba

la
nc

e

Average Bucket Depth

HBM Configuration
 128
 256
 512
 1024
 2048

(a) Imbalance as a Function of Average Super Bucket Depth

0 8388608 16777216 25165824 33554432 41943040
0

256

512

768

1024

1280

1536

1792

2048

2304

2560

2816

3072

3328

3584

Im
ba

la
nc

e

Total Fingerprint Count

HBM Configuration
 128
 256
 512
 1024
 2048

(b) Imbalance as a Function of Total Fingerprint Count

Figure 4: Imbalance Measurement of HBM

On the other hand, a larger number of super buckets
in HBM imply a smaller average super bucket depth for
the same number of fingerprints. Figure 4-(b) compares
the imbalances of five HBM configurations as a function
of the number of fingerprints, counting from 2 million
up to 44 million fingerprints. The HBM configuration
with 2,048 super buckets is the least imbalanced with a
maximum imbalance of 1,077 fingerprints, while the one
with 128 super buckets is the most imbalanced with an
imbalance of up to 3,550 fingerprints.

Additionally, we observe that all curves in Figure 4
show approximately logarithmic growth. Let m denote
the average depth of super buckets, n the number of
super buckets, and k an integer larger than zero. We can
conclude from Figure 4-(a) the following relationships

about imbalance:
)Imb()Imb(m,knm,n ≤ (1)

)Imb(),(Imb m,nknkm ⋅≤ (2)
And from Figure 4-(b) the following relationship:

)Imb()Imb(km,nm,kn ≤ (3)
These relationships provide very useful insight into the
configuration and design of HBM in general and the
shaping of its tankers in particular.

According to Relationship (3), for a given capacity,
the larger the number of super buckets is, the more
effective it is for a tanker to balance load and capture
fingerprint locality. Relationship (2) further indicates
that it is beneficial to adopt a larger bucket depth for
each tanker, for otherwise a sequence of fingerprints will
be more likely to be dropped into neighbor tankers.

In our prototype implementation, we shape the
tanker with 1,024 buckets plus 1,024 fingerprint cells
inside each bucket. By using a 40-byte fingerprint
structure, each tanker holds at most 220 fingerprints for a
total size of 40MB, and each bucket occupies only 40KB
space. According to Figure 4-(a), we choose 1,024 as the
rebalancing threshold, which means that HBM will be
periodically rebalanced for approximately every 24
newly added tankers.

B. Extremely Hot Fingerprints
During the locality-preserving-capability evaluation

of HBM, we also observed the existence of extremely
hot zero-chunks that may be widely shared even among
dissimilar files.

Specifically, we detected 84,876,504 duplicate
chunks with the same content of 1,024-byte zeros. And
we noticed that zero strings may exist in many files. By
setting the minimum chunk size to 1KB, even dissimilar
files share the same zero-chunk, which can disrupt the
chunk locality and affect the efficiency of our cache
mechanism.

To further improve our approach, we pre-calculated
the SHA-1 hash of 1KB zero-chunk, and define it as a
built-in fingerprint. All incoming fingerprints matching
the built-in fingerprint will be directly deduplicated,
which will not incur any cache replacement operation.

C. Deduplication Efficiency
This subsection reports the deduplication efficiency

of MAD2 for the two aforementioned data sets,
Workgroup and Campus. For comparison, we have also
implemented a simple version of Extreme Binning to
represent approximate deduplication.

Figure 5-(a) shows the original cumulative capacities
and deduplicated cumulative capacities over 31 days for
the Workgroup set. During the beginning days, only a
few students joined our experiment and backed up their
data, so the data capacity grew slowly. As more users
participated, the original data size grew steadily to
6,151.9GB by the last day. By using the MAD2

deduplication approach, there are logically 596.5GB
data at the file level and physically 367.7GB data at the
chunk level. On the other hand, Extreme Binning
generates 436.3GB data, which lies in between the two
data sizes of our approach.

The cumulative global compression ratios are shown
in Figure 5-(b). At the end of the 31st day, the
compression ratio of file-level exact deduplication
reaches 10.31, while the compression ratio of
chunk-level exact deduplication is much higher at 16.73.
Extreme Binning also achieves very good compression
ratio at 14.10, which is close to chunk-level exact
deduplication. All of the three compression ratios
represent similar trend during the 31-day period. Also,
we notice that on some days (e.g., the 4th day and 5th day)
the global compression ratio decreases slightly, which
means that, during these days, most newly arrived files
or chunks are non-duplicate, and the daily compression
ratio is much lower than the usual.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

1,000

2,000

3,000

4,000

5,000

6,000

C
ap

ac
ity

 in
 G

B

Day

 Original Data
 Approximate Deduplication
 Exact Deduplication - File Level
 Exact Deduplication - Chunk Level

(a) Logical/Physical Capacities for the Workgroup Set

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
1

3

5

7

9

11

13

15

17

C
om

pr
es

si
on

 R
at

io

Day

 Approximate Deduplication
 Exact Deduplication - File Level
 Exact Deduplication - Chunk Level

(b) Compression Ratios for the Workgroup Set

Figure 5: Deduplication Efficiency for the Workgroup Set

For the Campus set, since it takes more time for us to
persuade the campus users to participate in our
experiment, the original data capacity grew very slowly

during the first few days. As Figure 6-(a) shows, the
original cumulative data capacity did not reach 500GB
until the 12th day. At the end of the 31st day, the original
cumulative data amount reached 4,778.1GB. By using
the MAD2 deduplication, there are 597.3GB logical data
at the file level and 258.0GB physical data at the chunk
level. The corresponding data size of Extreme Binning is
491.9GB, which is still between our two data sizes but
much worse than the chunk-level exact deduplication.

Figure 6-(b) shows the cumulative global
compression ratios over time for the Campus set. At the
end of the 31st day, the compression ratio of the
file-level exact deduplication reaches 8.00, while the
compression ratio of the chunk-level exact deduplication
is far better at 18.52. On the other hand, Extreme
Binning achieves a compression ratio at 9.71 on the 31st
day, which is slightly better than our file-level ratio but
only at about half of our chunk-level ratio. This result
also shows that there is an abundant amount of
low-similarity real-world data for which Extreme
Binning is much less efficient and effective in
eliminating duplicates.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
C

ap
ac

ity
 in

 G
B

Day

 Original Data
 Approximate Deduplication
 Exact Deduplication - File Level
 Exact Deduplication - Chunk Level

(a) Logical/Physical Capacities for the Campus Set

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
1

3

5

7

9

11

13

15

17

19

C
om

pr
es

si
on

 R
at

io

Day

 Approximate Deduplication
 Exact Deduplication - File Level
 Exact Deduplication - Chunk Level

(b) Compression Ratios for the Campus Set

Figure 6: Deduplication Efficiency for the Campus Set

Similar to the results on the Workgroup set, the
cumulative compression ratios for the Campus set also
show an uneven rising trend, which is quite different
from the results obtained from D2D backup [5]. We
believe that this phenomenon reflects the important
distinction between the internal D2D backup and the
service oriented network backup. For network backup
services, both backup policies and data compressibility
may vary between users and over time. Further, we
notice that most of duplicate information exists at the
file level in our collected data sets, which suggests the
whole file duplication may be one of the main causes of
data redundancy.

D. Load Balancing
This subsection reports the storage load distribution

results based on 4 SCs.
Figure 7 shows the load distribution for the

Workgroup set. Since only chunk contents are physically
stored on disk ultimately, the logical deduplicated file
sizes in fact reflect the storage load of file recipes. At the
file level, SC4 contains the most file recipes that
correspond to 168.7GB deduplicated files referenced by
1,666.9GB original files. SC1 contains the fewest file
recipes that correspond to 132.4GB deduplicated files
referenced by 1,396.5GB original files. At the chunk
level, SC1 physically stores the most chunk contents at
91.96GB, corresponding to 210.43GB logical chunks,
while SC3 physically stores the least chunk contents at
91.91GB, corresponding to 128.31GB logical chunks.
Note that the file recipes and chunk contents are
distributed according to their associated fingerprints
respectively, so the deduplicated file size and the logical
chunk size may not be equal in specific SCs, but they are
the same in global storage.

During the deduplication for the Workgroup set,
84,876,504 hot fingerprints were detected at the chunk
level, which means that there are about 80.9GB
zero-chunks being distributed among files. As the
1024-byte zero-chunk is distributed to SC0 in our
experiment, the logical chunk size of SC0 is
significantly larger than that of the other SCs. However,
the physically stored chunk contents are well balanced
among all the SCs.

Figure 8 shows the load distribution for the Campus
set. At the file level, SC0 holds the most file recipes,
corresponding to 153.8GB files that are referenced by
1,221.0GB original files. SC3 contains the fewest file
recipes, corresponding to 145.3GB files that are
referenced by 1157.5GB original files. At the chunk level,
SC1 stores the most physical data, for a total of 64.51GB,
and SC2 stores the least physical data, for a total of
64.47GB. The corresponding total amounts of logical
chunks are 148.44GB and 148.17GB respectively.

A total of 3,953,486 hot fingerprints are detected in
the Campus set, corresponding to approximately 3.8GB
zero-chunks. We notice that more zero-chunks are

detected in the Workgroup set, and we speculate that
some of them may come from engineering data sets such
as virtual disk files generated by virtual machine.
Clearly, using hot fingerprints to eliminate zero-chunks
is efficient in improving deduplication throughput.

Most importantly, the experimental results show that
storage load can be perfectly balanced after
deduplication at both the file level and the chunk level.

0 1 2 3
0

200

400

600

800

1000

1200

1400

1600

C
ap

ac
ity

 in
 G

B
SC ID

 Logical File Size Exact Deduplication - File Level
 Logical Chunk Size Exact Deduplication - Chunk Level

Figure 7: Data Distribution of the Workgroup Set among 4 SCs

0 1 2 3
0

200

400

600

800

1000

1200

C
ap

ac
ity

 in
 G

B

SC ID

 Logical File Size Exact Deduplication - File Level
 Logical Chunk Size Exact Deduplication - Chunk Level

Figure 8: Data Distribution of the Campus Set among 4 SCs

E. Throughput
Since our approach target at network backup service

applications and can be used to save bandwidth between
backup servers and storage components, it is difficult to
measure the raw deduplication throughput against data
streams. Instead, we trace and report the fingerprint
deduplication efficiency. Considering an average chunk
size of 4KB, 25,600 chunk fingerprints must be
deduplicated per second to achieve a 100MB/s raw
deduplication throughput.

In tracing the throughput, we use a single BS
(backup server) to send fingerprints to a single SC over a
gigabit network without transferring the physical chunk
content. Note that one duplicate fingerprint found at the
file level means that all the chunk fingerprints belonging
to that file can be directly skipped.

For the Workgroup set, 12,154,807 file fingerprints
and 207,856,782 chunk fingerprints are actually
transferred and deduplicated in a period of 982 seconds.
For the Campus set, 15,391,112 file fingerprints and
132,110,642 chunk fingerprints are actually transferred
and deduplicated in a period of 814 seconds. The
average throughputs of chunk fingerprint deduplication
are 211,667/sec and 162,298/sec respectively for the two
data sets, which correspond to raw deduplication
throughputs of 827MB/s and 634MB/s respectively for
4KB-sized chunks. Considering the acceleration effect
of the file-level deduplication, MAD2 achieves much
better efficiencies, corresponding to raw deduplication
throughputs of 6,415MB/s and 6,011MB/s respectively
for the two data sets.

Since deduplication throughput can be affected by
chunk locality, compressibility and many other data
characteristics, the actual throughput may vary
depending on data sets, as evidenced by our results.

Further, our tracing of the disk access times during
deduplication indicates that disk access times are
negligible during the file-level deduplication because of
the relatively small number of deduplicated file
fingerprints. For the chunk-level deduplication for the
Workgroup set, 82 tankers are generated by DMC, and
757,939 bucket load operations and 6,811 batch
write-back operations are performed by SAC. For the
chunk-level deduplication for the Campus set, 55 tankers
are generated by DMC, and 531,328 bucket load
operations and 3,237 batch write-back operations are
performed by SAC. These results demonstrate that our
cache policy is effective in preserving and exploiting
data locality and disk access locality.

F. RAM Usage
Although the compression ratio may be different

from one data set to another, RAM consumption of our
deduplication approach is mainly related to the physical
size of non-duplicate data.

For a 10TB deduplicated data set, there will be a
total of approximately 40×220 files and 2.5×230 chunks if
the average file size is reasonably assumed to be 256KB
[16] and the average chunk size is set to 4KB. Assuming
a capacity of 220 fingerprints, 40 tankers are required to
hold the file fingerprints and 2,560 tankers to hold the
chunk fingerprints. By limiting the false positive rate of
Bloom Filter Array (BFA) to an extremely low level of
1/220, we need about 144MB to hold the file-level BFA
and 9.2GB to hold the chunk-level BFA. If 800MB is
used to construct the in-memory cache, the total RAM
consumption will be approximately 10GB, which is a
reasonable size that most modern storage servers can
afford.

As the above estimate shows, BFA consumes most of
the RAM capacity. To further reduce the RAM space
requirement, we propose three possible solutions. The first
solution is to increase the average chunk size. For
example, doubling the average chunk size, the number of

chunks and thus the required RAM space will be halved,
at the expense of less detectable duplicate data. The
second solution is to simply allow a much higher false
positive rate. For example, by increasing the false positive
rate from 1/220 to 1/29, the total RAM consumption by
BFA will be reduced from 9.2GB to 4.2GB. Considering
the fact that higher false positive rate can cause more
cache replacement operations and affect the throughput,
our third solution configures the chunk-level
deduplication to run on a round-robin manner among
multiple SCs on the same storage node, while keeping the
file-level deduplication unchanged since it consumes
much less memory. Consequently, with n SCs rotating to
execute the chunk-level deduplication one at a time on a
round-robin basis, the memory requirement will be
reduced to approximate 1/n, but at the cost of reduced
chunk-level deduplication throughput.

G. Comparison between MAD2 and Extreme Binning
This subsection compares our MAD2 approach to

Extreme Binning. MAD2 approach exploits data locality
to enable scalable high-throughput exact deduplication
in backend storage of network backup service, while
Extreme Binning exploits file similarity to achieve
scalable parallel approximate deduplication in backup
workloads with little locality [7]. In general, data locality
is the main factor that affects the throughput of MAD2,
whereas file similarity is the main factor that influences
the compression ratio of Extreme Binning.

Since detailed organization of file recipes and chunk
contents of Extreme Binning are not reported in the
literature, we instead implement the fingerprint
deduplication mechanism of Extreme Binning, which
enables us to measure its data deduplication efficiency
(compression ratio) and fingerprint deduplication
efficiency (throughput) that we believe are sufficient for
the purpose of our comparison.

Table 1 compares the two approaches in terms of
targeted applications, deduplication efficiency, load
balancing, throughput, memory requirement, and deletion
support, summarizing results reported in this section.

Table 1: Comparison between MAD2 and Extreme Binning

Approach MAD2 Extreme Binning
Targeted application Network backup

services
Non-traditional
backup workloads
with little locality

Deduplication
efficiency
(compression ratio)

16.73 for the
Workgroup set,
18.52 for the Campus
set

14.10 for the
Workgroup set,
9.71 for the
Campus set

Load balancing Yes Yes
Fingerprint
deduplication
efficiency
(throughput)

6,415MB/s for the
Workgroup set,
6,011MB/s for the
Campus set

1,722MB/s for the
Workgroup set,
1,612MB/s for the
Campus set

Memory requirement
for 10TB exactly
deduplicated data
with an average
chunk size of 4KB

Estimated 10GB at the
most, can be reduced
by memory-saving
solutions of Section
4.6

Estimated between
1.2GB to 2.4GB

Deletion support Yes N/A

Experimental results show that the compression ratio
of Extreme Binning lies between our exact deduplication
results of the file level and the chunk level. And for
low-similarity data sets, deduplication efficiency of
MAD2 is far better than that of Extreme Binning.

Both approaches distribute data according to
fingerprint prefixes and can achieve storage load balance.
The difference is that our approach distributes file
recipes and chunk contents respectively, while Extreme
Binning distributes the whole bins according to their
representative fingerprints.

Since Extreme Binning must choose the
representative fingerprint for each file and can not
eliminate all duplicates at the file level, more fingerprints
need to be deduplicated at the chunk level. This is also
evidenced by our experimental results showing that
MAD2 is more efficient in deduplication than Extreme
Binning for data sets with exploitable locality.

We estimate the RAM requirements of Extreme
Binning for a dataset corresponding to 10TB exactly
deduplicated data, assuming 60-byte as the record size of
the primary index [7] and 512KB as the average size of
the chunk data contained in a bin, which is twice the
average file size. Assuming that Extreme Binning
generates 10TB deduplicated data for the best case
scenario and 20TB approximately deduplicated data for
a near worst case scenario, the RAM requirements will
be approximately 1.2GB and 2.4GB respectively, which
is more memory efficient than MAD2. It must be noted
that, by using memory saving solutions introduced in
section 4.6, it is possible for the MAD2 approach to
achieve similar memory efficiency to Extreme Binning.

V. RELATED WORK
Several approaches have been previously proposed

to avoid the duplicate-lookup disk bottleneck and enable
efficient deduplication.

DDFS [5] exploits chunk locality to achieve
high-throughput exact deduplication for D2D backup. It
preserves locality by a Stream-Informed Segment
Layout and exploits locality with Locality Preserved
Cache. An in-memory Bloom Filter is also used to
accelerate non-duplicate chunk identification.

Sparse Indexing [6] is an approximate deduplication
technique designed for D2D backup. It divides data
stream into variable-sized chunks to construct segments,
which are then sampled and mapped to a compact
in-memory sparse index. Incoming segments are only
deduplicated against several existing similar segments
selected according to the sparse index. Its deduplication
quality is dependent on the sampling rate and a few
other parameters.

Both DDFS and Sparse Indexing are designed for
D2D backup workloads, and do not address the
scalability issue in a distributed environment. The
following two recent studies proposed scalable
deduplication approaches.

HYDRAstor [4], a scalable secondary storage
solution, constructs its backend using a grid of storage
nodes built around a distributed hash table. The backend
maintains large-scale variable-sized, content-addressed,
immutable, and highly-resilient data blocks that are
logically organized in a directed acyclic graph. Duplicate
blocks are eliminated according to their hashes.
However, there are some outlier cases for which
duplicates can not be detected. HYDRAstor adopts an
average block size of 64KB, among other constraints, to
keep all the metadata in memory and avoid the
duplicate-lookup disk bottleneck.

Extreme Binning [7] is a scalable parallel
deduplication approach that targets at non-traditional
backup workloads that consist of low-locality individual
files. It groups highly similar files into bins, and
eliminates duplicate chunks inside each bin. Duplicate
chunks are allowed to exist among different bins,
resulting in approximate deduplication. By keeping only
the primary index in memory, Extreme Binning can
reduce the RAM requirement while maintaining a
reasonably high throughput.

There are also deduplication systems designed for
personal storage and SAN cluster. Foundation [17] uses
content-addressed storage to archive nightly snapshots
of users’ disks. Fixed-size duplicate blocks will be
removed during the write operations. DEDE [18] is a
fixed-size block-level deduplication system for
SAN-cluster file systems. It uses out-of-band
deduplication to minimize the impact on system
performance. Hosts maintain their own recent writes to
cluster file system in on-disk logs. Each host
periodically updates a shared index to reflect these
recorded writes and reclaim duplicate blocks.

Many earlier deduplication systems mainly focus on
improving storage efficiency by eliminating duplicates at
the file level, fixed-size block level, or variable-sized
chunk level. Farsite [19] and EMC’s Centera [20] identify
and eliminate duplicate data by comparing the hash of the
whole file or fixed content. Venti [2], a block-level
archival storage, removes redundant fixed-size data
blocks by comparing their secure hashes. Pastiche [21]
utilizes chunk-level duplicate detection to construct a
resource-saving peer-to-peer backup network. Deep Store
[3], a large scale archival storage system, uses both
variable-sized chunk-level deduplication and delta
compression to save storage. REBL [10] uses
content-defined chunking algorithm to divide data and
identify duplicate chunks by their hash. It utilizes delta
encoding and sequential compression to further improve
the storage efficiency. Jumbo Store [22] organizes
variable-sized chunks into Hash-Based Directed Acyclic
Graphs to save both storage and bandwidth while
performing incremental upload and versioning for a utility
rendering service. All these systems are very different
from our MAD2 approach in terms of target applications,
deduplication granularity, throughput and scalability.

Previous works have evaluated deduplication
efficiencies at different granularities [8]. Storage
efficiencies of chunk-level deduplication, delta encoding
and traditional sequential compression have also been
compared [23].

Duplicate elimination has also been used in
bandwidth-saving network protocols [24], low-bandwidth
distributed file systems [9, 25], replica synchronization
[26], multi-source download acceleration [27], and other
network applications [28-30]. There are also techniques
that can save disk storage space while providing timely
recovery to any point-in-time [31].

Rabin Fingerprinting [12], a low computational
complexity hash method, has been widely used in
content-defined chunking and similarity detection [11,
32-34].

The idea of using Bloom Filter Array to accelerate
duplicate locating is inspired by HBA [35, 36], a
decentralized metadata lookup scheme. An excellent
survey on network applications of Bloom Filters can be
found in [14]. Hot zero-chunks have also been detected
and discussed in [37] and [38].

MAD2 distributes file recipes and chunk contents
according to the prefixes of corresponding fingerprints.
Techniques such as RUSH [39], CAN [40] and LH* [41]
can also be used to enhance scalability and reliability.
DHT has been widely used in large-scale distributed
storage systems and peer-to-peer systems to balance load
[42, 43], distribute data and locate resources [44-46].

VI. CONCLUSIONS
This paper presents a scalable high-throughput exact

duplication approach, called MAD2, to eliminate
duplicates both at the file level and at the chunk level in
backend storage of network backup services. MAD2
utilizes on-disk Hash Bucket Matrix to preserve
fingerprint locality and integrates in-memory Dual
Cache to capture and exploit locality. In addition,
MAD2 employs Bloom Filter Array to efficiently
identify unique incoming fingerprints and indicate where
a duplicate may reside. By employing a DHT-based
Load-Balance technique to distribute file recipes and
chunk contents among multiple storage nodes in their
backup sequences, MAD2 further enhances performance
with a well balanced load.

Experimental results show that the storage efficiency
of MAD2 is generally very good and sometimes far
better than that of the approximate deduplication based
on Extreme Binning. Both file recipes and chunk data
can be well balanced among multiple storage
components (SCs). The average throughputs of
fingerprints deduplication measured in our experiments
show that MAD2 is capable of supporting a raw
deduplication throughput of at least 100MB/s for each
SC. By adopting an average chunk size of 4KB, MAD2
requires about 10GB RAM for 10TB exactly
deduplicated data in full functional mode, which is

affordable for most modern storage servers. Also, we
have proposed three possible solutions to minimize the
RAM consumption. Moreover, we believe that the
MAD2 ideas of using built-in fingerprint to eliminate
hot zero-chunks and using Bloom Filter Arrays to
accelerate duplicate detection are also applicable to D2D
oriented deduplication such as DDFS.

ACKNOWLEDGMENTS
This work is supported in part by the National High

Technology Research and Development Program (863
Program) of China under Grant No.2009AA01A402, the
Program for New Century Excellent Talents in
University NCET-06-0650, and the US NSF under
Grants NSF-IIS-0916859, NSF-CCF-0937993 and
NSF-CCF-0621526. The authors are grateful to the
anonymous reviewers for their many helpful comments
and suggestions. We also thank all the experiment
participants for their continuous support.

REFERENCES
[1] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard,

“A Cooperative Internet Backup Scheme,” in Proceedings of the
2003 USENIX Annual Technical Conference, San Antonio, TX,
USA, June 2003, pp. 29-42.

[2] S. Quinlan and S. Dorward, “Venti: a new approach to archival
storage,” in Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), Monterey, CA, USA, 2002, pp.
89-102.

[3] L. L. You, K. T. Pollack, and D. D. E. Long, “Deep Store: An
Archival Storage System Architecture,” in Proceedings of the
21st International Conference on Data Engineering (ICDE),
Washington, DC, USA, 2005, pp. 804-8015.

[4] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P.
Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,
“HYDRAstor: a Scalable Secondary Storage,” in Proceedings of
the 7th USENIX Conference on File and Storage Technologies
(FAST), San Francisco, CA, USA, Feb. 2009.

[5] B. Zhu, K. Li, and H. Patterson, “Avoiding the Disk Bottleneck
in the Data Domain Deduplication File System,” in Proceedings
of the 6th USENIX Conference on File and Storage Technologies
(FAST), San Jose, CA, USA, Feb. 2008, pp. 269-282.

[6] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Campbell, “Sparse Indexing: Large Scale, Inline
Deduplication Using Sampling and Locality,” in Proceedings of
the 7th USENIX Conference on File and Storage Technologies
(FAST),San Francisco, CA, USA, Feb. 2009, pp. 111-123.

[7] D. Bhagwat, K. Eshghi, D. D. E. Long, M. Lillibridge, “Extreme
Binning: Scalable, Parallel Deduplication for Chunk-based File
Backup,” in Proceedings of the 17th IEEE/ACM International
Symposium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), London, UK, Sept.
2009.

[8] C. Policroniades and I. Pratt, “Alternatives for Detecting
Redundancy in Storage Systems Data,” in Proceedings of the
2004 USENIX Annual Technical Conference, Boston, MA, USA,
June 2004.

[9] A. Muthitacharoen, B. Chen, and D. Mazieres, “A
Low-bandwidth Network File System,” in Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP),
Banff, Canada, Oct. 2001, pp. 174-187.

[10] P. Kulkarni, F. Douglis, J. LaVoie, J. M. Tracey, “Redundancy
Elimination Within Large Collections of Files,” in Proceedings of
the 2004 USENIX Annual Technical Conference, Boston, MA,
USA, June 2004.

[11] A. Z. Broder, “On the resemblance and containment of

documents,” in Proceedings of the Compression and Complexity
of Sequences (SEQUENCES), Washington, DC, USA, June 1997,
pp. 21–29.

[12] M. O. Rabin, “Fingerprinting by random polynomials,” Report
TR-15-81, Center for Research in Computing Technology,
Harvard University, 1981.

[13] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7, pp.
422-426, July 1970.

[14] A. Z. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Mathematics, vol. 1, pp.
485-509, 2005.

[15] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol.
IT-23, pp. 337-343, May 1977.

[16] N. Agrawal, W. J. Bolosky, J. R. Douceur, J. R. Lorch, “A
Five-Year Study of File-System Metadata,” in Proceedings of the
5th USENIX Conference on File and Storage Technologies
(FAST), Berkeley, CA, USA, 2007.

[17] S. Rhea, R. Cox, and A. Pesterev, “Fast, Inexpensive
Content-Addressed Storage in Foundation,” in Proceedings of the
2008 USENIX Annual Technical Conference, Boston, MA, USA,
June 2008, pp. 143-156.

[18] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li,
“Decentralized Deduplication in SAN Cluster File Systems,” in
Proceedings of the 2009 USENIX Annual Technical Conference,
Jan. 2009.

[19] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer, “FARSITE: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment,” in
Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI), Boston, MA, USA, Dec. 2002.

[20] EMC Corp., “EMC Centera: Content-Addressed Storage System,”
http://www.emc.com/products/detail/hardware/centera.htm.

[21] L. P. Cox and B. D. Noble, “Pastiche: Making Backup Cheap and
Easy,” in Proceedings of the 5th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Boston,
MA, USA, Dec. 2002.

[22] K. Eshghi, M. Lillibridge, L. Wilcock, G. Belrose, and R.
Hawkes, “Jumbo Store: Providing Efficient Incremental Upload
and Versioning for a Utility Rendering Service,” in Proceedings
of the 5th USENIX Conference on File and Storage Technologies
(FAST), San Jose, CA, USA, Feb. 2007, pp. 123-138.

[23] L. L. You and C. Karamanolis, “Evaluation of Efficient Archival
Storage Techniques,” in Proceedings of the 21st IEEE / 12th
NASA Goddard Conference on Mass Storage Systems and
Technologies (MSST), College Park, MD, USA, Apr. 2004.

[24] N. T. Spring and D. Wetherall, “A Protocol-Independent
Technique for Eliminating Redundant Network Traffic,” in
Proceedings of ACM SIGCOMM, Aug. 2000, pp. 87-95.

[25] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp, A. Perrig, and
T. Bressoud, “Opportunistic Use of Content Addressable Storage
for Distributed File Systems,” in Proceedings of the 2003
USENIX Annual Technical Conference, San Antonio, TX, June
2003, pp. 127-140.

[26] N. Jain, M. Dahlin, and R. Tewari, “TAPER: Tiered Approach
for Eliminating Redundancy in Replica Synchronization,” in
Proceedings of the 4th USENIX Conference on File and Storage
Technologies (FAST), Dec. 2005.

[27] H. Pucha, D. G. Andersen, and M. Kaminsky, “Exploiting
Similarity for Multi-Source Downloads Using File Handprints,”
in Proceedings of the 4th Symposium on Networked System
Design and Implementation (NSDI), Cambridge, MA, Apr. 2007.

[28] J. C. Mogul, Y.-M. Chan, and T. Kelly, “Design, Implementation,
and Evaluation of Duplicate Transfer Detection in HTTP,” in
Proceedings of the 1st Symposium on Networked Systems Design
and Implementation (NSDI), San Francisco, CA, Mar. 2004, pp.
43-56.

[29] S. C. Rhea, K. Liang, and E. Brewer, “Value-Based Web
Caching,” in Proceedings of the 12th International Conference
on World Wide Web (WWW), Budapest, Hungary, May 2003, pp.

619-628.
[30] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and

M. Rosenblum, “Optimizing the Migration of Virtual
Computers,” in Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.

[31] Q. Yang, W. Xiao, and J. Ren, "TRAP-Array: A Disk Array
Architecture Providing Timely Recovery to Any Point-in-time,"
in Proceedings of the 33rd International Symposium on
Computer Architecture (ISCA), 2006, pp. 289-301.

[32] A. Z. Broder, “Some applications of Rabin's fingerprinting
method,” in Sequences II: Methods in Communications, Security,
and Computer Science, R. Capocelli, A. De Santis, and U.
Vaccaro, Eds. New York, NY: Springer-Verlag, 1993, pp.
143–152.

[33] U. Manber, “Finding similar files in a large file system,” in
Proceedings of the Winter 1994 USENIX Technical Conference,
San Fransisco, CA, USA, Jan. 1994, pp. 1-10.

[34] G. Forman, K. Eshghi, and S. Chiocchetti, “Finding Similar Files
in Large Document Repositories,” in Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), Chicago, Illinois, USA, Aug.
2005, pp. 394–400.

[35] Y. Zhu, H. Jiang, and J. Wang, “Hierarchical Bloom Filter Arrays
(HBA): A Novel, Scalable Metadata Management System for
Large Cluster-based Storage,” in Proceedings of International
Conference on Cluster Computing (CLUSTER), Sept. 2004, pp.
165-174.

[36] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Scalable and
Adaptive Metadata Management in Ultra Large-scale File
Systems,” in Proceedings of the 28th International Conference
on Distributed Computing Systems (ICDCS), Beijing, China, June
2008.

[37] K. Jin and E. L. Miller, “The Effectiveness of Deduplication on
Virtual Machine Disk Images,” in Proceedings of SYSTOR, 2009.

[38] D. Meister and A. Brinkmann, “Multi-Level Comparison of Data
Deduplication in a Backup Scenario,” in Proceedings of SYSTOR,
2009.

[39] R. J. Honicky and E. L. Miller, “Replication Under Scalable
Hashing: A Family of Algorithms for Scalable Decentralized
Data Distribution,” in Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS), Santa
Fe, NM, Apr. 2004.

[40] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A Scalable Content-Addressable Network,” in Proceedings of
the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), San
Diego, CA, Aug. 2001, pp. 161-172.

[41] W. Litwin, M.-A. Neimat, and D. A. Schneider, “LH*—A
Scalable, Distributed Data Structure,” ACM Transactions on
Database Systems, vol. 21, no. 4, pp. 480-525, 1996.

[42] M. Raab and A. Steger, "Balls into Bins - A Simple and Tight
Analysis," in Proceedings of 2nd International Workshop on
Randomization and Approximation Techniques in Computer
Science (RANDOM), 1998, pp. 159-170.

[43] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load Balancing
for DHT-Based P2P Systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 16, no. 4, pp. 349-361, 2005.

[44] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications,” in Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM), San Diego, CA, Aug.
2001, pp. 149-160.

[45] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems,”
in Proceedings of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Nov. 2001, pp.
329-350.

[46] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A Resilient Global-scale Overlay
for Service Deployment,” IEEE Journal on Selected Areas in
Communications, vol. 22, no. 1, pp. 41-53, Jan. 2004.

