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Abstract—Deduplication has been widely used in 
disk-based secondary storage systems to improve space 
efficiency. However, there are two challenges facing 
scalable high-throughput deduplication storage. The first 
is the duplicate-lookup disk bottleneck due to the large size 
of data index that usually exceeds the available RAM 
space, which limits the deduplication throughput. The 
second is the storage node island effect resulting from 
duplicate data among multiple storage nodes that are 
difficult to eliminate. Existing approaches fail to 
completely eliminate the duplicates while simultaneously 
addressing the challenges. 

This paper proposes MAD2, a scalable 
high-throughput exact deduplication approach for 
network backup services. MAD2 eliminates duplicate data 
both at the file level and at the chunk level by employing 
four techniques to accelerate the deduplication process 
and evenly distribute data. First, MAD2 organizes 
fingerprints into a Hash Bucket Matrix (HBM), whose 
rows can be used to preserve the data locality in backups. 
Second, MAD2 uses Bloom Filter Array (BFA) as a quick 
index to quickly identify non-duplicate incoming data 
objects or indicate where to find a possible duplicate. 
Third, Dual Cache is integrated in MAD2 to effectively 
capture and exploit data locality. Finally, MAD2 employs 
a DHT-based Load-Balance technique to evenly distribute 
data objects among multiple storage nodes in their backup 
sequences to further enhance performance with a 
well-balanced load. 

We evaluate our MAD2 approach on the backend 
storage of B-Cloud, a research-oriented distributed system 
that provides network backup services. Experimental 
results show that MAD2 significantly outperforms the 
state-of-the-art approximate deduplication approaches in 
terms of deduplication efficiency, supporting a 
deduplication throughput of at least 100MB/s for each 
storage component. 

I. INTRODUCTION 
Although backup storage systems have been widely 

deployed in enterprises, there remains a great need for 
providing network backup services to individuals and 
organizations for whom maintaining their own backup 
systems is either too expensive or cost ineffective. 
Existing network backup services can be classified into 
two categories, centralized storage provided by storage 
service providers (SSPs) and decentralized peer-to-peer 

schemes based on peer-cooperation over distributed 
network. The former allows user to trade money for 
reliable backup and provides better quality-of-service 
(QoS), while the latter allows user to trade local 
resources for remote storage capacity. Because forming 
a cooperative storage network that is large enough to run 
security policy is difficult in practice [1], Internet 
backup sites operated by SSPs remain the main 
providers of network backup services. 

One of the main challenges facing centralized 
backup services is scalability. To reduce the total cost of 
ownership (TCO), which is one of the key factors 
affecting a SSP’s competitiveness, the system must be 
both scalable and cost-effective. 

The deduplication technology has been widely 
applied in disk-based secondary storage systems to 
improve cost-effectiveness via space efficiency [2-4]. 
However, there are two technical challenges that limit its 
application. The first is the duplicate-lookup disk 
bottleneck. Traditional approaches keep a full index in 
RAM to determine if an incoming data object is a 
duplicate. As data volume grows, the index can become 
too large for RAM to hold in its entirety, forcing the 
deduplicate process to lookup fingerprints in an on-disk 
index and degrading the system performance. The 
second challenge, which we refer to as the storage node 
island effect, stems from the fact that most early 
approaches eliminate duplicates within individual 
storage nodes but not among multiple servers. 

It is clearly important for the network backup 
services overcome these challenges as they directly 
impact their scalability and cost-effectiveness. 

Two recent studies, DDFS [5] and Sparse Indexing 
[6], proposed novel schemes to effectively eliminate the 
duplicate-lookup disk bottleneck by exploiting chunk 
localities in disk-to-disk (D2D) backup streams. Their 
approaches are based on one basic observation that 
chunks tend to reappear in the same or very similar 
sequences in backup streams. They store the chunks in a 
locality-preserving manner and then exploit the locality 
to accelerate duplicate detection. However, none of these 
approaches is targeted at scalable storage systems such 
as network backup services where there are a potentially 
large number of storage server nodes. 
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HYDRAstor [4] utilizes distributed hash table (DHT) 
to distribute data blocks among multiple storage nodes 
according to their hash-keys. Global deduplication can 
be achieved by eliminating duplicate blocks inside each 
node. HYDRAstor attempts to avoid the 
duplicate-lookup disk bottleneck by adopting a block 
size of 64KB on average, among other constraints, to 
keep all the metadata in memory. 

Extreme Binning [7] exploits file similarity to 
eliminate duplicates in non-traditional backup workloads 
that are composed of files with little or no locality. 
Similar files sharing the same signature, called the 
representative fingerprint, are compressed into a 
compact structure called bin that maintains only 
non-duplicate chunks. Representative fingerprints of all 
the bins are organized into primary index that is 
sufficiently small to be kept in RAM, thus requiring only 
one disk access for each incoming file to locate its 
corresponding bin to eliminate duplicates. Further, 
Extreme Binning distributes bins among multiple 
storage nodes according to their representative 
fingerprints to enable scalable parallel deduplication. 
However, it allows duplicates to exist in different bins, 
which results in approximate deduplication as opposed 
to exact deduplication that completely eliminates 
duplicates at all levels. 

To overcome the shortcomings of the above 
state-of-the-art deduplication approaches, we propose in 
this paper MAD2, a new scalable high-throughput exact 
deduplication approach aimed at backend storage system 
of network backup service. MAD2 completely 
eliminates duplicate data both at the file level and at the 
chunk level. Specifically, it employs four key techniques 
to accelerate the deduplication process and evenly 
distribute data. First, MAD2 organizes fingerprints into 
Hash Bucket Matrix (HBM), whose rows can be used to 
preserve the data locality in backups. Second, MAD2 
uses Bloom Filter Array (BFA) as a quick index to 
quickly identify a non-duplicate incoming data object or 
indicate where to find a possible duplicate. Third, 
MAD2 integrates Dual Cache, one of which is 
implemented as a directly-mapped cache to buffer 
incoming non-duplicate fingerprints and capture locality 
while the other is implemented as a set-associative cache 
to reduce disk accesses by exploiting locality and 
maintaining a high hit rate for duplicate fingerprints. 
Finally, MAD2 employs a DHT-based Load-Balance 
technique to evenly distribute data objects among 
multiple storage nodes in their backup sequences to 
further enhance performance with a well-balanced load. 

The first three techniques are effective in avoiding the 
duplicate-lookup disk bottleneck, while the last technique 
eliminates the storage node island effect and enables 
scalable parallel deduplication. Most importantly, MAD2 
eliminates all duplicates while simultaneously addressing 
the key deduplication challenges. 

We evaluate our MAD2 approach on the backend 

storage of B-Cloud, a research-oriented distributed 
system that provides network backup services. 
Deduplication efficiency results show that MAD2 
achieves compression ratios of 16.73 and 18.52 
respectively for our two backup data sets with 
exploitable locality, which significantly outperforms the 
state-of-the-art Extreme Binning approach with the 
corresponding ratios of 14.10 and 9.71. Storage load is 
shown to be perfectly balanced while using 4 storage 
components. Performance evaluation shows that MAD2 
is about 3.7 times faster than Extreme Binning in 
identifying duplicate fingerprints and supports a 
deduplication throughput of at least 100MB/s for each 
storage component. Further, we observed the existence 
of extremely hot zero-chunks that may be widely shared 
even among dissimilar files. This observation is very 
helpful in further improving our approach. 

The remainder of this paper is organized as follows. 
In the next section, we provide the necessary 
background information to further motivate our MAD2 
research. The MAD2 architecture and its detailed design 
are presented in Section 3. Section 4 evaluates MAD2 
by comparing and analyzing the extensive experimental 
results obtained from our MAD2 prototype 
implementation. Section 5 reviews the research in the 
literature that is most relevant to MAD2 and Section 6 
concludes the paper. 

II. BACKGROUND AND MOTIVATION 

A. Duplicate Detection Methods 

Deduplication is one of the main techniques to 
eliminate redundancy in datasets. Different from 
sequential compression and delta encoding, it usually 
works at the KB or larger granularity. 

Traditional backup software usually detects possible 
duplicate transmission by examining the file system 
metadata. For example, incremental backup omits the 
files that reside in the same path and with a timestamp 
earlier than the last backup. Since the timestamp of a file 
may be modified by virus or special user command such 
as ‘touch’ and the clock of the user host can also be at 
risk of being illegally tampered, simply identifying 
duplicate files by the associated file system metadata is 
far from being reliable. 

The emergence of highly reliable hash algorithms 
such as MD5 and SHA-1 has enabled many recent 
approaches to adopt content-based duplicate detection, 
which is more efficient than byte-to-byte comparison 
and more reliable than metadata-based duplicate 
identification. For a given data object, a hash algorithm 
is used in content-based duplicate detection to generate a 
unique identifier, also referred to as a fingerprint, to 
identify duplicate data objects. 

In general, content-based deduplication can be carried 
out at one of the three levels of granularity, namely, 
whole files, fixed-size blocks, or variable-sized chunks 



 

generated by a content-defined chunking algorithm. 
Previous research shows that variable-sized chunk-level 
deduplication is more space efficient than the other two 
methods [8]. It is more sensitive to duplicates than the 
whole-file hashing approach and can detect duplicate 
data chunks among similar files. On the other hand, it is 
far more effective than the fixed-size blocking approach 
in solving the block-shifting problem [9]. 

B. Duplicate Lookup Acceleration Methods 
Previous studies [8, 10] have shown that the storage 

efficiency of variable-sized chunk-level deduplication is 
highly dependent on the average chunk size, and smaller 
chunks usually detect more duplicate information. 
However, smaller average chunk size also means that 
more chunks will be generated for a given data set, 
resulting in a chunk index that may be too large for 
RAM to hold and leading to the duplicate-lookup disk 
bottleneck. For example, an average chunk size of 4KB 
implies 2.25×230 unique chunks in a 10TB deduplicated 
dataset. Considering that each fingerprint consumes 40 
bytes, an approximately 100GB memory will be needed 
to hold the whole index, which is prohibitively 
expensive for today’s systems and thus forces the 
deduplication process to frequently access an on-disk 
index. In this case, fingerprint lookup acceleration 
becomes critically important. 

Currently, there are generally two approaches to 
improving the fingerprint lookup efficiency. The first 
approach exploits data locality, which has been used in 
DDFS and Sparse Indexing. DDFS [5] exploits chunk 
locality in D2D backup streams. It utilizes 
Stream-Informed Segment Layout (SISL) to create 
spatial localities for both chunk fingerprints and chunk 
contents, and then employs Locality Preserved Caching 
(LPC) to exploit locality and accelerate duplicate chunk 
detection. DDFS also uses Bloom Filter to quickly 
identify incoming non-duplicate chunks. 

Sparse Indexing [6] divides a data stream into 4KB 
average-sized chunks and then partitions chunk 
sequences into 10MB average-sized segments. For each 
segment, a few representative fingerprints are sampled 
and inserted into an in-memory structure called sparse 
index, which is used to estimate similarity between 
segments. Once a new segment arrives, it is sampled and 
deduplicated against several most similar existing 
segments. Although Sparse Indexing consumes smaller 
RAM space than DDFS, its duplication efficiency can be 
affected by the sample rate and a few other factors, 
which makes it an approximate deduplication approach. 

Both DDFS and Sparse Indexing are targeted at D2D 
backup workloads, where scalability is not as important 
a concern as in a network backup-service environment. 

The second approach exploits file similarity, which 
has been used in Extreme Binning [7], a deduplication 
approach targeting at non-traditional backup workloads 
that are composed of individual files with little or no 

locality. For each file, Extreme Binning chooses the 
smallest chunk hash as the representative fingerprint. 
Files sharing the same representative fingerprint are 
grouped into a bin, which is the basic scope of chunk 
level deduplication. Representative fingerprints of all the 
bins are organized into a primary index that is sufficiently 
small to remain in RAM, so that only one disk access to 
its corresponding bin is needed for each incoming file. 

Since Extreme Binning samples only one fingerprint 
for each file, the probability of similar files being 
grouped into the same bin is highly dependent on their 
similarity degree. According to Broder's Theorem [11], 
the probability that different files share the same 
representative fingerprint will decrease as the number of 
files grows. For example, consider two chunk sets S1 and 
S2 generated from two different files respectively. Let 
H(Sn) denote the corresponding fingerprint set of Sn and 
min(H(Sn)) denote the smallest element of H(Sn). Then: 
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As a result, it can be speculated that the number of bins 
will increase rapidly as the number of files grows, 
resulting in more duplicate chunks to remain among bins. 

In the final analysis, the key in fingerprint lookup 
acceleration lies in the fast membership determination of 
incoming data objects and the fast identification of the 
potential existing duplicates. 

C. Scalable Deduplication 
Existing approaches to scaling up the deduplication 

storage are generally based on the use of distributed hash 
table. 

HYDRAstor [4] uses a modified version of the fixed 
prefix network (FPN) DHT to distribute data blocks 
according to their hash-keys among logical supernodes. 
Data blocks assigned to different supernodes have 
different hash prefixes and can be deduplicated in parallel. 
Different from HYDRAstor, Extreme Binning [7] 
distributes bins among storage nodes according to their 
representative fingerprints to enable scalable parallel 
deduplication. Each storage node is only responsible for 
files with specified representative fingerprints and files 
belonging to different bins can be deduplicated in parallel. 
However, both HYDRAstor and Extreme Binning are 
considered approximate deduplication schemes as they 
fail to completely eliminate duplicates. 

In summary, the key for scalable deduplication lies 
in finding an effective way to partition data into 
dissimilar or less similar groups. Moreover, the 
redundancy degree between less similar groups must be 
acceptable and controllable. 



 

III. THE MAD2 ARCHITECTURE AND DESIGN 
This section presents the architecture and design of 

MAD2, our approach to providing scalable 
high-throughput exact deduplication in the backend 
storage of network backup services. 

To provide the necessary context for presenting 
MAD2, we first describe the architecture of its 
underlying storage system, the backend storage of 
network backup services. While MAD2 is designed to 
be applicable to general network backup services, we 
use the B-Cloud system as an example to illustrate the 
key architectural features of a typical backend storage of 
network backup services since our MAD2 is prototyped 
on B-Cloud. B-Cloud is a research-oriented distributed 
system that provides network backup services for user 
files and other binary data. 
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Figure 1: The Application of MAD2 in B-Cloud 

As shown in Figure 1-(a), the B-Cloud front end 
consists of backup servers (BSs), storage proxies (SPs) 
and metadata servers (MDSs). BS and SP are 
independent software components, and they usually run 
in pairs on the same physical node to avoid unnecessary 
network traffic. When the user initiates a backup job, one 
BS is chosen to control the job status and receive 
incoming files. BS splits metadata from files and sends 

them to the responsible MDS along with the job 
information. On the other hand, SP receives file contents 
from BS and divides them into content-defined chunks 
using the Rabin fingerprinting algorithm [12]. Meanwhile, 
both file fingerprints and chunk fingerprints are 
calculated, and file recipes are generated for file 
reconstruction purposes. The chunking and fingerprinting 
processes can also be done by the backup client (BC), 
depending on the hardware environment of the user host 
and whether there is a bandwidth-saving requirement. 

The backend of B-Cloud is built of clustered storage 
nodes. Based on the availability of physical resources, 
each storage node (SN) can run a single or multiple 
storage components (SCs) to deduplicate and maintain 
distributed backup data. 

MAD2 employs DHT-based load balancing to 
distribute file recipes and chunk contents among 
multiple SCs in their backup sequences. As shown in 
Figure 1-(b), both file fingerprints and chunk 
fingerprints are organized into locality-preserved Hash 
Bucket Matrixes (HBMs) inside each SC. MAD2 
utilizes Bloom Filter Array (BFA) to quickly identify 
incoming non-duplicate fingerprints and indicate in 
which row of HBM to find a possible duplicate. Because 
BFA has an unavoidable false positive probability and 
possible duplicates must be confirmed by checking 
HBM, MAD2 integrates Dual Cache to capture and 
exploit the fingerprint locality and further accelerate the 
duplicate confirmation process. In the remainder of this 
section, the design of MAD2 will be detailed by the 
descriptions of its main functional components. 

A. Locality-Preserved Hash Bucket Matrix 
As previous research shows, exploiting data locality 

is an effective approach to accelerating duplicate 
detection process, and there exists substantial exploitable 
locality in most backup workloads. For example, backup 
clients usually transfer target files in the same sequence 
in multiple backup jobs, and identical chunks tend to 
appear in approximately the same sequence between 
similar backup files. DDFS and Sparse Indexing preserve 
locality in a D2D backup environment by storing chunk 
fingerprints exactly in the order of their incoming 
sequences. To achieve the goal of preserving fingerprint 
locality in a distributed environment, we develop a novel 
data structure called Hash Bucket Matrix (HBM) that is 
scalable and conducive to parallel deduplication. 

Figure 2 shows the structure of HBM. In this 
structure, the fingerprint space is divided into n equal 
parts called super buckets that are each further divided 
into buckets of equal capacity. Buckets that belong to 
different super buckets but are in the same logical row 
are grouped into a tanker, the basic unit on which the 
fingerprint locality is preserved. During backup, all the 
incoming non-duplicate fingerprints will be appended 
into HBM. If any super bucket is full, a new tanker will 
be created to extend the capacity of HBM. 



 

 
Figure 2: Structure of HBM and BFA 

Now, we explain how HBM preserves fingerprint 
locality in backup jobs. Consider the fact that the 
fingerprint value of an incoming data object is totally 
random and could be assigned to any super bucket with 
the same probability, all the super buckets may hold 
approximately the same amount of fingerprints at any 
given time. This also implies that we can expect 
consecutive fingerprints belonging to the same backup 
job to have a high probability of being stored in the same 
tanker. If a group of files or a group of chunks tends to 
reappear together in backup jobs, their locality can be 
preserved by tankers of HBM. 

B. Using Bloom Filter Array as Quick Index 
While HBM can preserve fingerprint locality, it does 

not directly address the issue of the duplicate-lookup 
disk bottleneck. A fast index is needed to identify 
non-duplicate incoming fingerprints or determine in 
which tanker to find possible duplicates in an 
expeditious way. Bloom Filter (BF) [13] is a good tool 
for building such a fast index, due to its efficiency in 
recognizing unique fingerprints, and its controllable 
probability of identifying duplicates. 

However, a number of problems will arise when 
recording the memberships of all the existing 
fingerprints using a single BF. First, if the potential 
number of fingerprints is underestimated, the false 
positive rate of BF will increase rapidly as the number of 
fingerprints exceeds the BF capacity, forcing a BF 
reconstruction. Second, a single BF is ineffective in 
locating possible duplicates. Third, every time a 
fingerprint is physically removed, resulting in the 
deletion of an element in BF, the whole BF must be 
rebuilt. While a Counting Bloom Filter presents a 
potential solution [14], its use will likely increase the 
RAM requirement and decrease the performance. 

Instead, MAD2 employs a Bloom Filter Array (BFA), 
shown in Figure 2, where each tanker is associated with a 
Bloom Filter recording the membership information for 
the member fingerprints. All the Bloom Filters are 
isomorphic and share the same hash functions. Once a 
new fingerprint arrives, it can be quickly identified by a 
BFA query. If any member of the BFA returns a positive 
for the incoming fingerprint, there may be an existing 

duplicate in the corresponding tanker. And the fingerprint 
prefix can be used to determine the target bucket. 
Conversely, all negatives denote that the incoming 
fingerprint is definitively unique. If the HBM overflows, 
we only need to add a Bloom Filter along with a new 
tanker, which means the memory consumption will only 
increase linearly with the amount of data. 

According to Broder’s analysis [14], given Bloom 
Filter’s bitwise m and total number of fingerprints n, the 
optimal number of hash functions k can be expressed as 
k=(m/n)×ln2, and the minimal false positive rate f can be 
expressed as f=(1/2)(m/n)×ln2. If we bound false positive 
rate to ε, i.e., f≤ε, then we can infer that the bitwise m 
should satisfy m≥n×log2e×log2(1/ε). Consider the 
situation in Section 2.2, where 10TB data result in 
2.5×230 chunks with 4KB average size. The minimal 
space requirement of BFA can be calculated in bytes 
using n×log2e×log2(1/ε)×(2.5×230/n)×(1/8). Detailed 
RAM consumption and memory saving methods will be 
discussed later in Section 4.6. 

C. Dual Cache Mechanism 
Since BFA has an unavoidable false positive 

probability, possible duplicates need to be confirmed by 
checking the on-disk HBM. Dual Cache is designed to 
improve disk access efficiency while locating duplicate 
fingerprints. 

To describe the mechanism of Dual Cache, we first 
introduce the two possible states of a tanker, i.e., 
appendable state and reference-only state. An appendable 
tanker appends incoming non-duplicate fingerprints to 
the corresponding bucket and records the reference count 
for each duplicate fingerprint, while a reference-only 
tanker only maintains existing non-duplicate fingerprints. 
An appendable tanker will gracefully transition to the 
reference-only state when it is full. Before that, 
fingerprints inside each bucket will be sorted to enable 
binary search for future duplicate identification. 

To capture the fingerprint locality in backup streams, 
MAD2 utilizes a directly-mapped cache (DMC, Figure 
1-(b)) to hold several appendable tankers in RAM, as 
shown in Figure 3. All the incoming non-duplicate 
fingerprints will be directly appended to the bottom of 
the corresponding bucket. Once a tanker in DMC is full, 
it will be changed to the reference-only state and saved 
to the on-disk HBM. A new tanker will be created by 
DMC if there is no space left for incoming fingerprints. 

However, our experiments indicate that the super 
buckets in HBM are not perfectly balanced in their 
actual occupations and this imbalance increases as the 
HBM capacity grows, which can decrease the 
locality-capturing capability of a tanker. To solve this 
problem, MAD2 introduces a periodic rebalancing 
policy. Specifically, if the current imbalance among 
super buckets exceeds a predefined threshold, all the 
tankers in DMC will be changed to the reference-only 
state and flushed to the on-disk HBM, meanwhile the 



 

imbalance will be reset to zero and a new appendable 
tanker will be created if necessary. Because of the 
periodic rebalancing policy, there may be a small 
number of empty cells in some reference-only tankers. 
Fortunately, the number of tankers with empty cells can 
be controlled by properly choosing the HBM 
rebalancing threshold, and it is easy to avoid the waste 
of disk space by compressing these empty cells. 
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Figure 3: Dual Cache. The Directly-Mapped Cache is always 
mapped to the appendable tankers at the bottom of HBM, and the 
Set-Associative Cache is mapped to all the reference-only tankers 
inside HBM. Their mapping range will change accordingly as the 
HBM capacity changes. 

To exploit the fingerprint locality in backup data, 
MAD2 uses a set-associative cache (SAC, Figure 1-(b)) 
to cache the buckets of reference-only tankers and 
maintain a high hit rate for duplicate fingerprints. As 
Figure 3 shows, each tanker set consists of n bucket sets 
that each further contains w buckets, where n is the 
number of buckets inside each tanker and w is the 
associativity (way count) of SAC. For a target bucket, 
MAD2 can determine the mapped bucket set according 
to its tanker ID and bucket ID. 

MAD2 adopts two policies to improve the access 
efficiency of SAC. First, it takes a bucket as the basic I/O 
unit and executes LRU replacement policy inside each 
bucket set. This policy can effectively reduce the disk 
access cost caused by a BFA false positive, with only one 
small disk read required for the target bucket. Second, it 
executes a batch write-back policy to enhance the disk 
access locality. Since logical insert or delete operations 
can change the reference counts of the corresponding 
fingerprints, dirty buckets will be generated. Once a dirty 
bucket is going to be replaced, MAD2 flushes all the 
cached buckets belonging to the same tanker back to disk. 
Because of the locality-preserving capability of HBM, 
buckets in the same tanker usually have correlated access 
patterns and tend to be loaded or replaced in the same 
time window. By performing a batch write-back policy, 
both fingerprint locality and disk access locality are well 
exploited. 

D. DHT-based Load Balancing 
Benefitting from the randomness of SHA-1, DHT is 

a natural choice for partitioning data into dissimilar 
groups and distributing them among multiple storage 
components (SCs) with a well-balanced load. 

In our approach, each SC is responsible for file 
recipes and chunks with the same specific fingerprint 
prefix, as shown in Figure 1. Because fingerprints with 
different prefixes are collision free, multiple SCs can 
deduplicate data in parallel and no duplicate files or 
chunks will remain among them. If each SC performs 
exact deduplication in its responsible hash sub-space, the 
entire backend storage can achieve global exact 
deduplication. 

Moreover, both file recipes and chunk contents will 
be distributed in their backup sequences to preserve 
locality. Consider a sequence of fingerprints with two 
different prefixes (a1, b0, c1, d1, e0, f1, g0). MAD2 divides 
them into two sub-sequences (a1, c1, d1, f1) and (b0, e0, 
g0), and distributes each sub-sequence to one responsible 
SC. If the fingerprint sequence reappears in backup data, 
the locality of each sub-sequence will be captured and 
exploited. 

E. Data Organization and Deletion Support 
As shown in Figure 1-(b), there are four kinds of data 

maintained by SCs, file fingerprints along with file 
recipes and chunk fingerprints along with chunk contents. 
Both the file fingerprints and the chunk fingerprints are 
organized as on-disk HBMs that can be cached in RAM 
by Dual Caches. And each HBM is associated with a 
BFA that is kept in RAM in its entirety to accelerate 
non-duplicate identification and duplicate locating. 

File recipes and chunk contents are generally stored 
on disk. In particular, all the chunk contents are kept in 
chunk store, which consists of chunk tankers 
corresponding to tankers in HBM. More specifically, 
inside each chunk tanker, chunks are grouped and 
packaged into chunk containers in a 
stream-locality-preserved manner to improve the disk 
access efficiency. Chunk containers can be further 
compressed by a variation of the Ziv-Lempel algorithm 
[15]. However, we do not have enough room in this paper 
to describe the detailed organization of chunk store. 

Supporting data deletion is difficult but important for 
a deduplication storage targeting a network backup 
workload. Files or chunks may be referenced by multiple 
users after deduplication, and any associated user may 
request to delete his/her own logical copy. 

MAD2 exposes only a file-level delete interface to 
SC clients and determines whether a file or chunk should 
be physically deleted by means of a special data 
structure called counting fingerprint. A counting 
fingerprint is structured as <fingerprint, data length, 
reference count>. Fingerprint is a 20-bytes SHA-1 hash 
of the target data object. Both data length and reference 
count are represented by 64-bit unsigned integers. A 
logical file delete operation will decrease the reference 



 

count of the corresponding file fingerprint, and a 
physical file delete operation decreases reference counts 
of all the chunk fingerprints belonging to that file. A file 
or a chunk will not be physically deleted until the 
associated reference count drops to zero. 

Practically, a physical delete operation is executed in 
a batch mode. When there are too many unreferenced 
fingerprints in a tanker, the corresponding file recipes or 
chunk contents will be physically deleted and the 
associated Bloom Filter will be reconstructed. Adjacent 
tankers can be merged if they are sparse enough and all 
the involved Bloom Filters will be reconstructed. During 
the physical deletion period, all involved tankers must be 
changed to the read-only mode to maintain data 
consistency, suggesting that it is better to reclaim spaces 
in off-peak hours. 

F. Workflow of the MAD2 Deduplication Approach 
With the main functional components of MAD2 

presented above, we now put them together to describe 
the overall workflow of the MAD2 deduplication 
process in the backend storage of B-Cloud. 

SC (storage component) supports two inline 
deduplication modes, the exclusive mode and round-robin 
mode. The former targets at high-speed backup streams 
that can finish data transmission in short time windows, 
while the latter aims at low-speed backup streams that will 
be buffered by SP (storage proxy). The purpose of this is 
to avoid low-bandwidth concurrent write streams and 
make sure that the locality of each data stream can be 
captured and preserved. In general, deduplication can be 
performed concurrently among multiple SCs. 

Specifically, the MAD2 deduplication process 
includes two phases. In the first phase, SP distributes file 
fingerprints along with file recipes to their responsible 
SCs to eliminate duplicate files. In particular, SC 
performs the following steps for each file: 

 Use the BFA to quickly check if the incoming 
file fingerprint is unique. 

 If the BFA indicates that a duplicate possibly 
exists in a certain tanker, then the fingerprint is 
handed to Dual Cache. According to the target 
tanker ID, SAC or DMC will be chosen to 
further lookup the potential duplicate. 

 If a duplicate is found, then the corresponding 
reference count is increased and the associated 
file recipe will not be transferred. 

 If the incoming file turns out to be unique, then 
the fingerprint is appended to the appendable 
tanker maintained by DMC and located at the 
bottom of HBM, and the file recipe is 
transferred and saved. 

In the second phase, SP distributes chunk 
fingerprints along with chunk contents of non-duplicate 
files to multiple SCs to eliminate duplicate chunks. In 
particular, SC performs the following steps: 

 Detect duplicate chunks in the same way as 

above. 
 All identified non-duplicate chunk contents are 

written into chunk store sequentially with their 
fingerprints recorded. 

Note that if a duplicate file is detected, then all the 
chunks belonging to that file can be directly skipped. 
Besides, SP can also work as a transparent proxy to 
enable bandwidth saving between backup clients and 
backup servers. 

IV. PROTOTYPE IMPLEMENTATION AND EVALUATION 
We evaluate MAD2 through a prototype of MAD2 

running on a Windows environment that consists of 2 
storage nodes that each in turn hosts 2 storage 
components. The hardware configuration includes a 
quad-core CPU running at 2 GHz, 16GB RAM, 2 gigabit 
network interface cards, and 16 1TB hard disks organized 
in a RAID5 system. The experimental front end of 
B-Cloud is composed of a single metadata server and two 
backup servers that is each coupled with a storage proxy. 

Our data sets consist of files from two different 
groups of users. The first data set was collected from an 
engineering group consisting of 15 graduate students, 
which we refer to as the Workgroup set. Each student 
runs full or incremental backups independently using 
their desktop PCs and workstations in a span of 31 days. 
There are 12.1 million files that amount to a total of 
6.0TB data in the Workgroup set. 

The second data set was collected from 26 users on a 
campus network, including personal website owners, 
small file transfer site managers and other individuals. 
Every user backs up their selected datasets in a span of 
31 days independently, which is called the Campus set. 
There are 15.4 million files for a total size of 4.7TB in 
the Campus set. 

A. Locality-Preserving Capability of HBM 
To evaluate the locality-preserving capability of 

HBM and its sensitivity to some key design parameters 
such as the number of super buckets (the number of 
columns in HBM) and the capacity of a physical bucket, 
we first measure the load-balancing capability of HBM. 
We define (super) bucket depth as the number of 
fingerprints contained in a (super) bucket, and load 
imbalance as the depth difference between the super 
bucket with the most fingerprints and the super bucket 
with the fewest fingerprints. 

For the Workgroup set, by choosing an average 
chunk size of 4KB, with a minimal threshold of 1KB 
and a maximum threshold of 64KB, our chunking 
algorithm generated 83,733,597 unique chunks for a 
total size of 367.7GB. We use the distribution of the 
fingerprints of these chunks among the super buckets to 
measure the load imbalance. 

By doubling the number of super buckets in HBM 
from 128 to 2048 and setting the physical bucket 
capacity as infinity, implying that each super bucket 



 

consists of only one bucket, we examine five different 
configurations of HBM (i.e., 128-, 256-, 512-, 1024-, 
and 2048-super-bucket HBM). As Figure 4-(a) shows, at 
the same average super bucket depth, a larger number of 
super buckets in HBM tends to induce greater imbalance. 
As the super bucket depth grows, the imbalance of a 
HBM with more super buckets increases faster than a 
HBM with fewer super buckets. 
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(a) Imbalance as a Function of Average Super Bucket Depth 
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(b) Imbalance as a Function of Total Fingerprint Count 

Figure 4: Imbalance Measurement of HBM 

On the other hand, a larger number of super buckets 
in HBM imply a smaller average super bucket depth for 
the same number of fingerprints. Figure 4-(b) compares 
the imbalances of five HBM configurations as a function 
of the number of fingerprints, counting from 2 million 
up to 44 million fingerprints. The HBM configuration 
with 2,048 super buckets is the least imbalanced with a 
maximum imbalance of 1,077 fingerprints, while the one 
with 128 super buckets is the most imbalanced with an 
imbalance of up to 3,550 fingerprints. 

Additionally, we observe that all curves in Figure 4 
show approximately logarithmic growth. Let m denote 
the average depth of super buckets, n the number of 
super buckets, and k an integer larger than zero. We can 
conclude from Figure 4-(a) the following relationships 

about imbalance: 
)Imb()Imb( m,knm,n ≤      (1) 

)Imb(),(Imb m,nknkm ⋅≤     (2) 
And from Figure 4-(b) the following relationship: 

)Imb()Imb( km,nm,kn ≤      (3) 
These relationships provide very useful insight into the 
configuration and design of HBM in general and the 
shaping of its tankers in particular. 

According to Relationship (3), for a given capacity, 
the larger the number of super buckets is, the more 
effective it is for a tanker to balance load and capture 
fingerprint locality. Relationship (2) further indicates 
that it is beneficial to adopt a larger bucket depth for 
each tanker, for otherwise a sequence of fingerprints will 
be more likely to be dropped into neighbor tankers. 

In our prototype implementation, we shape the 
tanker with 1,024 buckets plus 1,024 fingerprint cells 
inside each bucket. By using a 40-byte fingerprint 
structure, each tanker holds at most 220 fingerprints for a 
total size of 40MB, and each bucket occupies only 40KB 
space. According to Figure 4-(a), we choose 1,024 as the 
rebalancing threshold, which means that HBM will be 
periodically rebalanced for approximately every 24 
newly added tankers. 

B. Extremely Hot Fingerprints 
During the locality-preserving-capability evaluation 

of HBM, we also observed the existence of extremely 
hot zero-chunks that may be widely shared even among 
dissimilar files. 

Specifically, we detected 84,876,504 duplicate 
chunks with the same content of 1,024-byte zeros. And 
we noticed that zero strings may exist in many files. By 
setting the minimum chunk size to 1KB, even dissimilar 
files share the same zero-chunk, which can disrupt the 
chunk locality and affect the efficiency of our cache 
mechanism. 

To further improve our approach, we pre-calculated 
the SHA-1 hash of 1KB zero-chunk, and define it as a 
built-in fingerprint. All incoming fingerprints matching 
the built-in fingerprint will be directly deduplicated, 
which will not incur any cache replacement operation. 

C. Deduplication Efficiency 
This subsection reports the deduplication efficiency 

of MAD2 for the two aforementioned data sets, 
Workgroup and Campus. For comparison, we have also 
implemented a simple version of Extreme Binning to 
represent approximate deduplication. 

Figure 5-(a) shows the original cumulative capacities 
and deduplicated cumulative capacities over 31 days for 
the Workgroup set. During the beginning days, only a 
few students joined our experiment and backed up their 
data, so the data capacity grew slowly. As more users 
participated, the original data size grew steadily to 
6,151.9GB by the last day. By using the MAD2 



 

deduplication approach, there are logically 596.5GB 
data at the file level and physically 367.7GB data at the 
chunk level. On the other hand, Extreme Binning 
generates 436.3GB data, which lies in between the two 
data sizes of our approach. 

The cumulative global compression ratios are shown 
in Figure 5-(b). At the end of the 31st day, the 
compression ratio of file-level exact deduplication 
reaches 10.31, while the compression ratio of 
chunk-level exact deduplication is much higher at 16.73. 
Extreme Binning also achieves very good compression 
ratio at 14.10, which is close to chunk-level exact 
deduplication. All of the three compression ratios 
represent similar trend during the 31-day period. Also, 
we notice that on some days (e.g., the 4th day and 5th day) 
the global compression ratio decreases slightly, which 
means that, during these days, most newly arrived files 
or chunks are non-duplicate, and the daily compression 
ratio is much lower than the usual. 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

1,000

2,000

3,000

4,000

5,000

6,000

C
ap

ac
ity

 in
 G

B

Day

 Original Data
 Approximate Deduplication
 Exact Deduplication - File Level
 Exact Deduplication - Chunk Level

 
(a) Logical/Physical Capacities for the Workgroup Set 
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(b) Compression Ratios for the Workgroup Set 

Figure 5: Deduplication Efficiency for the Workgroup Set 

For the Campus set, since it takes more time for us to 
persuade the campus users to participate in our 
experiment, the original data capacity grew very slowly 

during the first few days. As Figure 6-(a) shows, the 
original cumulative data capacity did not reach 500GB 
until the 12th day. At the end of the 31st day, the original 
cumulative data amount reached 4,778.1GB. By using 
the MAD2 deduplication, there are 597.3GB logical data 
at the file level and 258.0GB physical data at the chunk 
level. The corresponding data size of Extreme Binning is 
491.9GB, which is still between our two data sizes but 
much worse than the chunk-level exact deduplication. 

Figure 6-(b) shows the cumulative global 
compression ratios over time for the Campus set. At the 
end of the 31st day, the compression ratio of the 
file-level exact deduplication reaches 8.00, while the 
compression ratio of the chunk-level exact deduplication 
is far better at 18.52. On the other hand, Extreme 
Binning achieves a compression ratio at 9.71 on the 31st 
day, which is slightly better than our file-level ratio but 
only at about half of our chunk-level ratio. This result 
also shows that there is an abundant amount of 
low-similarity real-world data for which Extreme 
Binning is much less efficient and effective in 
eliminating duplicates. 
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(a) Logical/Physical Capacities for the Campus Set 
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(b) Compression Ratios for the Campus Set 

Figure 6: Deduplication Efficiency for the Campus Set 



 

Similar to the results on the Workgroup set, the 
cumulative compression ratios for the Campus set also 
show an uneven rising trend, which is quite different 
from the results obtained from D2D backup [5]. We 
believe that this phenomenon reflects the important 
distinction between the internal D2D backup and the 
service oriented network backup. For network backup 
services, both backup policies and data compressibility 
may vary between users and over time. Further, we 
notice that most of duplicate information exists at the 
file level in our collected data sets, which suggests the 
whole file duplication may be one of the main causes of 
data redundancy. 

D. Load Balancing 
This subsection reports the storage load distribution 

results based on 4 SCs. 
Figure 7 shows the load distribution for the 

Workgroup set. Since only chunk contents are physically 
stored on disk ultimately, the logical deduplicated file 
sizes in fact reflect the storage load of file recipes. At the 
file level, SC4 contains the most file recipes that 
correspond to 168.7GB deduplicated files referenced by 
1,666.9GB original files. SC1 contains the fewest file 
recipes that correspond to 132.4GB deduplicated files 
referenced by 1,396.5GB original files. At the chunk 
level, SC1 physically stores the most chunk contents at 
91.96GB, corresponding to 210.43GB logical chunks, 
while SC3 physically stores the least chunk contents at 
91.91GB, corresponding to 128.31GB logical chunks. 
Note that the file recipes and chunk contents are 
distributed according to their associated fingerprints 
respectively, so the deduplicated file size and the logical 
chunk size may not be equal in specific SCs, but they are 
the same in global storage. 

During the deduplication for the Workgroup set, 
84,876,504 hot fingerprints were detected at the chunk 
level, which means that there are about 80.9GB 
zero-chunks being distributed among files. As the 
1024-byte zero-chunk is distributed to SC0 in our 
experiment, the logical chunk size of SC0 is 
significantly larger than that of the other SCs. However, 
the physically stored chunk contents are well balanced 
among all the SCs. 

Figure 8 shows the load distribution for the Campus 
set. At the file level, SC0 holds the most file recipes, 
corresponding to 153.8GB files that are referenced by 
1,221.0GB original files. SC3 contains the fewest file 
recipes, corresponding to 145.3GB files that are 
referenced by 1157.5GB original files. At the chunk level, 
SC1 stores the most physical data, for a total of 64.51GB, 
and SC2 stores the least physical data, for a total of 
64.47GB. The corresponding total amounts of logical 
chunks are 148.44GB and 148.17GB respectively. 

A total of 3,953,486 hot fingerprints are detected in 
the Campus set, corresponding to approximately 3.8GB 
zero-chunks. We notice that more zero-chunks are 

detected in the Workgroup set, and we speculate that 
some of them may come from engineering data sets such 
as virtual disk files generated by virtual machine. 
Clearly, using hot fingerprints to eliminate zero-chunks 
is efficient in improving deduplication throughput. 

Most importantly, the experimental results show that 
storage load can be perfectly balanced after 
deduplication at both the file level and the chunk level. 
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Figure 7: Data Distribution of the Workgroup Set among 4 SCs 
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Figure 8: Data Distribution of the Campus Set among 4 SCs 

E. Throughput 
Since our approach target at network backup service 

applications and can be used to save bandwidth between 
backup servers and storage components, it is difficult to 
measure the raw deduplication throughput against data 
streams. Instead, we trace and report the fingerprint 
deduplication efficiency. Considering an average chunk 
size of 4KB, 25,600 chunk fingerprints must be 
deduplicated per second to achieve a 100MB/s raw 
deduplication throughput. 

In tracing the throughput, we use a single BS 
(backup server) to send fingerprints to a single SC over a 
gigabit network without transferring the physical chunk 
content. Note that one duplicate fingerprint found at the 
file level means that all the chunk fingerprints belonging 
to that file can be directly skipped. 



 

For the Workgroup set, 12,154,807 file fingerprints 
and 207,856,782 chunk fingerprints are actually 
transferred and deduplicated in a period of 982 seconds. 
For the Campus set, 15,391,112 file fingerprints and 
132,110,642 chunk fingerprints are actually transferred 
and deduplicated in a period of 814 seconds. The 
average throughputs of chunk fingerprint deduplication 
are 211,667/sec and 162,298/sec respectively for the two 
data sets, which correspond to raw deduplication 
throughputs of 827MB/s and 634MB/s respectively for 
4KB-sized chunks. Considering the acceleration effect 
of the file-level deduplication, MAD2 achieves much 
better efficiencies, corresponding to raw deduplication 
throughputs of 6,415MB/s and 6,011MB/s respectively 
for the two data sets. 

Since deduplication throughput can be affected by 
chunk locality, compressibility and many other data 
characteristics, the actual throughput may vary 
depending on data sets, as evidenced by our results. 

Further, our tracing of the disk access times during 
deduplication indicates that disk access times are 
negligible during the file-level deduplication because of 
the relatively small number of deduplicated file 
fingerprints. For the chunk-level deduplication for the 
Workgroup set, 82 tankers are generated by DMC, and 
757,939 bucket load operations and 6,811 batch 
write-back operations are performed by SAC. For the 
chunk-level deduplication for the Campus set, 55 tankers 
are generated by DMC, and 531,328 bucket load 
operations and 3,237 batch write-back operations are 
performed by SAC. These results demonstrate that our 
cache policy is effective in preserving and exploiting 
data locality and disk access locality. 

F. RAM Usage 
Although the compression ratio may be different 

from one data set to another, RAM consumption of our 
deduplication approach is mainly related to the physical 
size of non-duplicate data. 

For a 10TB deduplicated data set, there will be a 
total of approximately 40×220 files and 2.5×230 chunks if 
the average file size is reasonably assumed to be 256KB 
[16] and the average chunk size is set to 4KB. Assuming 
a capacity of 220 fingerprints, 40 tankers are required to 
hold the file fingerprints and 2,560 tankers to hold the 
chunk fingerprints. By limiting the false positive rate of 
Bloom Filter Array (BFA) to an extremely low level of 
1/220, we need about 144MB to hold the file-level BFA 
and 9.2GB to hold the chunk-level BFA. If 800MB is 
used to construct the in-memory cache, the total RAM 
consumption will be approximately 10GB, which is a 
reasonable size that most modern storage servers can 
afford. 

As the above estimate shows, BFA consumes most of 
the RAM capacity. To further reduce the RAM space 
requirement, we propose three possible solutions. The first 
solution is to increase the average chunk size. For 
example, doubling the average chunk size, the number of 

chunks and thus the required RAM space will be halved, 
at the expense of less detectable duplicate data. The 
second solution is to simply allow a much higher false 
positive rate. For example, by increasing the false positive 
rate from 1/220 to 1/29, the total RAM consumption by 
BFA will be reduced from 9.2GB to 4.2GB. Considering 
the fact that higher false positive rate can cause more 
cache replacement operations and affect the throughput, 
our third solution configures the chunk-level 
deduplication to run on a round-robin manner among 
multiple SCs on the same storage node, while keeping the 
file-level deduplication unchanged since it consumes 
much less memory. Consequently, with n SCs rotating to 
execute the chunk-level deduplication one at a time on a 
round-robin basis, the memory requirement will be 
reduced to approximate 1/n, but at the cost of reduced 
chunk-level deduplication throughput. 

G. Comparison between MAD2 and Extreme Binning 
This subsection compares our MAD2 approach to 

Extreme Binning. MAD2 approach exploits data locality 
to enable scalable high-throughput exact deduplication 
in backend storage of network backup service, while 
Extreme Binning exploits file similarity to achieve 
scalable parallel approximate deduplication in backup 
workloads with little locality [7]. In general, data locality 
is the main factor that affects the throughput of MAD2, 
whereas file similarity is the main factor that influences 
the compression ratio of Extreme Binning. 

Since detailed organization of file recipes and chunk 
contents of Extreme Binning are not reported in the 
literature, we instead implement the fingerprint 
deduplication mechanism of Extreme Binning, which 
enables us to measure its data deduplication efficiency 
(compression ratio) and fingerprint deduplication 
efficiency (throughput) that we believe are sufficient for 
the purpose of our comparison. 

Table 1 compares the two approaches in terms of 
targeted applications, deduplication efficiency, load 
balancing, throughput, memory requirement, and deletion 
support, summarizing results reported in this section. 

Table 1: Comparison between MAD2 and Extreme Binning 

Approach MAD2 Extreme Binning
Targeted application Network backup 

services 
Non-traditional 
backup workloads 
with little locality 

Deduplication 
efficiency 
(compression ratio) 

16.73 for the 
Workgroup set,  
18.52 for the Campus 
set 

14.10 for the 
Workgroup set,  
9.71 for the 
Campus set 

Load balancing Yes Yes 
Fingerprint 
deduplication 
efficiency 
(throughput) 

6,415MB/s for the 
Workgroup set,  
6,011MB/s for the 
Campus set 

1,722MB/s for the 
Workgroup set,  
1,612MB/s for the 
Campus set 

Memory requirement 
for 10TB exactly 
deduplicated data 
with an average 
chunk size of 4KB 

Estimated 10GB at the 
most, can be reduced 
by memory-saving 
solutions of Section 
4.6 

Estimated between 
1.2GB to 2.4GB 

Deletion support Yes N/A 



 

Experimental results show that the compression ratio 
of Extreme Binning lies between our exact deduplication 
results of the file level and the chunk level. And for 
low-similarity data sets, deduplication efficiency of 
MAD2 is far better than that of Extreme Binning. 

Both approaches distribute data according to 
fingerprint prefixes and can achieve storage load balance. 
The difference is that our approach distributes file 
recipes and chunk contents respectively, while Extreme 
Binning distributes the whole bins according to their 
representative fingerprints. 

Since Extreme Binning must choose the 
representative fingerprint for each file and can not 
eliminate all duplicates at the file level, more fingerprints 
need to be deduplicated at the chunk level. This is also 
evidenced by our experimental results showing that 
MAD2 is more efficient in deduplication than Extreme 
Binning for data sets with exploitable locality. 

We estimate the RAM requirements of Extreme 
Binning for a dataset corresponding to 10TB exactly 
deduplicated data, assuming 60-byte as the record size of 
the primary index [7] and 512KB as the average size of 
the chunk data contained in a bin, which is twice the 
average file size. Assuming that Extreme Binning 
generates 10TB deduplicated data for the best case 
scenario and 20TB approximately deduplicated data for 
a near worst case scenario, the RAM requirements will 
be approximately 1.2GB and 2.4GB respectively, which 
is more memory efficient than MAD2. It must be noted 
that, by using memory saving solutions introduced in 
section 4.6, it is possible for the MAD2 approach to 
achieve similar memory efficiency to Extreme Binning. 

V. RELATED WORK 
Several approaches have been previously proposed 

to avoid the duplicate-lookup disk bottleneck and enable 
efficient deduplication. 

DDFS [5] exploits chunk locality to achieve 
high-throughput exact deduplication for D2D backup. It 
preserves locality by a Stream-Informed Segment 
Layout and exploits locality with Locality Preserved 
Cache. An in-memory Bloom Filter is also used to 
accelerate non-duplicate chunk identification. 

Sparse Indexing [6] is an approximate deduplication 
technique designed for D2D backup. It divides data 
stream into variable-sized chunks to construct segments, 
which are then sampled and mapped to a compact 
in-memory sparse index. Incoming segments are only 
deduplicated against several existing similar segments 
selected according to the sparse index. Its deduplication 
quality is dependent on the sampling rate and a few 
other parameters. 

Both DDFS and Sparse Indexing are designed for 
D2D backup workloads, and do not address the 
scalability issue in a distributed environment. The 
following two recent studies proposed scalable 
deduplication approaches. 

HYDRAstor [4], a scalable secondary storage 
solution, constructs its backend using a grid of storage 
nodes built around a distributed hash table. The backend 
maintains large-scale variable-sized, content-addressed, 
immutable, and highly-resilient data blocks that are 
logically organized in a directed acyclic graph. Duplicate 
blocks are eliminated according to their hashes. 
However, there are some outlier cases for which 
duplicates can not be detected. HYDRAstor adopts an 
average block size of 64KB, among other constraints, to 
keep all the metadata in memory and avoid the 
duplicate-lookup disk bottleneck. 

Extreme Binning [7] is a scalable parallel 
deduplication approach that targets at non-traditional 
backup workloads that consist of low-locality individual 
files. It groups highly similar files into bins, and 
eliminates duplicate chunks inside each bin. Duplicate 
chunks are allowed to exist among different bins, 
resulting in approximate deduplication. By keeping only 
the primary index in memory, Extreme Binning can 
reduce the RAM requirement while maintaining a 
reasonably high throughput. 

There are also deduplication systems designed for 
personal storage and SAN cluster. Foundation [17] uses 
content-addressed storage to archive nightly snapshots 
of users’ disks. Fixed-size duplicate blocks will be 
removed during the write operations. DEDE [18] is a 
fixed-size block-level deduplication system for 
SAN-cluster file systems. It uses out-of-band 
deduplication to minimize the impact on system 
performance. Hosts maintain their own recent writes to 
cluster file system in on-disk logs. Each host 
periodically updates a shared index to reflect these 
recorded writes and reclaim duplicate blocks. 

Many earlier deduplication systems mainly focus on 
improving storage efficiency by eliminating duplicates at 
the file level, fixed-size block level, or variable-sized 
chunk level. Farsite [19] and EMC’s Centera [20] identify 
and eliminate duplicate data by comparing the hash of the 
whole file or fixed content. Venti [2], a block-level 
archival storage, removes redundant fixed-size data 
blocks by comparing their secure hashes. Pastiche [21] 
utilizes chunk-level duplicate detection to construct a 
resource-saving peer-to-peer backup network. Deep Store 
[3], a large scale archival storage system, uses both 
variable-sized chunk-level deduplication and delta 
compression to save storage. REBL [10] uses 
content-defined chunking algorithm to divide data and 
identify duplicate chunks by their hash. It utilizes delta 
encoding and sequential compression to further improve 
the storage efficiency. Jumbo Store [22] organizes 
variable-sized chunks into Hash-Based Directed Acyclic 
Graphs to save both storage and bandwidth while 
performing incremental upload and versioning for a utility 
rendering service. All these systems are very different 
from our MAD2 approach in terms of target applications, 
deduplication granularity, throughput and scalability. 



 

Previous works have evaluated deduplication 
efficiencies at different granularities [8]. Storage 
efficiencies of chunk-level deduplication, delta encoding 
and traditional sequential compression have also been 
compared [23]. 

Duplicate elimination has also been used in 
bandwidth-saving network protocols [24], low-bandwidth 
distributed file systems [9, 25], replica synchronization 
[26], multi-source download acceleration [27], and other 
network applications [28-30]. There are also techniques 
that can save disk storage space while providing timely 
recovery to any point-in-time [31]. 

Rabin Fingerprinting [12], a low computational 
complexity hash method, has been widely used in 
content-defined chunking and similarity detection [11, 
32-34]. 

The idea of using Bloom Filter Array to accelerate 
duplicate locating is inspired by HBA [35, 36], a 
decentralized metadata lookup scheme. An excellent 
survey on network applications of Bloom Filters can be 
found in [14]. Hot zero-chunks have also been detected 
and discussed in [37] and [38]. 

MAD2 distributes file recipes and chunk contents 
according to the prefixes of corresponding fingerprints. 
Techniques such as RUSH [39], CAN [40] and LH* [41] 
can also be used to enhance scalability and reliability. 
DHT has been widely used in large-scale distributed 
storage systems and peer-to-peer systems to balance load 
[42, 43], distribute data and locate resources [44-46]. 

VI. CONCLUSIONS 
This paper presents a scalable high-throughput exact 

duplication approach, called MAD2, to eliminate 
duplicates both at the file level and at the chunk level in 
backend storage of network backup services. MAD2 
utilizes on-disk Hash Bucket Matrix to preserve 
fingerprint locality and integrates in-memory Dual 
Cache to capture and exploit locality. In addition, 
MAD2 employs Bloom Filter Array to efficiently 
identify unique incoming fingerprints and indicate where 
a duplicate may reside. By employing a DHT-based 
Load-Balance technique to distribute file recipes and 
chunk contents among multiple storage nodes in their 
backup sequences, MAD2 further enhances performance 
with a well balanced load. 

Experimental results show that the storage efficiency 
of MAD2 is generally very good and sometimes far 
better than that of the approximate deduplication based 
on Extreme Binning. Both file recipes and chunk data 
can be well balanced among multiple storage 
components (SCs). The average throughputs of 
fingerprints deduplication measured in our experiments 
show that MAD2 is capable of supporting a raw 
deduplication throughput of at least 100MB/s for each 
SC. By adopting an average chunk size of 4KB, MAD2 
requires about 10GB RAM for 10TB exactly 
deduplicated data in full functional mode, which is 

affordable for most modern storage servers. Also, we 
have proposed three possible solutions to minimize the 
RAM consumption. Moreover, we believe that the 
MAD2 ideas of using built-in fingerprint to eliminate 
hot zero-chunks and using Bloom Filter Arrays to 
accelerate duplicate detection are also applicable to D2D 
oriented deduplication such as DDFS. 
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