
Performance Impact and Interplay of SSD Parallelism
through Advanced Commands,

Allocation Strategy and Data Granularity

Yang Hu , Hong Jiang , Dan Feng ,

 Lei Tian ,Hao Luo , Shuping Zhang

School of Computer, Huazhong University of Science and Technology, Wuhan, China, 430074

Wuhan National Laboratory for Optoelectronics, Wuhan, China, 430074

University of Nebraska-Lincoln, Lincoln, United States, 68588
Beijing Institute of Computer Technology and Application, Beijing, China, 100039

Corresponding author: dfeng@hust.edu.cn
{yanghu, hluo}@foxmail.com, jiang@cse.unl.edu, ltian@hust.edu.cn, zsp7098@sina.com

ABSTRACT
With the development of the NAND-Flash technology,

NAND-Flash based Solid-State Disk (SSD) has been attracting a
great deal of attention from both industry and academia. While a
range of SSD research topics, from interface techniques to buffer
management and Flash Translation Layer (FTL), from perfor-
mance to endurance and energy efficiency, have been extensively
studied in the literature, the SSD being studied was by and large
treated as a grey or black box in that many of the internal features
such as advanced commands, physical-page allocation schemes
and data granularity are hidden or assumed away. We argue that,
based on our experimental study, it is these internal features and
their interplay that will help provide the missing but significant
insights to designing high-performance and high-endurance SSDs.

In this paper, we use our highly accurate and multi-tiered SSD
simulator, called SSDsim, to analyze several key internal SSD
factors to characterize their performance impacts, interplay and
parallelisms for the purpose of performance and endurance en-
hancement of SSDs. From the results of our experiments, we
found that: (1) larger pages tend to have significantly negative
impact on SSD performance under many workloads; (2) different
physical-page allocation schemes have different deployment en-
vironments, where an optimal allocation scheme can be found for
each workload; (3) although advanced commands provided by
flash manufacturers can improve performance in some cases, they
may jeopardize the SSD performance and endurance when used
inappropriately; (4) since the parallelisms of SSD can be classified
into four levels, namely, channel-level, chip-level, die-level and
plane-level, the priority order of SSD parallelism, resulting from
the strong interplay among physical-page allocation schemes and
advanced commands, can have a very significant impact on SSD
performance and endurance.

Categories and Subject Descriptors
B.1.4 [Hardware]: Microprogram Design Aids– Firmware engi-
neering. B.3.3 [Memory Structure]: Performance Analysis and
Design Aids– Simulation. D.4.2 [Operating Systems]: Storage
Management– Secondary storage.

General Terms
Measurement and Performance

Keywords
NAND-Flash, SSD, simulator, advanced commands, parallelism

1. INTRODUCTION
NAND-Flash based Solid State Drive (SSD) has experienced

tremendous development and growth during the last two decades.
The enterprise-quality Flash memory storage has dropped in price,
increased in per-unit capacity, improved in reliability, and ad-
dressed the random write performance penalty, which is tradition-
ally associated with the technology, by various ingenious methods
[1-6]. These advantages enable SSDs to be widely used in almost
every aspect of modern computing systems, from low-end PCs to
high-end servers in supercomputing, thus making the performance
and endurance issues of solid-state storage system increasingly
attractive to both academia and industry [7-11].

Several topics related to the performance and endurance of SSD,
including FTL designs [12-15] and buffer schemes [16-19], have
been extensively discussed in the literatures. Other studies in the
literature deduce or infer the characteristics of flash or SSD by
extended measurement [20-23]. However, some SSD internal
behaviors with potentially important impacts on the system per-
formance and endurance have been largely ignored. While very
little has been studied and reported in the literature about the per-
formance and endurance impacts and interplay of data granularity
of SSD, allocation strategy and advanced commands, our experi-
ences with SSD design and evaluation indicate that judicious use
of these features can have significant performance and endurance
impacts. For example, we found that diverse allocation schemes
can result in different performance level and the way in which
parallelism in SSD is exploited can be a key performance-impact
factor. Moreover, when these internal SSD behaviors did get dis-
cussed in the literature they were studied in isolation without con-
sidering their interplay and interaction [14][17][24-27]. In fact, we
found that it is this interplay and interaction among them that tend

96

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’11, May 31–June 4, 2011, Tucson, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0102-2/11/05...$10.00.

to have the most profound impact on system performance and
endurance of SSD.

To thoroughly investigate the aforementioned performance im-
pact and interplay of SSD advanced commands, allocation strategy,
and data granularity, in this paper, we carefully examine several
internal behaviors rarely discussed in the literature, which may have
potentially important impact on the performance and endurance of
SSD. Specifically, we carry out in-depth evaluations of these fea-
tures and their interplay, obtaining the following main insights.
1. Flash page size

With the capacity growth of NAND flash chips, the size of
an SSD page has increased significantly over the past few
years, for example, from 512B in the 1990s to 16KB in 2010
[28-34]. However, when a page is updated partially (e.g., with
small and random I/O requests in such workloads as MSN
[35]), bigger pages are more prone to the problem in which
some data must be read from the old page and written to a new
page after being merged with the new data. This problem leads
to degraded performance. In fact, enlarging the flash page size
leads to that the average response time is increased to 1.8 times,
compared to that of the best performing flash page-size, under
the MSN workload. Considering the different access patterns
of various workloads, there is no one-size-fits-all page size and
an optimal page size must be and can be dynamically deter-
mined to optimize performance, adapting to different work-
loads.

2. Allocation schemes
Static allocation is based on fixed striping while dynamic

allocation assigns pages dynamically. Although dynamic al-
location is more flexible and adaptive in exploiting parallel-
isms, thus resulting in better performance in most cases, stat-
ic allocation is simple in implementation and can be very ef-
fective in some workloads. Static allocation is found to per-
form the best in read operations under all workloads. Dy-
namic allocation performs the best overall performance and
endurance under the most of workloads in aged SSDs.

3. Advanced commands
The SSD manufacturers have provided advanced commands,

such as copy-back, multi-plane and interleave operations, with
an intention to improve the performance of SSD by handling
read, write and erase operations more efficiently. However, we
find that some strict restrictions must be adhered to when using
these commands, making their appropriate use extremely im-
portant. For example, using copy-back blindly leads to that the
average response time and erasure count are increase to 7.7
and 17.8 times respectively, compared to that of only using ba-
sic commands, under the MSN workload.

4. Priority order of SSD parallelism
Parallelism has been regarded as a key to achieving the

peak performance. There are four levels of parallelism in
SSD: (1) among channels (channel-level), (2) among chips in
a channel (chip-level), (3) among dies in a chip (die-level)
and (4) among planes in a die (plane-level). Allocation
schemes can effectively utilize the first two levels of paral-
lelisms, while the last two levels of parallelisms can be ex-
ploited by advanced commands. We found that the four le-
vels of parallelisms tend to have an optimal priority order.
An incorrectly placed order of priority can result in a per-
formance degradation of up to 60%.

The rest of the paper is organized as follows. Section 2 intro-
duces the necessary background and related work to motivate our
research. Section 3 presents and validates the evaluation platform
– SSDsim, a highly accurate and multi-tiered simulator for the
evaluation of various SSD internal behaviors. Then we present our
extensive trace-driven evaluations of the internal behaviors of
SSD on SSDsim in Section 4. Section 5 summarizes the key ob-
servations and insights obtained from our evaluations.

2. BACKGROUND AND MOTIVATION
2.1 Flash Memory Basics

In general, Flash memory can be classified into two categories:
NOR and NAND [3]. NOR-Flash memory supports byte-level
random accesses and is typically used in read-only applications
such as storing firmware codes. NAND-Flash memory, in con-
trast, has higher density, larger capacity and lower cost than
NOR-Flash, but only supports block-level random accesses. It is
thus typically used for more general-purpose applications.

There are two NAND-Flash technologies, Single-Level Cell
(SLC) and Multi-Level Cell (MLC) [4][5]. While the former
stores only one bit per cell, the latter stores two or even more bits
per cell. Throughout this paper, we will use the term Flash to refer
specifically to NAND-Flash memory.

To increase storage density, flash manufactories package sever-
al flash chips together, a model called package [28-34]. All chips
in a package share the same 8/16-bit I/O bus of the package but
have separate chip enable and ready/busy control signals. Each
chip is composed of two or more dies. Each die has one internal
ready/busy signal that is different from the external ready/busy
signal of a chip. The internal ready/busy signal is invisible to user.
It will only be used in advanced commands. Each die is composed
of multiple planes. Each plane contains thousands of flash blocks
and one or two data/cache registers used as an I/O buffer. A flash
block typically consists of 64 or 128 pages, where a page is fur-
ther divided into many 512B sub-pages. Each sub-page has a 16B
spare space used to store a variety of information, such as error
correction code (ECC), logical page number and sub-page state.
The size of a page has been steadily increasing due to the tech-
nology development as well as the growing size of a single chip.
While chip and die are not clearly distinguished and often con-
fused with each other in many previous studies in the literature,
chip enable and read/busy signals make them clearly distinct from
each other. A chip is the basic functional unit that has its inde-
pendent chip enable and read/busy signals. A die is a component
of a chip, which only has an internal read/busy signal.

There are two key and unique flash characteristics, namely,
write-after-erase and erase cycle. A write operation can only
change the value of each target bit from `1` to `0`. Once a page is
written, it must be erased, where all bits are reset to `1`, before the
next write operation can be performed on the same page. Each
flash block has a limited number of erase cycles before it is worn
out. After wearing out, a block can no longer store any data. A
typical MLC Flash has an erase-cycle limit of about 10K, while a
typical SLC Flash has an erase-cycle limit of about 100K with a
1bit/512byte ECC [4].

The page size of early NAND-Flash products is typically 512
bytes, consistent with a hard disk drive (HDD) sector [36]. With
the development of fabrication technology, the storage density has
been steadily increasing, resulting in a diverse set of page sizes
among NAND-Flash products, including 2KB, 4KB, 8KB and
16KB [28-34]. In the pursuit of higher capacity, SSD products are
employing increasingly large page size.

2.2 Flash Commands: Basic Commands and
Advanced Commands

There are three basic operations in Flash: read, program (write)
and erase. A read operation fetches data from a target page. A write
operation writes data to a target page. An erase operation resets all
bits of a target block to `1`. All operations are initiated by writing
the command code to the command register and the address of the
request to the address register. The address points to the target data
of the request inside the package. An address is separated into six
segments: chip address, die address, plane address, block address,
page address and in-page address, as illustrated in Figure 1. Within
a block, the pages must be programmed consecutively in the in-

97

creasing order of page address. Random-page-address programming
is prohibited. We call this Restriction (a).

Most flash manufacturers provide advanced commands, such as

copy-back, multi-plane and interleave, to further improve the
performance of SSD. Advanced commands are extensions of the
basic read, program and erase commands but with some usage
restrictions [28-34][37].

Copy-back (internal data move) command moves one page of
data from one page to another in the same plane, without occupying
the I/O bus. Some manufacturers also call this command internal
data move [38-39]. We will call it copy-back in the remainder of the
paper. The source page and the target page must have the same chip,
die and plane addresses. The addresses of the source page and des-
tination page must be both odd or both even. As shown in Figure 4,
a copy-back operation can only move data from page 0 to page 2, or
from page 1 to page 3, etc. Moving data from page 0 to page 1 or
page 3 is prohibited. We call this Restriction (b).

Multi-plane command activates multiple read, program or erase
operations in all planes of the same die. It only costs the time of
one read, write or erase operation, while executing multiple such
operations, as illustrated in Figure 2 (a). The pages executing a
multi-plane read/write operation must have the same chip, die,
block and page addresses. And the blocks executing a multi-plane
erase operation must have the same chip, die and block addresses.
As shown in Figure 4, only page 1 from plane 0 and page 1 from
plane 1 of the same die can be read/written simultaneously by us-
ing a multi-plane read/write operation. Reading/writing page 1
from plane 0 and page 3 from plane 1 using a multi-plane
read/write operation is prohibited. We call this Restriction (c).

Interleave command executes several page read, page write,
block erase and multi-plane read/write/erase operations in different
dies of the same chip simultaneously. The interleave command is
different from the interleave operation mentioned in [17][25-27].
The former is a flash command that is executed among different
dies in the same chip, while the latter is executed among different
chips in the same channel. An interleave write command is illu-
strated in Figure 2 (b). Other than the restriction that pages operated
simultaneously must belong to different dies on the same chip, there
are no other restrictions when using the interleave command.

2.3 Allocation Schemes
An allocation scheme determines how to choose free physical

page(s) to accommodate logical page(s) being written to the SSD.
To locate a particular physical page, one must know the channel
address and package address, in addition to the chip address, die
address, plane address, block address and page address, as shown in
Figure 1. The format of a full address of SSD is shown in Figure 3.

Allocation schemes are classified into two categories: dynamic
and static.

Static allocation first assigns a logical page to a pre-determined
channel, package, chip, die and plane, before allocating it to any
free physical page of the plane. The channel, package, chip, die and
plane addresses assigned to each logical page are typically calcu-
lated by some formulas that define a special allocation scheme.

Dynamic allocation assigns a logical page to any free physical
page of the entire SSD. When a write request arrives, a dynamic

allocation scheme chooses a free physical page by considering
several factors, such as the idle/busy state of channels, the
idle/busy state of chips, the erasure count of blocks, the priority
order of parallelism and so on. The scheme that assigns a logical
page to any free physical page of the pre-determined channel is
also classified in the dynamic allocation category.

There are many existing static allocation schemes, of which the
scheme shown in Figure 11(b) has been shown to perform the best
by an extensive comparative study in [14].

There has not been any direct comparison between the static
and dynamic allocation schemes in the literature, to the best of our
knowledge. In this paper, we will evaluate and directly compare
the static and dynamic allocation schemes in terms of performance
and wear-leveling.

2.4 Parallelism inside SSDs
There are four levels of parallelism in SSD: (1) among channels

(channel-level), (2) among chips in a channel (chip-level), (3)
among dies in a chip (die-level), and (4) among planes in a die
(plane-level). For example, in Figure 4, if a request is served by
channel 0 and channel 1 simultaneously, it exploits the chan-
nel-level parallelism; if it is served by chip 0 of package 0, chip 1
of package 0 and chip 0 of package 1 in channel 0 simultaneously,
it leverages the chip-level parallelism; if it is served by plane 0 of
die 0 and plane 1 of die 1 on the same chip, it utilizes the die-level
parallelism; if it is served by plane 0 and plane 1 of the same die,
it makes use of the plane-level parallelism.

[25] and [27] exploit the channel-level parallelism; [17] makes
use of the chip-level parallelism; and [26] employs the plane-level
parallelism. Previous studies in the literature mainly focus on the
first two levels of parallelism. In this paper, we will evaluate the
performance impact of exploiting all four levels of SSD parallel-
isms through the interplay of the aforementioned internal beha-
viors of SSD.

2.5 SSD Simulator
At present, there are only two open-source SSD simulators

[40-41] available in the public domain. They provide basic re-
search platforms for researchers to evaluate their designs of FTL.
They provide the first two levels of parallelism, including chan-
nel-level and chip-level. They only support one of the three ad-
vanced commands, copy-back. However, they both fail to adhere
to Restriction (b) (Section 2.2) when using the copy-back com-
mand. Furthermore, they did not validate their measurement ac-
curacy against a real SSD system by directly comparing the simu-
lation measurements with the real SSD system measurements.

To address the drawbacks of the existing SSD simulators, we
designed and implemented a new SSD simulator, called SSDsim,
which provides the detailed and accurate simulation of each level
of SSD, including hardware, FTL and buffer layer. It provides

98

four levels of parallelism, supports all the advanced commands
that adhere to all the aforementioned restrictions. It is directly
validated against a real SSD prototype. The aim of design and
implementation of SSDsim is to provide an open-source and
high-accuracy SSD research tool for all researchers.

2.6 Research Motivation
To design a high-performance and high-endurance SSD, we

must comprehensively consider many factors that have been dis-
cussed so far. More specifically, we must answer the following
research questions that have not been fully addressed, if at all, in
the literature, to the best of our knowledge.
Question 1: Is the flash page size a factor impacting the SSD per-
formance? And if so, to what extent? Enlarging the flash page size
can increase the capacity of SSD. But does it also help perfor-
mance?
Question 2: How to choose allocation schemes?
The question has been partially answered by previous studies in
the literature. However, a comprehensive answer is still elusive.
Since different workloads have diverse characteristics, no one
allocation scheme can possibly fit all workloads. On the other
hand, are there certain workloads that will be best suitable for a
particular type of scheme? For example, we found that in all cas-
es, the read performance of the static allocation scheme is consis-
tently superior to that of the dynamic allocation scheme. Con-
versely, in an aged SSD, the dynamic allocation scheme signifi-
cantly outperforms the static allocation scheme.
Question 3: Do advanced commands always improve perfor-
mance? If not, how should they be appropriately used to promote
performance?
Question 4: Given the four levels of parallelism in SSD, what is
their priority order that optimizes the performance and endurance
of SSD?

To comprehensively answer these questions, we conduct a se-
ries of trace-driven experiments and evaluations detailed in Sec-
tion 4, on the SSDsim simulator to be described next.

3. EVALUATION PLATFORM
In this section we present the evaluation platform on which the

in-depth investigation into the internal SSD behaviors and their
interplay (to be detailed in Section 4) are conducted by first in-
troducing and validating the core of this platform, the SSDsim
simulator. This is followed by a description of the real-world
workloads chosen for this investigation and the configuration of
the evaluation platform.

3.1 SSDsim Simulator and Its Validation
against a Hardware SSD Prototype

We design and implement an SSD simulator, called SSDsim,
which is event-driven, modularly structured, and multi-tiered.
SSDsim is a single-threaded program written in C, which has
about 15 thousand lines of C code. SSDsim is capable of simulat-
ing most SSD hardware platforms, mainstream FTL schemes,
allocation schemes, buffer management algorithms and request
scheduling algorithms. The three-tiered SSDsim design consists of
the buffer and request-scheduling module at the top, the FTL and
allocation module in the middle, and the low-level hardware plat-
form module at the bottom. The top module is responsible for
buffer organization and scheduling requests; In the middle mod-
ule, the FTL sub-module simulates many state-of-the-art FTL
schemes including pure page-FTL [43][44], pure block-FTL
[43][44], DFTL [12] and FAST [15], and the allocation
sub-module provides the choice of allocation schemes including
the dynamic allocation and the static allocation. The bottom mod-
ule simulates the behaviors of all the Flash operations based on
the Open NAND Flash Interface Specification (ONFI) 2.2 [37].
This module supports four levels of parallelism and all advanced

commands that are adhered to all aforementioned restrictions. By
feeding block-level trace files and configuring with the parameter
files, we can obtain the waiting time, processing time, response
time of each request, total erasure count, buffer hit count and other
detailed information.

In the design of SSDsim, we take into explicit account the time
consumed by the necessary internal SSD software cost so as to
achieve a high fidelity of the simulator. This, we argue, is one of
the key features distinguishing SSDsim from the existing
open-source SSD simulators. As a known fact in HDD, a typical
request’s response time is in the millisecond-scale, with negligible
amount of program code being executed while processing the
request. In SSD, on the other hand, a request’s response time is in
the microsecond-scale and there is significantly more program
code being executed to service the request than in HDD, including
address mapping, data merge and migration, among other things.
Assuming a frequency of 100MHz for the SSD controller, one
instruction executed by the controller will cost 10 nanoseconds.
The time cost of 100 lines of assembly code will be about 1 mi-
crosecond, which is no longer negligible as part of SSD’s re-
sponse time. In fact, we found that the software processing cost as
part of the response time of SSD is not only non-negligible, but
actually a significant part of the response time. For example, in
the response time of one read request, the software processing cost
accounted for up to 18.9%.

To validate the accuracy of SSDsim, we have implemented a
real SSD hardware prototype, as shown in Figure 5. In this proto-
type, an FPGA chip acts as the controller; eight SUMSANG flash
chips [28] are organized into two independent channels, and four
16MB DRAM chips are used to store the mapping table and data
buffer. For validation purposes, the same buffer management
schemes, FTL and allocation schemes are implemented in the
hardware prototype and SSDsim, the configuration parameter file
based on the hardware prototype is fed to SSDsim, and the same
request streams are fed to both the hardware prototype and
SSDsim. Four workloads, which are detailed in Section 3.2 and
reflect the high-performance computing environment with diverse
write/read request ratios, request sizes, request characteristics, are
used in our SSDsim validation.

99

 The main evaluation results from SSDsim and the hardware
prototype are presented in Figures 6 and 7. In Figure 6, the aver-
age-response-time deviation of SSDsim from the prototype is
plotted as a function of the four workloads. With a deviation of
only 2%~2.9% shown in this figure, it is clear that the average
response time obtained from SSDsim is very close to that obtained
from the prototype, indicating the high accuracy of SSDsim.

Figure 7 plots the simulation accuracy as a Cumulative Distri-
bution Function (CDF) of the response time. The sub-figure in
each of the four parts of Figure 7 is a microscopic illustration of
inflexion of each part. In Figure 7, the blue lines represent the
prototype and the red lines represent SSDsim. It is evident that the
two curves in each part almost completely overlap, suggesting that
SSDsim matches extremely well with the prototype in the re-
sponse-time measurement.

(a) Fin1 (b) Fin2

(c) Web (d) Ex

Figure 7. The Cumulative Distribution Function (CDF) of
the response time.

1 2 3 4 5
106Response time (ns)

0 5 10 15
106

0

0.2

1

0.4

0.6

0.8

Response time (ns)

0
0

0.2

0.4

0.6

0.8

1

0

0.2

1

0.4

0.6

0.8

Response time (ns)
86420

107

1 2 3 4 5
106Response time (ns)

0 6
0

0.2

0.4

0.6

0.8

1

0

0.2

1

0.4

0.6

0.8

Response time (ns)
2.521.50.50

108 Response time (ns)
321.510

108
0.5 2.51

0

0.2

1

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5
107Response time (ns)

0 2
0

0.2

0.4

0.6

0.8

1

2 4 6 8 10
106Response time (ns)

0

3.2 Workloads
We use a set of real-world workloads, shown in Table 1 and re-

flecting the high-performance computing environments, to study the
performance and endurance impacts of the internal beha-
viors/features of SSD, including the flash page size, allocation
schemes, advanced commands, and their interplay. Financial1, Fi-
nancial2 and Websearch were collected at a large financial institu-
tion and a popular Internet web search machine respectively [45].
Exchange [35] was collected at the Microsoft Exchange 2007 SP1
server, which is a mail server for 5000 corporate users. MSN [35]
was collected at the Microsoft’s several Live file servers. Develop
[35] was obtained from a file server accessed by more than 3000
users to download various daily builds of Microsoft Visual Studio.
Radius [35] was obtained from a RADIUS authentication server that

is responsible for worldwide corporate remote access and wireless
authentication. Table 1 summarizes the basic characteristics of these
traces, including the average request size for reads and writes per-
centage of read requests, and request inter-arrival time.

Table 1. Workload characteristics of the traces

Workloads Abb. Avg. req. size
read/write(KB)

Read(%) Int. arrv.
Time(ms)

Financial1 Fin1 2.25/3.75 23.2 8.19
Financial2 Fin2 2.3/2.9 82.3 11.08
Websearch Web 15.15/8.6 99.9 2.99
Exchange Ex 15.15/14.5 30.8 1179
MSN MSN 9.6/11.1 67.2 513
Develop Dev 18.45/10.95 88.6 1985
Radius Rad 124.25/12.45 17.1 9475

3.3 Configuration of the Evaluation Platform
In our evaluation experiments, we assume a multiple-channel,

multiple-package, multiple-chip, multiple-die and multiple-plane
SSD organization. There are many ways to organize channels and
packages based on the sharing methods of I/O bus, chip enable
signal and ready/busy signal. Since our focus is on the use of SSD
in the high-performance computing environment, we will concen-
trate on an organization that offers potentially the best perfor-
mance. As shown in Figure 8, each channel has its independent I/O
bus, and each chip has its independent chip enable signal and
ready/busy signal. Both of them constitute the independent service
units in the SSD. Since a package simply overlaps several chips,
we only give sketches of chips without packages. The timing and
organization characteristics of the configuration are based on a real
NAND-Flash product [28], as summarized in Table 2. In the eval-
uations we also assume two types of SSD, the aged and the
non-aged. While the former is used to show the case where a great
number of physical pages have been previously written and thus
garbage collection and erase operations are far more likely to be
triggered by new requests, the latter is used to show the opposite
situation. In particular, the former will allow us to examine the
performance and endurance impact of garbage collection and erase
operations that cause channels and chips to be in the busy state.

Table 2. Configuration parameters used in SSDsim (Chan-
nel-Chip-Die-Plane-Block-Page indicates the number of channels
in the SSD, chips in a channel, dies in a chip, planes in a die,
blocks in a plane and pages in a block, respectively. Unless oth-
erwise noted, they are default experiment parameters)

Parameters Values

Page read to register 20us

Page write from register 200us

Block erase 1.5ms

Read one byte data from register 25ns

Write one byte data to register 25ns

Channel-Chip-Die-Plane-Block-Page 4-4-2-2-2048-64

Page size 2KB

100

4. EXPERIMENTAL EVALUATIONS
In this section we evaluate three SSD internal behaviors, or

characteristics, which have notable impact on SSD performance
and endurance, namely, (1) flash page size, (2) allocation schemes
and (3) advanced commands. This is followed by a study on the
interplay of these characteristics and the priority order of paral-
lelism in SSD, presented in Section 4.4. We obtain our experi-
mental results from SSDsim rather than the hardware SSD proto-
type. Since it is not easy to reconfigure some parameters of the
hardware SSD prototype, such as the flash page size and the
numbers of channels and chips, conducting experiments on the
hardware SSD prototype is both costly and time consuming.

4.1 Flash Page Size
There are two scenarios in which a logical page is written to the

flash memory, the logical page is written for the very first time and
the logical page is rewritten or updated in the flash memory. The
update operation can lead to two types of SSD internal data move-
ment depending on whether the new data of the page fully overlaps,
called “covered”, or partially overlaps, called “un-covered”, the old
data of the page. Figure 9 shows the covered (Figure 9(a)) and
un-covered (Figure 9(b)) cases of a page update assuming a page
size of 2KB (i.e., the equivalent of 4 sectors), where the shaded
sectors of the page represent valid data while the un-shaded sectors
represent invalid data. In the case of a covered update, shown in
Figure 9(a) the new data (sectors 0-2) is written to a new physical
page, invalidating the old physical page containing the old data
(sectors 1-2) of the logical page and modifying the mapping infor-
mation of the logical page. In the case of an un-covered update,
shown in Figure 9(b), the old data (sector 3) is read out to be com-
bined with the new data (sectors 0-2) of the logical page before the
combined data (sectors 0-3) is written to a new physical page, inva-
liding the old physical page containing the old data and modifying
the mapping information of this logical page.

In other words, an un-covered operation requires one more
flash read operation than a covered update operation, which can
have a negative impact on the request’s response time. Given the
same average request size, the larger the page size is, the more
likely it is for un-covered update operations to be induced. This is
because, in a large-size page, a small write request will more
likely find itself updating a subset of the sectors in a page with at
least one valid sector to be combined, resulting in an un-covered
update operation. On the other hand, a large page size also has its
advantages, since a read/write operation in an SSD with a large
page-size can fetch/send more data to/from the register, which
allows a large read/write request to be more efficiently executed.

In Figure 10, we plot the percentage of un-covered update op-
erations among all write operations, shown as the line plots and
labeled on the Y-axis on the right side of the figure, as a function
of the flash page-size under five different workloads. The perfor-
mance impact of these un-covered update operations, measured in
the average response time normalized to that of the best perform-
ing flash page-size, shown as the bars and labeled on the Y-axis
on the left side of the figure, is plotted as a function of the flash
page sizes under five different workloads.

From Figure 10, it is clear that, under the Dev, MSN, Ex and
Rad workloads, the page size of 4KB results in the best average
response time. This is because 78.6%, 74.3%, 99.2% and 33.4%
of write requests in MSN, Ex, Dev and Rad, respectively, are of
size 4KB or the multiples of 4KB, which induce fewer un-covered
update operations than the 8KB-page and 16KB-page SSDs. The

4KB page-size also results in the least average response time un-
der these four workloads. Although the un-covered update opera-
tion count in the 2KB-page SSD is smaller than that in the
4KB-page SSD, a 4KB write request in the 2KB-page SSD re-
quires two or three write operations, in contrast to the one or two
write operations required in the 4KB-page SSD, giving rise to a
higher average response time in the former. Under the Fin1 work-
load, the average response time is the best in the 16KB-page SSD,
because the un-covered update-operation count changes very little
with an increase in the page size while the larger page size favors
the large requests in this workload.

Insight 1: Enlarging the storage capacity of SSD by means of
increasing the page size may not be a wise choice under some
workloads. Instead, we argue that a better choice for large capaci-
ty and stable performance is to use more packages with an appro-
priate page size in the same channel, or overlap more chips of an
appropriate page size in a flash package. Since the controller pro-
vides a chip enable signal and a busy/ready signal to each chip,
the storage capacity of SSD can be enlarged without decreasing
the I/O performance by increasing some control signals of the
controller in this way. Further, to design high-performance and
large-capacity SSDs, the request size and the percentage of the
un-covered update operations of the workload must be taken into
account to choose flash chip with an appropriate page size.

4.2 Allocation Schemes
In this subsection, we compare the performances of the static

allocation and dynamic allocation schemes, and evaluate the re-
lated wear-leveling issues.

Figure 11 illustrates six different static allocation schemes (in-
cluding static allocation 2 proposed by J. Shin et al. [14]), which
are referred to as s1, s2, s3, s4, s5 and s6.

As mentioned in Section 2.3, dynamic allocation schemes assign
a logical page to any free physical page of the entire SSD or the
pre-determined channel, according to the idle/busy state of chan-
nels, the idle/busy state of chips, the erasure count of blocks, and
the priority order of parallelism. Different combinations of these
factors will derive many different dynamic allocation schemes. For
example, when a 4KB write request arrives in an SSD of
2KB-page-size Flash, assuming that 2 channels as well as 2 chips
in each channel are idle, the request can be served by 2 channels or
2 chips in a channel, when applying different priority order of par-
allelism. The former is channel-level parallelism first, and the latter
is chip-level parallelism first. Since we discuss advanced com-
mands and priority order of parallelism in SSD in Sections 4.3 and
4.4, respectively, die-level parallelism and plane-level parallelism
will not be explored in this section. In other words, the multi-plane
and the interleave advanced commands will not be used, and the
priority order of parallelisms will be channel-level parallelism first,
followed by the chip-level parallelism.

We compare the average response time of the dynamic alloca-
tion scheme with that of s2, because s2 is shown to achieve the best
performance when advanced commands are not employed [14].

101

The read/write/overall performance impact of different allocation
schemes, measured in the average response time normalized to that
of the s2 is plotted in Figure 12, under six different workloads.

(b) Static Allocation 2 (s2)

(c) Static Allocation 3 (s3) (d) Static Allocation 4 (s4)

(f) Static Allocation 6 (s6)(e) Static Allocation 5 (s5)

(a) Static Allocation 1 (s1)

channel > die > plane > chipchannel > plane > die > chip

channel > plane > chip > die channel > die > chip > plane

chip > die > plane > channel channel > chip > die > plane

32

0
16

P 0
40

8
24

P 1
Die 0

Chip 0
Channel 0

36

4
20

P 0
44

12
28

P 1
Die 1

34

2
18

P 0
42

10
26

P 1
Die 0

Chip 1

38

6
22

P 0
46

14
30

P 1
Die 1

33

1
17

P 0
41

9
25

P 1
Die 0

Chip 0
Channel 0

37

5
21

P 0
45

13
29

P 1
Die 1

35

3
19

P 0
43

11
27

P 1
Die 0

Chip 1

39

7
23

P 0
47

15
31

P 1
Die 1

32

0
16

P 0
34

2
18

P 1
Die 0

Chip 0
Channel 0

40

8
24

P 0
42

10
26

P 1
Die 1

36

4
20

P 0
38

6
22

P 1
Die 0

Chip 1

44

12
28

P 0
46

14
30

P 1
Die 1

33

1
17

P 0
35

3
19

P 1
Die 0

Chip 0
Channel 0

41

9
25

P 0
43

11
27

P 1
Die 1

37

5
21

P 0
39

7
23

P 1
Die 0

Chip 1

45

13
29

P 0
47

15
31

P 1
Die 1

32

0
16

P 0
36

4
20

P 1
Die 0

Chip 0
Channel 0

34

2
18

P 0
38

6
22

P 1
Die 1

33

1
17

P 0
37

5
21

P 1
Die 0

Chip 1

35

3
19

P 0
39

7
23

P 1
Die 1

40

8
24

P 0
44

12
28

P 1
Die 0

Chip 0
Channel 0

42

10
26

P 0
46

14
30

P 1
Die 1

41

9
25

P 0
45

13
29

P 1
Die 0

Chip 1

43

11
27

P 0
47

15
31

P 1
Die 1

32

0
16

P 0
34

2
18

P 1
Die 0

Chip 0
Channel 0

36

4
20

P 0
38

6
22

P 1
Die 1

40

8
24

P 0
42

10
26

P 1
Die 0

Chip 1

44

12
28

P 0
46

14
30

P 1
Die 1

33

1
17

P 0
35

3
19

P 1
Die 0

Chip 0
Channel 0

37

5
21

P 0
39

7
23

P 1
Die 1

41

9
25

P 0
43

11
27

P 1
Die 0

Chip 1

45

13
29

P 0
47

15
31

P 1
Die 1

32

0
16

P 0
36

4
20

P 1
Die 0

Chip 0
Channel 0

34

2
18

P 0
38

6
22

P 1
Die 1

40

8
24

P 0
44

12
28

P 1
Die 0

Chip 1

42

10
26

P 0
46

14
30

P 1
Die 1

33

1
17

P 0
37

5
21

P 1
Die 0

Chip 0
Channel 0

35

3
19

P 0
39

7
23

P 1
Die 1

41

9
25

P 0
45

13
29

P 1
Die 0

Chip 1

43

11
27

P 0
47

15
31

P 1
Die 1

32

0
16

P 0
40

8
24

P 1
Die 0

Chip 0
Channel 0

34

2
18

P 0
42

10
26

P 1
Die 1

36

4
20

P 0
44

12
28

P 1
Die 0

Chip 1

38

6
22

P 0
46

14
30

P 1
Die 1

33

1
17

P 0
41

9
25

P 1
Die 0

Chip 0
Channel 0

35

3
19

P 0
43

11
27

P 1
Die 1

37

5
21

P 0
45

13
29

P 1
Die 0

Chip 1

39

7
23

P 0
47

15
31

P 1
Die 1

Figure 11. Six kinds of typical static allocation schemes.
(A > B > C > D means the priority order of allocating logical page. In other
word, it is striping address to A first, then to B, then to C, and finally to D.)

From Figure 12, it is clear that the static allocation scheme per-
forms the best for read requests in both the non-aged SSD and the
aged SSD, under all workloads. For a given read request whose
size is a multiple of a logical page size, the striping nature of the
static allocation is likely to distribute the sequential logical pages
of the request to different channels and chips, which tends to ex-
ploit more parallelisms of the multi-channel and multi-chip struc-
tured SSD, thus decreasing the response time of this request. In
the dynamic allocation, on the other hand, it is entirely possible
that the sequential logical pages are stored in the same channel, or
even the same chip, so that these sequential logical pages will be
operated in the same channel or chip one by one, failing to exploit
the parallelism of SSD. Since 99.99% of the requests are read
requests in the Web workload, the overall performance of the
static allocation is better than dynamic allocation, in both the
non-aged SSD and the aged SSD.

Insight 2: The static allocation scheme consistently outper-
forms the dynamic allocation scheme in serving read requests.
Thus, in the application environments that demand fast reads, or
are read-dominant in their workloads, the static allocation scheme
should be employed.

For the non-aged SSD, Figure 12 (a) shows that the dynamic al-
location scheme outperforms the static allocation scheme under all
workloads for write requests and overall under the Fin2, MSN, Ex,
and Fin1 workloads. This is because the sequential logical pages of
a multi-page write request are likely to be serviced by multiple chips

in several channels in the static allocation, while the response time
of the request is determined by the logical page completing the last.
If any one of the logical pages happens to be on a busy chip, which
is very likely, the response time of the request will be severely de-
layed. This, however, does not happen in the dynamic allocation,
since write requests can be adaptively distributed to idle chips.

In the aged SSD, the write-performance advantage of the dy-
namic allocation scheme becomes more pronounced, as shown in
Figure 12 (b). This is because there are more garbage collection
and erase operations in an aged SSD than in a non-aged SSD,
which can cause more chips to be in the busy state and further
decrease the write performance of the static allocation scheme.

Insight 3: In a non-aged SSD, the static allocation scheme is
preferable when the workload is read-dominant. Otherwise, the
dynamic allocation scheme should be employed. In an aged SSD,
the dynamic allocation scheme consistently outperforms of the
static allocation scheme, with the only exception being the
read-only workloads.

Wear-leveling algorithms are used to distribute the erase opera-
tions evenly to the entire SSD for the purpose of enhancing flash
endurance. To balance erasure count, wear-leveling usually writes
hot data to the least frequently erased blocks and migrates cool
data to blocks with higher erasure counts [46]. Obviously, such
data migrations will lead to extra read write and erase operations
that have negative impact on performance and endurance. In Ta-
ble 3, we list the standard deviation of the total erasure counts of
blocks in each plane for the static and dynamic allocation schemes
under the five workloads, where a low standard deviation indi-
cates a more evenly distributed erase operations. It is clear from
the table that the dynamic scheme has a much better wear-leveling
performance than the static scheme.

Insight 4: The dynamic allocation scheme consistently outper-
forms the static scheme on the wear-leveling performance.

Table 3. The standard deviations of total erasure count of blocks
in each plane when employing either static allocation scheme
or dynamic allocation scheme.

Workloads Static allocation Dynamic allocation
Dev 284.9 2.5
Ex 409.1 39.5
Fin1 207.3 3.9
MSN 3534.4 112.6
Rad 7.5 2.6

102

4.3 Advanced Commands
In this subsection, we evaluate the impact of the advanced

commands provided by Flash manufacturers, and how Restric-
tions (a)-(c) make these advanced commands a double-edged
sword.

To better examine the performance impact of the multi-plane
read/write/erase commands that exploit the plane-level parallelism
and the interleave read/write/erase commands that exploit the
die-level parallelism, we exclude the interference of the chan-
nel-level parallelism by employing a single-channel SSD in the
experiments of this section.

4.3.1 Copy-back
When using the copy-back command, Restriction (a) and Re-

striction (b) must be adhered to. Figure 13 illustrates the process
of executing a copy-back command, where the data stored in PPN
=82 needs to be migrated to a free physical page. Since the pages
in a block must be programmed sequentially, the next available
page is PPN =641. However, Restriction (b) forbids us to write
the data to PPN =641, forcing the invalidation of PPN =641 and
migration of the data into PPN =642. It is obvious that using the
copy-back command blindly will lead to a waste of flash pages. In
fact, our experiments reveal that using the copy-back command
blindly can cause almost half of the copy-back operations to each
invalidate one extra page under all workloads.

To use the copy-back command wisely to minimize the number of
invalidated pages, we recommend its use only when the addresses of
the source page and the destination page have the same parity.

The performance impact of the way in which the copy-back
command is used, measured in the average response time norma-
lized to that of only using the basic commands, is plotted as a
function of the workloads and labeled on the Y-axis on the left
side of Figure 14. The erasure count of using the copy-back com-
mand blindly, normalized to that of only using basic commands, is
shown by small triangles and labeled on the Y-axis on the right
side of the figure. In the experiments presented in this subsection,
the dynamic allocation scheme employs the same priority order of
parallelisms as that used in Section 4.2.

In Figure 14, it is clear that using the copy-back command
blindly has a notable negative impact on the average response
time and the erasure count measures under the Dev, MSN and Ex
workloads. This is because a large number of the copy-back
commands lead to many pages being invalidated under these
workloads, which in turn trigger frequent garbage collections.
During a garbage collection, more copy-back operations and erase
operations will be performed, which further decreases the overall
performance and increases erasure count. On the other hand, using
the copy-back command wisely does improve performance with-
out increasing the erasure count. This is because there are no extra
pages invalidated and no extra erasure operation induced.

In Figure 14, we only present the results of an aged SSD, since
garbage collections are rarely triggered in a non-aged SSD.

Insight 5: The copy-back command should only be used wisely
when the addresses of the source page and the destination page
have the same parity, otherwise the I/O performance and endur-
ance of SSD can be significantly reduced.

4.3.2 Multi-Plane
In this section, we analyze the multi-plane command for reads

and writes, which we call MPW (Multi-Plane Write) and MPR
(Multi-Plane Read) for short in the remainder of the paper.

As mentioned in Section 2.2, a multi-plane command can ex-
ecute the same basic command in all planes on the same die.
Therefore, it exploits the parallelism among the planes of the same
die. When using multi-plane write command, Restriction (a) and
Restriction (c) must be adhered to.

Figure 15 illustrates an MPW operation. Two different planes
of the same die, plane 0 and plane 1, are shown in the figure. The
page address of the next available page in plane 0 is 26 while that
in plane 1 is 24. When using the MPW command in these two
planes, PPN =24 and PPN =25 in plane 1 will be invalidated.
Therefore, in this case, executing the MPW command invalidates
(and wastes) two free pages.

Similar to the copy-back command, the MPW command can be
used blindly or wisely. In Figure 16, we plot the average response
times and erasure count of the MPW command in the same way as
in Figure 14. In the experiments of this sub-section, the dynamic
allocation scheme exploits MPW/MPR and adheres to the paral-
lelism priority order of channel-level first, plane-level second and
chip-level last. The static scheme s3 performs the best I/O per-
formance when employing MPW/MPR among all the static allo-
cation schemes.

As shown in the upper sub-figure of Figure 16, when employ-
ing the dynamic allocation, using MPW blindly improves average
response time over basic commands. However, a large number of
free pages are invalidated, which leads to more extra erase opera-

103

tions. Note that the benefit of plane-level parallelism outweighs
the loss caused by the extra erase operations. Therefore using
MPW blindly can improve response time under all workloads. On
the other hand, since the condition required for the wise MPW, i.e.,
the target pages executing an MPW must have the same chip, die,
block and page addresses, can rarely be met, the improvement by
the wise MPW is insignificant.

As shown in the bottom sub-figure of Figure 16, when employ-
ing the static allocation, MPW has a similar performance to that in
the dynamic allocation.

We only show the experiment results in an aged SSD because
using MPW blindly will not likely trigger garbage collection and
resulting erase operations.

Insight 6: Using MPW blindly improves the I/O performance
but reduces the endurance under most workloads. The impact of
the wise MPW is negligible because the condition required for its
application can rarely be met.

MPR performs multiple-page read operations in different planes
of the same die simultaneously. When using MPR, Restriction (c)
must be adhered to. In Table 4, we list the performance gains due
to MPR under the dynamic and static allocation schemes, respec-
tively. We found that the performance gains are negligible under a
majority of the workloads. A speedup of only 1.16 is observed for
a two-page MPR command. Moreover, since Ex and Fin1 are
write-dominant workloads, the performance gain due to MPR is
negligible. Since the request size of Fin2 is too small to be striped
onto multiple pages, MPR is not applicable there. Under Web,
Dev and MSN, the performance gains will be higher compared to
other workloads, since these three workloads are read-dominant,
whose request sizes are multiples of a flash page size.

Table 4. The performance gain due to MPR (RS is short for
response time speedup. Baseline is based on basic command alone.)

 Web Dev Fin2 MSN Ex Fin1
Dynamic RS 1.15 1.11 1.02 1.04 1.00 1.00
Static RS 1.09 1.01 1.00 1.01 1.00 1.00

Insight 7：MPR cannot provide significant performance im-
provement, under most workloads. But in the application envi-
ronments whose workloads are read-dominant and comprise of
large reads (i.e., Web, Dev and MSN), using MPR can help im-
prove I/O performance.

In addition to MPW and MPR, the multi-plane command can
also activate multiple erase operations in all planes of the same die.
However, since the extent to which the erase operations are trig-
gered in all planes of the same die at the same time is heavily

dependent on the specific garbage collection algorithm and
weal-leveling algorithm used, which are beyond the scope of this
paper, we will not evaluate the impact due to the multi-plane erase
command independently.

4.3.3 Interleave
The interleave command exploits the parallelism among dies on

the same chip. Pages and blocks from different dies on a chip can
be read/written and erased simultaneously by executing an inter-
leave command. The command is different from other advanced
commands in that only Restriction (a) must be adhered to. There-
fore, there is no endurance loss when using the interleave com-
mand, unlike using other advanced commands.

We plot the performance gain due to the interleave
read/write/erase command as a function of the workloads in Fig-
ure 17, measured in the average response time normalized to that
based on basic commands. In the experiments of this sub-section,
the dynamic allocation scheme exploits the interleave command
and adheres to the parallelism priority order of channel-level first,
die-level second and chip-level last. The static scheme s4 per-
forms the best when employing the interleave command among all
the static allocation schemes.

The results from the figure show that, while the I/O perfor-
mance is improved, SSD endurance is not notably impacted. The
only exceptions are Fin1 and Fin2, where no significant perfor-
mance gains are observed when using the static allocation, since
the request sizes of these two workloads are small, thus depriving
the interleave command the opportunity to be applicable.

Insight 8: The interleave command can help improve the I/O
performance without any endurance degradation. Therefore the
interleave command should be applied under all circumstances.

For the same reason given to the case of the multi-plane erase
command at the end of Section 4.3.2, we will not evaluate the
impact of using the interleave erase command independently. The
interleave command can be combined with MPW and MPR,
which we will discuss next.

4.3.4 The combinations of the three advanced com-
mands

In this sub-section, we employ the three advanced commands
simultaneously, and evaluate their combined impacts on the per-
formance and endurance of SSDs. Based on Insights 5-8, there are
two recommended approaches to using the advanced commands,
namely, (1) use the copy-back command, the MPW command,
and the interleave command wisely (i.e., with matching parity in
addresses) under all circumstances; and (2) use the copy-back

104

command wisely, the MPW command blindly, and the interleave
command ubiquitously.

In Figure 18, we plot the average response time and erasure
count of using advanced commands in the two recommended
ways as a function of workloads, in the same way in which Fig-
ures 14, 16 are plotted. We only display the results of the static
scheme s6 that is shown to achieve the best performance when the
advanced commands are employed. We also only list the experi-
mental results in an aged SSD for the reason discussed earlier.

From the figure, we found that the combined use of advanced
commands based on Approach (2) achieves the best performance
but leads to SSD endurance degradation, while Approach (1)
achieves the less performance gain but without any endurance
loss.

T
he

 n
or

m
al

iz
ed

 a
ve

ra
ge

 re
sp

on
se

 ti
m

e

T
he

 n
or

m
al

iz
ed

 e
ra

su
re

 c
ou

nt

4.4 Priority Order of Parallelism in SSD
As discussed in Section 2.4, there are four levels of parallelism

in SSD, namely, channel-level, chip-level, die-level and
plane-level. To determine the priority order of these levels that
optimizes the performance and endurance of SSD, we first infer
the optimal priority order qualitatively, and then confirm the op-
timality quantitatively by a series of experiments with different
allocation schemes.

Strictly speaking, each read/write operation consists of two
steps, (1) data transfer and (2) reading/writing data from/to the
target page to/from the data register of the plane. The aim of par-
allelism is to overlap or pipeline these two steps. Chip-level par-
allelism, die-level parallelism and plane-level parallelism are ex-
ecuted on the same channel, which share the same channel bus. As
a result, these three levels of parallelism can only overlap or pipe-
line step (2) of an operation. On the other hand, the channel-level
parallelism overlaps not only step (2), but also step (1) of an oper-
ation. Therefore channel-level parallelism should be given the
highest priority among the four levels of parallelism.

Chip-level parallelism renders multiple chips busy. When the
chips on the channel are servicing requests, the subsequent re-
quests cannot be serviced until these chips return to the idle state.
On the other hand, die-level parallelism and plane-level paral-
lelism only involve a single chip, thus making them a higher
priority than the chip-level parallelism.

As shown in Figure 19, to serve a four-page-write request, two
MPW operations are executed when exploiting the plane-level
parallelism. To exploit the die-level parallelism, however, two
interleave write commands are executed. From the figure, we find
that the latter to be superior to the former. Moreover, exploiting
the plane-level parallelism requires the execution of the
MPW/MPR command, which often invalidates free pages. On the
contrary, the interleave command required for exploiting the

die-level parallelism has no such disadvantages. Therefore,
die-level parallelism should be given a higher priority than
plane-level parallelism.

4.4.1 Evaluation of priority order of SSD parallelism
under the dynamic allocation

In this sub-section, we use six different SSDs to conduct a set
of experiments to evaluate the priority order of SSD parallelism.
The configuration parameters of the six SSDs are shown in Table
5.

Table 5. Six kinds of configured SSDs. (A>B in the “Priority”
field signifies that choosing a free page from A is preferred to
choosing one from B. Cl.-Cp.-D.-P. indicates the numbers of
channels in the SSD, chips in a channel, dies in a chip, and planes
in a die, respectively. The “AC” row indicates whether advanced
commands are used (Yes) or not (No))

SSD Cl.-Cp.-D.-P. AC Page Priority
SSD1 8-4-2-2 Yes 2KB chip >die>plane>channel
SSD2 8-4-2-2 Yes 2KB channel> chip>die>plane
SSD3 1-4-2-2 Yes 2KB channel>chip>die>plane
SSD4 1-4-2-2 Yes 2KB channel>die>chip>plane
SSD5 1-4-2-2 Yes 2KB channel>die>plane>chip
SSD6 1-4-2-2 Yes 2KB channel>plane>die>chip

 The hardware organizations of SSD1 and SSD2 (see Table 5)
are different to those of SSD3, SSD4, SSD5 and SSD6, thus we
compare their performance in two separated sub-figures (Figure
20 (a) and Figure 20 (b)). Figure 20 (a) shows that SSD2 outper-
forms SSD1 consistently. In SSD2, we distribute the requests to
different channels. When 8 channels are deployed, steps (1) and (2)
of an operation can be perfectly overlapped under all workloads.
In SSD1, several pages of a request are distributed to some chips
of the same channel, which results in multiple data transfers (i.e.,
step (1)) and one reading/writing flash media (i.e., step (2)). This
explains SSD2’s superiority to SSD1 and confirms quantitatively
that channel-level parallelism should be given the first priority.

Figure 20 (b) shows that SSD4 consistently outperforms SSD3.
While SSD3 prefers the chip-level parallelism to the die-level
parallelism, the reverse is true for SSD4. Thus, when a request
involving two pages is served by SSD3, two chips become busy.
On the contrary, only one chip becomes busy in SSD4, allowing
SSD4 to serve more subsequent requests than SSD3. This con-
firms that the die-level parallelism should be given a higher prior-
ity than the chip-level parallelism.

SSD5 outperforms SSD6 because the former uses an interleave
write operation while the latter employs an MPW operation when
a request that needs to write two pages arrives. Since using MPW
blindly leads to render free pages invalidated, as discussed in Sec-
tion 4.3.2, more erase operations will be triggered in SSD6 than in
SSD5. Therefore, the die-level parallelism must be given a higher
priority than the plane-level parallelism.

SSD5 is superior to SSD4, because a request that needs to
read/write four pages can render two chips busy in SSD4 by ex-
ecuting two consecutive interleave read/write operations. On the
other hand, for the same request only one chip is rendered busy in

105

SSD5 with the execution of a single interleave multi-plane
read/write operation. Therefore, the priority of the chip-level par-
allelism should be the lowest.

T
he

 n
or

m
al

iz
ed

 a
ve

ra
ge

 r
es

po
ns

e
ti

m
e

4.4.2 Evaluation of priority order under the static
allocation

In the experiments of this subsection, we use six SSDs, SSD-s1,
SSD-s2, SSD-s3, SSD-s4, SSD-s5 and SSD-s6, that employ six
different static allocation schemes, s1, s2, s3, s4, s5, s6, as shown
in Figure 11. These six SSDs share the following common confi-
guration parameters: 8 channels in the SSDs, 4 chips in each
channel, 2 dies on each chip, 2 plane on each die, 2048-block
planes on each die, and each block contains 64 2KB pages. All
advanced commands are used. In addition to the six real-world
workloads listed in Table 1, we use a set of synthetic workloads in
our experiments, whose key characteristics are shown in Table 6.

Table 6. The characteristics of synthetic workloads

Workload Write ratio Req. size Interval time
Syn1 100% 16KB 30us (75%)
Syn2 25% 16KB 30us (75%)
Syn3 100% 20KB 200us (75%)
Syn4 25% 20KB 200us(75%)

The performance comparisons of SSD-s1, SSD-s2, SSD-s3,
SSD-s4, SSD-s5 and SSD-s6 are shown in Figure 21. We found
that SSD-s1 performs the worst among all the SSDs. It further
confirms that the channel-level parallelism should be given the
highest priority. With the exception of SSD-s1, all SSDs perform
almost the equal under the real-world workloads. This is because
the request intensities of these workloads are relatively low, which
can be fully served by the channel-level parallelism. Therefore we
use a set of higher-intensity synthetic workloads in our experi-

ments. Under these synthetic workloads, SSD-s6 performs the
best, since the allocation scheme of SSD-s6 is adhered to the
priority order of parallelism inferred at the beginning of Section
4.4.

Insight 9: The optimal priority order of parallelisms in SSD
should be (1) the channel-level parallelism, (2) the die-level par-
allelism, (3) the plane-level parallelism, and (4) the chip-level
parallelism.

5. CONCLUSION
We presented and validated an event-driven, modularly struc-

tured, multi-tiered and high accuracy SSD simulator, called
SSDsim. Through extensive performance analysis conducted on
SSDsim, we obtained important insights into the design and use of
SSDs. Based on these insights, we argue that Flash page sizes,
allocation schemes, advanced commands and the priority order of
SSD parallelisms have significantly important impacts on the
performance and endurance of SSD. More specifically, from the
in-depth evaluations of these features and their interplay, our work
provides the following important insights: (1) to design
high-performance and large-capacity SSDs, the request size and
the percentage of the un-covered update operations of the work-
load must be taken into considerations to choose an appropriate
page size; (2) the static allocation is found to perform the best on
read performance under all workloads. The dynamic allocation
performs the best on overall performance and endurance under the
most of workloads in aged SSDs; (3) there are two recommended
approaches to using the advanced commands, namely, use the
copy-back command, the MPW command, and the interleave
command wisely as well as use the copy-back command wisely,
the MPW command blindly, and the interleave command ubi-
quitously; (4) the optimal priority order of parallelisms in SSD
should be the channel-level parallelism first, the die-level paral-
lelism second, the plane-level parallelism third, and the chip-level
parallelism last.

6. AVAILABILITY
 We intend to release SSDsim source code for public use in the
near future. Please check http://storage.hust.edu.cn/SSDsim to
obtain a copy.

7. ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their construc-

tive comments. This research was partially supported by
the National Basic Research 973 Program of China under Grant N
o. 2011CB302301, 863 project 2009AA01A402, NSFC No.61025
008, 60933002,60873028,60703046, Changjiang innovative group
 of Education of China No. IRT0725, US NSF under Grants
IIS-0916859, CCF-0937993, and CNS-1016609.

8. REFERENCES
[1] A. R. Olson and D. J. Langlois. 2008. Solid State Drives Data

Reliability and Lifetime. White Paper. Imation Corp. http://www.
imation.com/PageFiles/1189/SSD_Gov_DataReliability_WP.pdf

[2] W. Hutsell, J. Bowen and N. Ekker. 2008. Flash Solid State
Disk Reliability. White Paper. Texas Memory Systems.
http://www.ramsan.com/files/f000252.pdf

[3] M-System. Two Technologies Compared: NOR vs NAND. In
white paper, 2003. http://maltiel-consulting.com/Nonvolatile_
Memory_NOR_vs_NAND.pdf

[4] SLV vs. MLC: An Analysis of Flash Memory. In white paper.
Super Talent Technology, Inc. http://www.supertalent.com/
datasheets/SLC_vs_MLC%20whitepaper.pdf

[5] J. Cooke. Introduction to Flash Memory (T1A). Slides. 2008.
http://www.slideshare.net/Flashdomain/introduction-to-flash-m
emory-t1a

106

[6] K. M. Greenan, D. D. E. Long, E. L. Miller, T. Schwarz and A.
Wildani. Building Flexible, Fault-Tolerant Flash-based Storage
Systems. In Proc. of HotDep’09, June 2009.

[7] M. Moshayedi and P Wilkison. Enterprise SSDs. ACM QUEUE.
July/August 2008

[8] C. Dirik and B. Jacob. The Performance of PC Solid-State Disks
(SSDs) as a Function of Bandwidth, Concurrency, Device Archi-
tecture, and System Organization. In Proc. of ISCA’09, June 2009.

[9] A. M. Caulfield, J. Coburn, T. I. Mollov, A. De, A. Akel, J. He, A.
Jagatheesan, R. K. Gupta, A. Snavely and S. Swanson. Under-
standing the Impact of Emerging Non-Volatile Memories on
High-Performance, IO-Intensive Computing. In Proc. of SC’10,
November 2010.

[10] A. Leventhal. Flash Storage Today. ACM QUEUE. Ju-
ly/August 2008.

[11] G. Graefe. The Five-minute Rule Twenty Years Later, and How
Flash Memory Changes the Rules. In Proc. of DaMoN’07. June
15, 2007

[12] A. Gupta, Y. Kim and B. Urgaonkar. DFTL: A Flash Transla-
tion Layer Employing Demand-based Selective of Page-level
Address Mapping. In Proc. of ASPLOS’09. March 7-11, 2009.

[13] Y. Hu, H. Jiang, D. Feng, L. Tian, S. Zhang, J. Liu, W. Tong, Y.
Qin and L. Wang. Achieving Page-Mapping FTL Performance
at Block-Mapping FTL Cost by Hiding Address Translation. In
Proc. of MSST’10. May 3-7, 2010.

[14] J. Shin, Z. Xia, N. Xu, R. Gao, X. Cai, S. Maeng and E. Hsu.
FTL Design Exploration in Reconfigurable High-Performance
SSD for Server Applications. In Proc. of ICS’09, June 2009.

[15] S. Lee, D. Park, T. Chung, D. Lee, S. Park and H. Song. A Log
Buffer-Based Flash Translation Layer Using Fully-Associative
Sector Translation. ACM Transactions on Embedded Compu-
ting Systems, Vol.6, No.3, Article 18, July 2007.

[16] H. Kim and S. Ahn. BPLRU: A Buffer Management Scheme
for Improving Random Writes in Flash Storage. In Proc. of
FAST’08. February 26-29, 2008.

[17] J. Seol, H. Shim, J. Kim and S. Maeng. A buffer replacement
algorithm exploiting multi-chip parallelism in solid state disks.
In Proc. of CASES’09, October 2009.

[18] S. Park, D. Jung, J. Kang, J. Kim and J. Lee. CFLRU: A Replace-
ment Algorithm for Flash Memory. In Proc. of CASES’06, Oc-
tober 2006.

[19] H. Jo, J. Kang, S Park, J. Kim and J. Lee. FAB: Flash-Aware
Buffer Management Policy for Portable Media Players. IEEE
Transaction on Consumer Electronics, Vol.52, No.2, M ay
2006.

[20] F. Chen, D. A. Koufaty and X. Zhang. Understanding Intrinsic
Characteristics and System Implications of Flash Memory
based Solid State Drives. In Proc. of SIGMETRICS
/performance’09. June 15-19, 2009

[21] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E.
Yaakobi, P. H. Siegel and J. K. Wolf. Characterizing Flash
Memory: Anomalies, Observations, and Applications. In Proc.
of MICRO’09. December 12-16, 2009.

[22] S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Mea-
surements and Analysis. In Proc. of FAST’10. February 23-26, 2010.

[23] P. Desnoyers. Empirical Evaluation of NAND Flash Memory
Performance. In Proc. of HotStorage’09, October 2009.

[24] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M.
Manasse and R. Panigrahy. Design Tradeoffs for SSD Perfor-
mance. In Proc. of USENIX’08, June 2008

[25] J. Kang, J. Kim, C. Park, H. Park and J. Lee. A multi-channel
architecture for high-performance and flash-based storage sys-
tem. Jounal of Systems Architecture. 53: 644-658, 2007.

[26] S. Park, E. Seo, J. Shin, S. Maeng and J. Lee. Exploiting
internal parallelism of flash-based SSDs. IEEE Computer Ar-
chitecture Letters. 03-Feb-2010.

[27] S. Park, S. Ha, K. Bang and E. Chuang. Design and analysis of
flash translation layers for multi-channel NAND flash based
storage devices. IEEE Transaction on Consumer Electronics,
Vol.55, No.3, August 2009.

[28] K9XXG08UXA datasheet. http://www.samsung.com/products
/semiconductor/flash/technicallinfo/datasheets.htm.

[29] K9NCG08U5M datasheet. http://www.samsung.com/products
/semiconductor/flash/technicallinfo/datasheets.htm.

[30] Micro MT29F16G08FAA NAND Flash Memory datasheet.
http://www.micron.com//document_download/?documentId=4308

[31] Micro MT29F256G08CUCBB NAND Flash Memory datasheet.
http://www.micron.com//document_download/?documentId=4368

[32] Intel JS29F64G08CAMD1 MD332 NAND Flash Memory
datasheet. http://www.intel.com/design

[33] Toshiba TH58TVG7S2F NAND Flash Memory datasheet.
http://www.toshiba.com/

[34] Hynix H27UCG8U5(D)A Series 64Gb NAND Flash datasheet.
http://www.hynix.com/datasheet/

[35] Microsoft Enterprise Traces. http://iotta.snia.org/traces/list/BlockIO

[36] Application note for nand flash memory (revision 2.0)
http://www.samsung.com/global/business/semiconductor/produ
cts/flash/downloads/applicationnote/app_nand.pdf

[37] Open NAND Flash Interface SpecificaRion. revision2.2.http://onfi.
org/wp-content/uploads/2009/02/ ONFI%202_2%20 Gold.pdf

[38] NAND Flash Performance Improvement Using Internal Data
Move. Technical Note TN-29-15. http://download.micron.com/
pdf/technotes/nand/tn2915.pdf

[39] Using COPYBACK Operations to Maintain Data Integrity in
NAND Devices. Technical Note TN-29-41. http://www.eeta-
sia.com/STATIC/PDF/200903/EEOL_2009MAR02_STOR_A
N_01.pdf?SOURCES=DOWNLOAD

[40] SSD Extension for DiskSim Simulation Environment.
http://research.microsoft.com/en-us/downloads/b41019e2-1d2b
-44d8-b512-ba35ab814cd4/

[41] Y. Kim, B.Tauras, A. Gupta, D. M. Nistor and B. Urgaonkar.
FlashSim: A Simulator for NAND Flash-based Solid-State
Drives. Technical Report CSE-09-008

[42] J. Bucy, J. Schindler, S. W. Schlosser and G. R. Ganger. The
DiskSim Simulation Environment Version 4.0 Reference Ma-
nual. May 2008.

[43] E. Fal and S. Toledo. Algorithms and Data Structures for Flash
Memories. ACM Computing Surveys, Vol.37, No.2, June 2005,
pp.138-163.

[44] T. Chung, D. Park, S. Park, D. Lee, S. Lee and H. Song. System
Software for Flash Memory: A Survey. International Federation
for Information Processing 2006. EUC 2006, LNCS 4096, pp.
394-404. 2006.

[45] UMass Trace Repository. http://traces.cs.umass.edu

[46] Weal-Leveling Techniques in NAND Flash Devices. Technical
Note TN-29-42. http://download.micron.com/pdf/technotes/
nand/tn2942_nand_wear_leveling.pdf

107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

