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Abstract—Due to the relatively low bandwidth of WAN
(Wide Area Network) that supports cloud backup services,
both the backup time and restore time in the cloud backup
environment are in desperate need for reduction to make
cloud backup a practical and affordable service for small
businesses and telecommuters alike. Existing solutions that
employ the deduplication technology for cloud backup services
only focus on removing redundant data from transmission
during backup operations to reduce the backup time, while
paying little attention to the restore time that we argue is an
important aspect and affects the overall quality of service of the
cloud backup services. In this paper, we propose a CAusality-
Based deduplication performance booster for both cloud backup
and restore operations, called CABdedupe, which captures the
causal relationship among chronological versions of datasets
that are processed in multiple backups/restores, to remove the
unmodified data from transmission during not only backup
operations but also restore operations, thus to improve both the
backup and restore performances. CABdedupe is a middleware
that is orthogonal to and can be integrated into any existing
backup system. Our extensive experiments, where we integrate
CABdedupe into two existing backup systems and feed real
world datasets, show that both the backup time and restore
time are significantly reduced, with a reduction ratio of up to
103 : 1.

I. INTRODUCTION

With the increasing popularity of the cloud platform,

cloud backup services have been attracting a great deal

of attention from both industry and academia. Compared

with traditional backup methods, the new “pay-as-you-go”

model in the cloud backup environment provides users

with remote online backup/restore services at a reasonable

performance/cost ratio. This has been received favorably

by telecommuting employees, Remote Office/Branch Offices

(ROBO), and Small and Medium Businesses (SMBs) who

lack sufficient remote backup strategies due to the limited

IT staffs and constrained budgets. Moreover, because most

SMBs focus on their businesses, they do not have the time

or desire to become backup experts. As a result, many SMBs

prefer to outsource their backup/restore tasks, which is well

leveraged by cloud backup services.

In both the traditional backup and cloud backup environ-

ments, there are two critical performance metrics, backup

window (BW) and recovery time objective (RTO), to evaluate

the backup and recovery performances respectively. Backup

window represents the time spent on sending specific

datasets to the backup destination while recovery time objec-

tive denotes the maximum amount of downtime a business

is willing to accept after data disasters. A recent ESG (i.e,

Enterprise Strategy Group) research [1] has indicated that

about 58% of professionals in SMBs can tolerate no more

than four hours of downtime before experiencing significant

adverse effect. This will be a much bigger challenge for

cloud backup services due to the relatively low bandwidth

of WAN (Wide-Area Network) [2] that underpins the cloud

backup platform. For example, it is only able to transmit

or restore about 11.52GB data with the measured network

bandwidth of 800KB/s [3] during a four-hour period, which

is far less than the target amount of restored dataset of

about 100GB [4] in SMBs on average and thus fails to

achieve the RTO of four hours since the recovery is premised

on restoring the required amount of data first. Besides

RTO, abundant data transmission overheads also lengthen

the backup window in cloud backup environments. The

ESG survey indicates that 64% of organizations are under

pressure to reduce backup times and 48% of them need to

reduce recovery times [5]. Therefore, it is important and

critical to adopt network-efficient approaches to the cloud

backup environment to improve both the data backup and

restore (i.e., a critical step for recovery) performances, if

cloud backup as a service is to become practical and cost-

effective.

Recently, data deduplication has emerged as an attractive

lossless compression technology that has been employed

in various network efficient and storage optimization sys-

tems [6], [7], [8], [9]. In cloud backup environments par-

ticularly, many products, such as EMC Avamar [10], Cu-

mulus [3], Asigra [11], Commvault Simpana [12], and etc.,

have adopted the source-side data deduplication technology

to reduce the backup time by removing redundant data

from transmission to backup destinations. However, despite

the critical importance of the restore time in achieving a

reasonable RTO as discussed earlier, much less attention

has been paid to reducing the time spent on restoring data
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from remote backup destinations to the user’s local computer

for cloud recovery. More seriously, Symantec’s annual IT

Disaster Recovery survey [13] in 2009 has observed that

the average cost per hour of downtime is much higher

than ever before, which further stresses the importance of

the data restore time for data recovery operations. Thus

an efficient deduplication approach in that cloud backup

environment must remove the redundant data in not only

backup operations but also restore operations so as to

optimize both the backup and restore performances.
Our preliminary studies (see Section II) have found that a

large amount of redundant data exists among multiple data

backups and restores. Most datasets processed in both data

backups and data restores are evolved from their previous

backed-up versions with relatively minor modifications, in-

sertions or deletions, resulting in most files and data chunks

unchanged in their entirety after backups. By capturing

and preserving this causal relationship among chronological

versions of datasets, it is possible to fast identify which files

have been changed and which data chunks differ among

multiple file versions, thus helping remove the unmodified

data from transmission to significantly reduce the total

transferred dataset in both backup and restore operations.

This reduction in data transmission in turn will help reduce

both the backup time and restore time.
The above observations and analyses motivate us to pro-

pose a CAusality-Based deduplication performance booster

for cloud backup services, called CABdedupe, which cap-

tures and preserves the causal relationship among chrono-

logical versions of datasets in the client site to remove

the redundant data from data transmission for both backup

and restore operations. CABdedupe is a middleware that is

orthogonal to and can be integrated into any existing backup

system and consists of three key functional components, File

Monitor, File List, and File Recipe. File Monitor is a daemon

process working at the file system level in the client site to

monitor the file operations on the protected datasets, while

File List and File Recipe are two data structures that record

the above file operations observed by File Monitor. The

combined functionality of these three components effectively

captures the causal relationship information among multiple

dataset versions, which helps CABdedupe quickly identify

which files and which data chunks have been changed or

remained unchanged, so as to quickly remove the unmodified

data from data transmissions for both backup and restore

operations. Our extensive experiments, with CABdedupe

integrated into two existing backup systems and driven by

real world datasets, show that both the backup time and

restore time are significantly reduced, with a reduction ratio

of up to 103 : 1.
In summary, our proposed CABdedupe scheme for cloud

backup systems provides the following advantages:

• Network bottleneck mitigation. With the help of the

causal relationship among chronological versions of

datasets, CABdedupe exploits the data redundancy

among multiple backups/restores to remove redundant

data from data transmission, thus alleviating the net-

work bottleneck during each backup/restore operation.

• Performance optimization. By reducing the data trans-

mission overheads, the two key performance measures

of backup/restore operations, backup time and restore

time, are both significantly improved.

• Modular configurability. CABdedupe as a middleware

is a performance accelerator to existing backup sys-

tems. It can be implemented as an optional application-

transparent module. The failure of CABdedupe, should

it ever happen, will only cause unmodified data to be

transmitted for backups/restores, but will not disturb

backups/restores themselves or cause their failures.

• Lightweight and flexibility. CABdedupe removes the

redundant data exiting in the same client instead of

across different clients in the cloud, thus alleviating

the load of service provider and supporting switches

to different cloud backup providers.

The rest of this paper is organized as follows. In the

next section we discuss the motivations for our research. In

Section III , we present the system architecture and CABd-

edupe framework. The detailed exploration and exploitation

of the causality information are described in Section IV .

Section V presents our experimental results with real world

datasets. Section V I presents the related work and Section

V II concludes the paper.

II. MOTIVATION

In cloud backup environments, the low bandwidth of

WAN between the source client and backup destination

lengthens both the backup time and restore time. The ESG

research indicates that 39% of organizations that have tried

to run backups over WAN report that both backups and

restores take too long and 31% of them report that the cost of

WAN bandwidth is too high [14]. An alternative way to solve

this problem is to reduce the amount of data transmitted over

WAN to accelerate the backup and restore processes, thus

shortening the backup time and restore time. In this section,

we discuss the causality-induced data redundancy in existing

backup systems that provides a potential opportunity for us

to remove redundant data from data transmission to alleviate

the network bottleneck in the cloud backup environment.

A. Causality-induced Data Redundancy

In backup systems, there are many backed-up versions

of the same dataset stored at the backup destination due

to multiple full and incremental backups. Except for the

initial full backups, the dataset backed up each time is

evolved from its previous backed-up versions with data

modifications. As a result, it is the modified data, rather

than the unmodified data that is already stored at the backup

destination by previous backed-up versions, that is required
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to be transmitted each time. The same is true during the

data restores. Each restore operation takes place after data

corruptions and needs to restore the corrupted dataset to a

previous backed-up version stored at the backup destination.

Just as the dataset backed up each time, the corrupted

dataset requiring restore is evolved from its previous backed-

up versions with data modifications done in users’ local

computers. Thus the data that has not been modified after

backups has no need to be transmitted from the backup

destination. Therefore during either data backup or restore

operations, it is possible to reduce the amount of data

transmitted over WAN by removing from transmission the

unmodified data shared between the current dataset being

processed (i.e., dataset to be backed up or restored each time)

and its previous backed-up versions. The identification and

removal of the unmodified data become the key to improving

both the cloud backup and cloud restore performances .

In what follows, we present the causal connections among

files in multiple versions of the same dataset to reveal

the prevalent existence of unmodified data during each

backup/restore operation.

• Unchanged Files. Either in the directory backups or

directory restores, there are many files kept intact after

their last backups. Policroniades et al. [15] noted that

in real filesystems most accesses to files are read-only,

implying that most files remain unchanged after their

creations. Moreover, Microsoft’s 5-years file metadata

study results [16] also show that a large percentage of

files have not been modified since they were initially

copied onto file systems, and this percentage has grown

from 66% to 76% from 2000 to 2004. A good example

of data corruptions is virus attacks. Some viruses only

attack the files with specific file types, for example, the

“mmc.exe” virus only attacks all the executable files in

the Windows XP operating system. When one directory

is attacked by this kind of viruses, there will be only

a limited number of files infected and most of the rest

will remain unchanged.

• Modified Files. In most cases, the individual files that

require data backups or restores have always been

changed with data modifications, insertions, or dele-

tions after their backups. Nevertheless, given that most

data modifications are concentrated on a small subset of

data blocks in a short time in typical file systems [17],

a lot of unmodified data is likely to exist between the

current file version and its previous one during each

backup/restore operation.

• Deleted Files. Besides the unchanged and modified

files, typically there are some files that have been

deleted after their last backups. For example, some

viruses such as the “Nimaya” virus always deletes

the files with the suffix of “.gho” in their filenames;

users sometimes delete files accidently or deliberately

a Successive three backups at time t1, t2 and t3 

b Restore to the backup point at time t3 from time t4

Backup 

(t1)

Backup 

(t3)

Backup

(t2)

Backup

(t1)

Backup

(t3)

Backup 

(t2)

Restore

(t4)

Figure 1: Successive Backups and Restores Illustrated in

Directed Graphes.

to reclaim space after their backups. Although these

file deletions do not affect the backup operations since

there is no need to back up deleted files, their deletions

force all the deleted files to be transmitted entirely from

the backup destination to the users’ local computers for

data restores.

The three cases described above intuitively describe the

causal relationships among the different versions of the

same dataset in backup/restore scenarios, suggesting that

a large amount of unmodified data can be identified and

removed from transmissions to reduce the total amount of

data transmitted. By capturing these causal relationships

among files in different dataset versions, it is possible to

quickly identify which files and which data chunks have

been changed or remained unmodified, thus removing the

unmodified data from data transmission to improve both

the backup and restore performances in the cloud backup

environment.

B. Mining Data Redundancy

In this subsection, we introduce an alternative data re-

dundancy mining model to analyze the removal of the

unmodified data that exists among multiple backup and

restore operations as mentioned before.

In the following, we first present five key terms that are

used to describe this redundancy mining model.

• St. The size of the dataset that is processed in each

backup or restore operation at time t.

• St1∩St2. The total amount of the unmodified data that

is shared between the two versions of the same dataset

processed at time t1 and at time t2.

• St1∪St2. The total amount of the data that is processed

either at time t1 or at time t2.

• Bt. The amount of the data that needs to be transmitted

for the backup operation at time t.

• Rt. The amount of the data that needs to be transmitted

for the restore operation at time t.

To clearly present the data redundancy mining model, we

use a Directed Graph (DG) to show several successive data

backups and restores of the same dataset in Figure 1.

Figure 1(a) shows three successive backup operations that

run at t1, t2 and t3 (t1 < t2 < t3) respectively, in which the

backup at t1 is the initial full backup of this dataset. After
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removing the unmodified data from these three backups, the

amount of data requiring backup can be expressed as:










Bt1 = St1

Bt2 = St2 − St2 ∩ St1

Bt3 = St3 − (St3 ∩ St1) ∪ (St3 ∩ St2)

(1)

Figure 1(b) shows a successive restore operation at time

t4 after three preceding backups, which tries to restore

the corrupted dataset to the backup point t3. In traditional

restore methods, the dataset at the backup point t3 should be

entirely transmitted so that Rt4 = St3 since no deduplication

approach is employed . Mindful of the causal relationship

among successive backups and restores, we observe that the

data kept intact at t4, after its backup at t3, requires no

restorations, and thus

Rt4 = St3 − St3 ∩ St4 (2)

under the assumption that the data in St3 ∩ St4 will not be

modified during the restore operation. On the other hand,

when the dataset at time t4 cannot be accessed after data

disasters, Rt4 will be equal to St3, similar to that in the

traditional restore methods.

This data redundancy mining model quantifies the amount

of the data that is required to be transmitted for each

backup/restore operation after removing its unmodified data

from transmission. Motivated by this causality-induced data

redundancy existing among multiple backups/ restores, and

combined with the data redundancy mining model, we

propose a causality-based deduplication scheme to improve

both the cloud backup and restore performances, which will

be detailed in the next sections.

III. CABDEDUPE ARCHITECTURE

In this section, we present the system architecture of

CABdedupe and describe how it can be applied to the

existing cloud backup systems. As shown in Figure 2, the

assumed general backup system consists of two software

components: Client and Server. Client, installed on the user’s

local computer, is responsible for sending/retrieving the

backup dataset to/from the backup destination, while Server,

located in service provider’s data center, is responsible for

storing/returning the backed-up dataset from/to Client. To

succinctly illustrate the role of CABdedupe in a backup sys-

tem, we use Backup-Client and Backup-Server to represent

the functionalities of the original client and server modules

in existing backup systems. CABdedupe consists of CAB-

Client and CAB-Server.

A. CAB-Client

CAB-Client is composed of two functional modules, the

Causality-Capture module and Redundancy-Removal mod-

ule. The former, consisting of File Monitor, File List and File

Recipe Store, is responsible for capturing the causal relation-

ships among different files, while the latter is responsible

Client

FR_Put, FR_Get

Server

Redundancy-Removal

CAB-Client

Backup-

Client Backup

Restore

CAB-Server

Backup-

Server

Metadata

Exchange

File  List 

Remote Store

File Recipe

Remote Store

Chunk Index

File Monitor

File  List 
File Recipe 

Store

FL_Put, FL_Get

Causality-Capture

Figure 2: System Architecture.

for removing the unmodified data for each backup/restore

operation with the help of the captured causality information

by the former. Of the components of the Causality-Capture

module, File Monitor is a daemon process that works at

the file system level to keep track of some specific file

operations, including file rename, file create, file delete, and

file-content modification, File List is responsible for logging

these file operations and File Recipe Store is responsible for

saving the file recipes (i.e., the fingerprints of data chunks)

of the backed-up files. These three components collectively

capture the causal relationships among the different files in

multiple backups and restores, as detailed in Section IV.

B. CAB-Server

CAB-Server, with File List Remote Store and File Recipe

Remote Store as its components, stores the file lists and file

recipes sent from CAB-Client, which ensures the availability

of the causality information captured by CAB-Client in

case of CAB-Client’s corruptions. However, due to data

transmission overheads, the file lists and file recipes stored

in CAB-Server are not updated in the same timely fashion

as that stored in CAB-Client.

Another component of CAB-Server, Chunk Index, is

responsible for locating and retrieving the data chunks stored

in CAB-Server for data restores. However, this Chunk Index

component can be excluded from CAB-Server if the original

backup system has exploited the chunk-level deduplication

capability and it’s intended functionality already exists in

Backup-Server.

C. Interface

In this subsection, we describe several interfaces that are

used to integrate CABdedupe into the existing backup sys-

tems as showed in Figure 2. These interfaces are classified

into three categories as follows.

The first interface, with Backup and Restore, is used

to connect CAB-Client with Backup-Client. During each

backup/restore operation, Backup-Client communicates with

CAB-Client through this interface to remove the unmodified

data from transmission by the Redundancy-Removal mod-

ule.

The second interface, with FL Put, FL Get, FR Put and

FR Get, is used to store the file lists and file recipes in CAB-

Server. FL Put and FL Get are used to exchange the file lists
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, while FR Put and FR Get are used for the exchange of

file recipes between CAB-Client and CAB-Server.
The third interface, called Metadata Exchange, is respon-

sible for the communication of chunk metadata information

between CAB-Server and Backup-Server. The metadata in-

formation, including chunk fingerprints, chunk addresses,

chunk lengths, and etc., is used for building chunk index in

CAB-Server during backups and locating the corresponding

data chunks during restores. However, this interface will not

be necessary if there is no Chunk Index in CAB-Server as

described in Section III-B.

D. Redundancy Removal

In CABdedupe, the unmodified data is removed by the

Redundancy-Removal module with the help of the causality

information stored in File List and File Recipe Store, as

follows.
1) Backup: During each backup operation, Backup-Client

communicates with CAB-Client through the following four

steps to remove its unmodified data.

• Step 1. Check File List to find which files have been

modified after their last backup.

• Step 2. For each modified file, check whether the file

metadata and file content have been changed.

• Step 3. If some files have only file metadata modifica-

tions, CAB-Client notifies Backup-Client to only back

up their modified file metadata instead of the whole

file content. Otherwise, the files are chunked by the

Rabin Fingerprints algorithm [18] and each chunk is

named by the SHA-1 hash function [19] to filter out

the unmodified data chunks in the next step.

• Step 4. This step finds and removes the unmodified data

chunks by checking the file recipes of the previously

backed-up versions. After filtering out the unmodified

data chunks, CAB-Client notifies Backup-Client to

back up the remaining modified data chunks to Backup-

Server, and the file recipes of the new backed-up files

versions are saved in File Recipe Store for redundancy

exploitation in future backup/restore operations.

2) Restore: During each restore operation, CABdedupe

takes the following four steps to remove its unmodified data,

similar to the backup operation. The only difference between

the backup and restore operations is that, during each backup

operation, it removes the unmodified data chunks that have

already been stored in Server by previous backups, while

during each restore operation, the redundant data chunks

removed are those kept intact in Client after their last

backups (i.e., one backup point to be restored).

• Step 1. Get the file recipes of all the files in the restored

dataset (i.e., one backed-up version).

• Step 2. For each file in the restored dataset, check File

List to find its current file version existing in Client to

see whether it has been changed or not after its last

backup (i.e., the restored backup point).

• Step 3. If the files are kept intact after their backups,

CAB-Client notifies Backup-Client that these file are

not required to be retrieved from Backup-Server. Oth-

erwise, the files are chunked by the Rabin Fingerprints

algorithm and each chunk is named by the SHA-1 hash

function to find the unmodified data chunks in the next

step.

• Step 4. This step is to find and remove the unmodified

data chunks by checking the file recipes of the files in

the restored dataset. After filtering out these unmod-

ified data chunks, CAB-Client notifies Backup-Client

to retrieve the remaining modified data chunks from

Backup-Server.

IV. EXPLORING AND EXPLOITING CAUSALITY

INFORMATION

In CABdedupe, the causality information among different

files plays a crucial role in removing the redundant data

during the backup/restore operations. In this section, we

present how CABdedupe uses its key components to capture

and leverage the causality information.

A. File Monitor

File Monitor is a daemon process running at the file

system level to monitor the file-system-level system calls

to keep track of some file operations. It is triggered when

the user’s system is bootstrapped and terminated when the

system is shut down. To reduce its overhead, CABdedupe

only captures a small portion of file operations so as to keep

File Monitor idle or lightly loaded during most of the time.

• File set consideration. CABdedupe only focuses on the

directories and files that have been initially fully backed

up, ignoring any other files existing in the same file

system. Moreover, given that most files are small and

holding a very small amount of data in typical file

systems[16], CABdedupe excludes these small files to

further reduce the size of the file set.

• File operation consideration. CABdedupe only captures

the first file write operation after each backup, to track

whether the files (i.e., including file metadata and file

content) have been modified, ignoring all the other file

write and read operations. At the same time, two other

special file operations, file rename (i.e., file content

is not changed) and file delete, are also captured by

CABdedupe to track the data redundancy presented in

Section II. For the file deletions, CABdedupe renames

the deleted files and makes them only visible to CAB-

Client, thus to prevent them from actual deletions in

case of later file restores. However, restricted by the

available storage space in Client, not all the files can be

prevented from file deletions forever. When the space

usage reaches a pre-set limit, CABdedupe uses a FIFO

(First In First Out) replacement algorithm to reclaim

the used space.
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B. File List

File List (FL) is a table that is used to record the file

operations captured by File Monitor. Table I depicts its four

entries with an example.

• Last Backup Time. The time when the file was the most

recently backed up.

• Modification Flag. This flag indicates the files’ modifi-

cation status after their last backups, including file cre-

ate, file rename, file delete, file-metadata modification

and file-content modification. Note that the status of

some successive modifications may be overlapped. For

example, a file create operation creates both its meta-

data and content, thus resulting in both file-metadata

modification and file-content modification.

• Original File Name and New File Name. These two

entries are used to keep track of the file rename opera-

tions. The Original File Name represents the original

name by which the file is backed up and the New

File Name denotes the new file name after the rename

operations.

The above four entries describe the causality information

that is stored in File List. During each backup/restore

operation, CABdedupe checks File List to find the files

that have been modified since the most recent backups.

In order to limit the size of File List so as to accelerate

this search process, CABdedupe excludes the small files

along with their file operations as discussed in Section IV-A.

In our experiments, we observed that 86.7% of files are

smaller than 8KB during directory backups/restores, but

these small files only occupy 2.6% of the total storage

space. By excluding those files smaller than 8KB from

the CABdedupe process, it can remove 86.7% of the files

that the Causality-Capture module must otherwise consider

while only failing to eliminate 0.54% of the redundant

data. Moreover, CABdedupe can use the FIFO or LRU

replacement algorithms, or delete the outdated entries in File

List to further restrict the growth of its size.

Table I shows one example of File List that contains all

of the file operations, including file create, file rename, file

delete, file-metadata modification and file-content modifica-

tion, which CABdedupe mainly focuses on. In this table,

the files “/home/file/1.txt” and “/home/file/2.txt” has been

modified, file “/home/file/3.txt” has been renamed to file

“/home/data/3.txt”, file “/home/file/4.txt” has been deleted

and file “/home/file/5.txt” has been created after the backup

of directory “/home” at 15:07:34 on January 13, 2010.

During the next backup, the modified file metadata and file

content of the files “/home/file/1.txt” and “/home/file/5.txt”,

must be backed up, while for the files “/home/file/2.txt”

and “/home/file/3.txt”, only their modified file metadata is

needed to be backed up. During the next restore operation

(i.e., restored to the backup point at 15:07:34 on January 13,

2010), for the files “/home/file/1.txt” and “/home/file/2.txt”,

File Metadata:

File Name: /home/file/1.txt

Backup Time: 2010-01-13 15:07:34

Metadata Chunk: 8d7ks20t82

Data Chunks List (Chunk Fingerpint, Chunk 

Size(Bytes)):

8616ef68Ac…, 16186

eb59eb2363…, 6455

612e7a35Ba…, 7735

5737588Aae…, 12340

03872e1Dcc…, 7807

Figure 3: An example of file recipe.

it is required to retrieve their file metadata and file content

from the backup destination, while for files “/home/file/3.txt”

and “/home/file/4.txt”, it is only required to rename them.

So according to the causality information stored in File

List, CABdedupe can easily find out which files have been

modified after their most recent backups.

C. File Recipe Store

File Recipe Store is a container used to store the file

recipes. As showed in Figure 3, each file recipe consists of

two parts, the file metadata and data chunk list. The former

contains file name, file backup time and metadata chunk

fingerprint, while the latter includes the chunk fingerprints

and chunk sizes of all the data chunks that constitute a

specific file. With the help of these file recipes, CABdedupe

can easily locate the unmodified data chunks to be removed

from transmission for each backup/restore operation (see

Section III-D).

D. Causality Information Consistency

During each backup/restore operation, CABdedupe relies

heavily on the causality information that is stored in File List

and File Recipe Store to identify and remove unmodified

data chunks. Therefore, CABdedupe must ensure that the

causality information stored in File List and File Recipe

Store is consistent with that actually existing among the

datasets from multiple backups/restores. The inconsistency

of this information can lead to false positives in that unmod-

ified data is regarded as modified data or false negatives in

that modified data is regarded as unmodified data. Although

the false positives can not affect the routine backups/restores

but only degrade the effectiveness of CABdedupe, the false

negatives can mislead the routine backups/restores to skip

the backups or restores of some modified data chunks.

To avoid this problem, CABdedupe only stores the con-

sistent causality information to File List and File Recipe

Store in CAB-Client. After each backup/restore operation,

CABdedupe buffers and accumulates the newly captured
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Table I: An example of file list.
Original File Name Revised File Name Modification Flag Last Backup Time

... ... ... ...
/home/file/1.txt —— MetaModify|ContentModify 2010-01-13 15:07:34
/home/file/2.txt —— MetaModify 2010-01-13 15:07:34
/home/file/3.txt /home/data/3.txt Rename|MetaModify 2010-01-13 15:07:34
/home/file/4.txt /home/delete/home-file-4.tmp Delete 2010-01-13 15:07:34

—— /home/file/5.txt Create|MetaModify|ContentModify 2010-01-13 15:07:34
... ... ... ...

causality information until the next backup/restore operation,

thus ensuring that the captured information among these

two backups/restores is accurate and consistent. Moreover,

CABdedupe stores this consistent causality information in

both CAB-Server and CAB-Client. When the causality

information stored in CAB-Client is corrupt, CABdedupe

retrieves the same information from CAB-Server and re-

builds File List and File Recipe Store to improve the next

backup/restore performance. However, due to the lack of the

new causal relationship between the dataset processed in the

next backup/restore and its previous backed-up versions in

the newly built File List and File Recipe Store, CABdedupe

must scan the file system to find the unmodified data

chunks for the optimization of the next backup/restore oper-

ation. This detailed process, and the detailed maintenance

of the causality information consistency implemented by

CABdedupe, are both omitted in this paper due to space

constraints.

V. PERFORMANCE EVALUATIONS

We have built our prototype systems and fed real-world

data sets to evaluate CABdedupe’s performance. The goal

is to answer the following questions.

• How much redundant data can CABdedupe remove for

each backup/restore operation?

• How effective is CABdedupe in reducing the backup

time and restore time?

• How much overhead does CABdedupe introduce?

A. Experimental Setup

1) Prototype Systems: We have integrated CABdedupe

into two existing backup systems.

• Cumulus. Cumulus is a cloud backup system [3] that

exploits the source-side chunk-level deduplication ap-

proach to remove the redundant data from transmission

for backup operations while ignoring the restore oper-

ations. We select it as a baseline system to assess how

effective CABdedupe is in optimizing the backup/restore

performances of an existing cloud backup system that

already exploits the data deduplication technology. We

denote the prototype system of Cumulus integrated with

our CABdedupe as Cumulus+CAB. Cumulus+CAB

has inherited all the intrinsic characteristics of Cumu-

lus, such as supporting switches to different storage

providers by storing CABdedupe’s file lists and file

recipes in normal files in providers’ sites.

Table II: Key Statistics of One Author’s Home Directory.
Duration 31 days

Entries 31647

Files 28837

The Status of The Average(File Size) 314.5KB
Dataset on The 31st Day Median(File Size) 43.1KB

Maximum(File Size) 253.6MB
Total(File Size) 9.07GB

Average Update Rates

New data/day 12.9MB
Changed data/day 39.7MB

Total data/day 52.6MB

• MBacula. As its name implies, MBacula is devel-

oped based on an open-source backup software called

“Bacula” [20] with some modifications to Bacula (ver-

sion 2.0.3), such as the data layout optimization, im-

proving the flow control of backups/restores, and etc.

However, MBacula does not exploit the deduplication

technology to optimize both the backup and restore

performances. We select it as another baseline system

to assess how effective CABdedupe is in optimizing

the backup/restore performances of an existing backup

systems that does not exploit the data deduplication

technology. We call the prototype system of MBacula

integrated with our CABdedupe as MBacula+CAB.

In MBacula+CAB, CABdedupe’s components, such as

File List, File Recipe Store, Chunk Index, and etc., are

implemented in a database form for fast queries and

retrievals of the causality information.

In these prototype systems, each client or server machine

is featured with two-socket dual-core 2.1GHz CPUs, a total

of 2GB memory, 1 Gbps NIC cards, and a 500GB hard drive.

2) Datasets: We report the experimental results based

on three datasets with different characteristics. The first

dataset, used to evaluate the directory backups/restores, is

the full backups of one author’s home directory lasting for

one month, totaling about 275.17GB data. Its key statistics

is showed in Table II. The other two datasets, a database

file generated in MBacula and a tar file of Linux source

tree, both have five backed-up versions as described in Table

III, which are used to evaluate the restore performances of

individual files.

B. Restore Performance

In this subsection, we show both the directory restore

performance and individual file restore performance sepa-

rately to analyze the impact of the restore optimizations by

CABdedupe. However, because it is hard to trigger realistic
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data disasters, we inject data corruptions by developing

a program that randomly selects some files to apply the

file rename operations, file modifications (including data

insertion, deletion and modification) and file deletions to

the last version of the dataset to simulate data disasters, so

that the restore operations are invoked to restore the datasets

to their previous backed-up versions to show the restore

performances. While we realize that these are contrived data

disasters, we have not been able to find a better way to

simulate/emulate real-world disasters.

1) Single Directory Restore Performance: We use the

datasets of 31 full backups of one author’s home direc-

tory(i.e., not the whole file system) to evaluate the directory

restore performance. There are a total of 30 simulated data

restore operations by restoring this directory on the 31st day

to its previous backed-up versions on the 1st day, 2nd day,

3rd day, ..., 30th day.

Figure 4 shows the amount of the redundant data removed

and the corresponding transfer cost reduced by CABdedupe

during each of these 30 data restores. We adopt the transfer

prices set for Amazon S3 in April 2010 as the pricing

criteria, at about 0.15 dollars per GB [21]. As shown in

this figure, the amount of the removed data during each

restore is gradually increasing as the restored backup point

approaches the 31st day, implying that more data transfer

cost can be reduced when restoring the directory to the more

recent backup points.

To more accurately quantify the optimizations of the

directory restore performance , we focus on the restore

operation that restores the home directory on the 31st day

to its backed-up version on the 30th day. During this

restore operation, the redundant data that can be removed

by CABdedupe is about 8.93GB, and the transfer costs that

can be reduced by Cumulus+CAB and MBacual+CAB are

about $1.34 and $1.32 respectively. From these results, we

find that the reduced transfer cost by MBacual+CAB is

proportional to the amount of the removed redundant data

by CABdedupe. But this is not the case for Cumulus+CAB.

This is because Cumulus+CAB groups many data chunks

into one segment as a file stored in service provider’s site as

Cumulus does, and, as a result, retrieving a single data chunk

requires the retrieval of the entire segment, followed by the

extraction of the required data chunk from the segment. This

results in many irrelevant data chunks being transmitted by

Cumulus+CAB. We set the segment size to 16MB in both

Cumulus+CAB and Cumulus.

Figure 5 compares the restore times of MBacula and

MBacula+CAB, Cumulus and Cmulus+CAB, where we

simulate a network environment with different network

bandwidths: 800KB/s, 1MB/s, 2MB/s, 4MB/s, 8MB/s. As

the figure shows, both Cmulus+CAB and MBacula+CAB

significantly reduce the restore times of their respective

original (CAB-less) backup systems, in particular with a

reduction ratio of 61.9 : 1 by MBacula+CAB under the

Table III: The file sizes of the five backed-up versions of

the database file and tar file.

File Version
File Size(MB)

Database File Tar File

1st version 6.06 294.06

2nd version 7.62 353.21

3rd version 8.38 365.83

4th version 9.32 382.42

5th version 10.07 394.91

network bandwidth of 800KB/s. This is because, during

directory restores, most of the files are kept intact after

their backups that require no data transmission, given that

most data writes are centered on a small subset of files in

typical file systems [15]. On the other hand, due to the

transmission of many irrelevant data chunks by Cumulus

and Cumulus+CAB, the restore times of both Cumulus

and Cumulus+CAB are longer than that of MBacula and

MBacula+CAB.

2) Individual File Restore Performance: Besides direc-

tory restores, the restore of individual files is another

common restore operation in cloud backup environments.

In most cases, the individual file restore happens when

the file in the client site is changed or deleted, which is

different from the directory restore where many files are

kept intact after their backups. Thus during individual file

restore operations, the amount of redundant data that can be

removed is much less than that in directory restores. In our

experiments, we select a database file generated in MBacula

and a tar file of the Linux source tree as our datasets to show

the individual file restore performances. Both the database

and tar files have five backed-up versions as descried in

Table III. We simulate four restore operations by restoring

the 5th file version to the 1st, 2nd, ..., and 4th file version

for each of the two files.

Table IV shows the amount of the redundant data removed

during each restore operation. Similar to directory restores,

the amount of the redundant data removed by CABdedupe

increases as the file version approaches the 5th version.

However, this common trend observed in both the direc-

tory restores and the individual file restores should not be

regarded as a rule since the amount of this redundant data

is heavily dependent on the amount of data modifications to

each specific dataset.

Table V compares the amount of the data required to be

transmitted by MBacula+CAB and Cumulus+CAB during

those restores presented in Table IV. From these results,

we find that Cumulus+CAB transmits much more data than

MBacula+CAB, especially in the restores of the database

file. This is because in Cumulus+CAB, each backed-up

version of the database file is smaller than 16MB, and each

time we have grouped all the data chunks in one file stored in

the service provider’s site, thus resulting in no data reduction

since any restore must retrieve the entire database file.

Figure 6 compares the restore times of MBacula and
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Figure 4: The amount of the redundant data

removed and the corresponding transfer cost

reduced by CABdedupe during each of the

30 restores.
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Figure 5: The comparison of the directory restore times of MBacula and

MBacula+CAB, Cumulus and Cmulus+CAB for restoring one author’s

home directory on the 31st day to its backed-up version on the 30th day.
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Figure 6: The comparison of the individual file restore times of MBacula

and MBacula+CAB, Cumulus and Cmulus+CAB for restoring the 5th

version of the tar file to its 1st, 2nd , ..., and 4th version.

Table IV: The amount of the redundant data

removed from transmission by CABdedupe

during the individual file restore operations

for restoring the 5th versions of database

and tar files to their 1st, 2nd , ..., 4th

versions.
File Version Database File Tar File

1st version 6.05MB 37.05MB

2nd version 7.6MB 63.28MB
3rd version 8.37MB 77.75MB
4th version 9.3MB 105.4MB

Table V: The amount of the data transmitted by MBacula+CAB and Cumulus+CAB during the individual file restores for

restoring the 5th versions of database and tar files to their 1st, 2nd , ..., 4th versions.
Database File (MB) Tar File (MB)

MBacula+CAB Cumulus+CAB MBacula+CAB Cumulus+CAB

1st version 0.01 6.06 257.1 289.1

2nd version 0.02 7.62 290.08 322

3rd version 0.01 8.38 288.16 320.16

4th version 0.02 9.32 277.11 321.12

MBacula+CAB, Cumulus and Cumulus+CAB when restor-

ing the 5th version of the tar file to its 1st, 2nd, ..., and

4th version respectively under the network bandwidth of

800KB/s. This figure reveals that MBacula+CAB incurs 27%

less restore time than MBacula, whereas the restore time of

Cumulus+CAB is only 12% less than that of Cumulus due

to the backup format stored in the service provider’s site as

described in above sections.

C. Backup Performance

Figure 7 shows the amount of the cumulative redundant

data removed by CABdedupe during these 31 backups.

As shown in this figure, the cumulative data required to

be backed up is about 275.17GB. After the CABdedupe

processing, the cumulative data actually backed up is only

10.26GB, achieving a compression ratio of 26.82. The

cumulative reduced storage cost by CABdedupe is about

39.74 dollars, calculated based on the storage service prices

set for Amazon S3 [21] in April 2010, at about $0.15 per

GB per month.

To quantify the optimizations of backup performances

by CABdedupe, we focus on the last backup of the home

directory on the 31st day and report the backup times of

MBacula and MBacula+CAB, Cumulus and Cumulus+CAB

in Figure 8. We simulate a network environment with differ-

ent network bandwidths: 800KB/s, 1MB/s, 2MB/s, 4MB/s,

8MB/s. From these results, we find that MBacula+CAB

significantly reduces the backup times of MBacula, with a

reduction ratio of up to 1031. However, the backup times

of Cumulus+CAB are only about 1.4% less than those of

Cumulus. This is because, before integrating CABdedupe,

Cumulus has already exploited the source-side deduplication

technology to remove the redundant data among different

file versions to improve the backup performance, resulting

in very limited room for Cumulus+CAB to improve by

additionally considering the file rename operations and file

copy operations.
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Figure 7: The comparison of the cumulative

data before and after CABdedupe during the

31 backups of one author’s home directory.
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Figure 8: The comparison of the backup times of MBacula and MBac-

ula+CAB, Cumulus and Cmulus+CAB during the last backup of one

author’s home directory on the 31st day.

D. Discussions

File Monitor’s Overheads. File Monitor starts when the

system is bootstrapped and terminates when the system

is shut down. In CABdedupe, by restricting the number

of the processed file operations and keeping File Monitor

idle during most of the time (see Section IV-A), we find

that CABdedupe imposes only 1.45% of computation and

memory overheads on average.

Storage Overheads. CABdedupe needs to store the causal-

ity information in File List and File Recipe Store in the

client’s machine for fast identifying and removing the un-

modified data during each backup/restore operation. In our

experiments where we protect 9.07GB data by 31 backups,

File List and File Recipe Store occupy only 1.76MB and

47.01MB storage space respectively, amounting to about

0.52% of the 9.07GB protected data.

Restore Cases. The restoration cases can be classified

into three categories, the full file-system restore, the single

directory restore, and the individual file restore. To the

first restore case when the file system is destroyed by site

disasters or hardware failures, the whole file system must be

retrieved in their entirety from the remote backup destina-

tion. But if the file system is corrupted by software failures

or viruses attacks, there may be only a small portion of files

or data chunks that need to be transmitted with the help of

CABdedupe. While for the secondary restore case as long

as the directory has not been entirely deleted, CABdedupe

can fast find the unmodified files or data chunks to avoid

their data transmission, which eases the searching burden of

the users especially by facing the directories including tens

of thousands of files or even more files. In the last restore

case of the individual file restoration, the gain obtained by

CABdedupe is limited by the size of the unmodified data,

unless there is a very big file with only a few data chunks

modified. In summary, CABdedupe has the advantages of

fast identifying the unmodified data for restorations to reduce

the restore times, which avoids the human operations and

further eases the users’ burden especially on the restoration

of full file-systems and directories when the unmodified data

is available and accessible.

Data Loss. There are many incidents causing data loss and

triggering data restorations. The 2010 data loss survey [22]

carried out by Cibecs Company classifies these incidents

into seven categories, including theft, negligence, hardware

failure, software failure, technical incompetence, viruses and

others. Its survey report pointed out that “39% of data losses

are ascribed to hardware and software failures, 34% of losses

are attributed to negligence and theft, 23% of data losses

are caused by viruses and technical incompetence” [22].

Observed from these incidents indicated by the report, we

argue that the unmodified data can be accessible when

the 23% of data loss is caused by viruses and technical

incompetence [22] and even sometime when the 11% of

data loss is caused by software failures [22]. Under such

restore scenarios, it is possible for CABdedupe to remove

the unmodified data from transmission to reduce the restore

time. For other restore scenarios when all of the data in

users’ local computers is destroyed, CABdedupe has little

benefit and all the restore data must be entirely transmitted.

Nevertheless, CABdedupe is a very simple scheme run-

ning in the users’ local computers and outperforms other

deduplication approaches by combing the cloud backup and

cloud restore optimizations together by sharing the same

architecture. Furthermore, CABdedupe is not designed to

replace the existing deduplication approaches in backup

systems; it is only a middleware that is orthogonal to and

can be integrated into any existing backup system (i.e.,

regardless whether exploiting the deduplication approach)

to relieve the data transmission overheads . Its failure will

not affect the normal backup and restore operations.

VI. RELATED WORK

One serious challenge cloud backup services face is

the low bandwidth of WAN that connects end users and

service providers, which lengthens both the backup time

and restore time when a large amount of data is involved.

Existing cloud backup systems such as Commvault [12],

EMC Avamar [10], Cumulus [3], Asigra [11], and etc.,

have all adopted the source-side deduplication technology

to remove the redundant data from transmission to improve
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backup performances. However, the problem encountered by

data restore operations over the low bandwidth network has

by and large been overlooked by these existing cloud backup

systems. The existing cloud recovery solutions either build

complete servers in the client site to transmit and restore the

data locally over high bandwidth network [10], build virtual

servers in service providers’site to shift the operations and

businesses to provider’s servers after disasters [11], or ship

the data from service providers to users by vehicles avoiding

Internet transmission [11]. All of these approaches cost

much more financially than directly transmitting the data

over Internet especially in some restore cases the restore time

can be significantly reduced by removing the unmodified

data like CABdedupe does.

A rich body of previous research has addressed the

problem of data transmission over low-bandwidth networks

in other applications. Rsync [23] is an early study that

attempts to reduce the transmission of the redundant data

that is already stored in the server. Unfortunately, it only

focuses on the redundant data among files with identical

file names, without concerning the redundant data across

different files. Unlike Rsync, LBFS [6] exploits the data

redundancy among all the files using a content defined

chunking (CDC) algorithm, which removes all the redundant

data at the chunk level to improve the network file system

performances. TAPER [24] is a scalable data replication

protocol that provides a four-phased redundancy elimination

scheme to balance the tradeoff between network bandwidth

savings and computation overheads. Besides these three

methods, other approaches [25], [26] used in distributed

file systems also address this transmission problem, such

as the recipe technique used in [27], the lookaside caching

technique used in [28], and etc.. They all try to fetch data

from nearby providers or mobile devices locally, instead of

retrieving from remote severs. However, they are all not

designed specially for backup systems and have limited

effectiveness in cloud backup service environment.

Most of the existing deduplication approaches employed

in backup and archival systems heavily depend on a large

chunk index stored in servers to find and locate the redundant

data chunks [7], [9], [29]. Many researchers have reported

that it incurs heavy overheads in terms of increased latency

and reduced throughput and thus addressed it in many differ-

ent ways, such as DDFS [8] and Sparse Index [30] exploiting

the chunk locality, Extreme Binning [31] adopting the file

similarity, and Cumulus [3] narrowing the search space of

redundant data chunks. However, all of the deduplication

researchers have not tried their best to address the net-

work efficiency problem for data restore operations. To our

best knowledge, our CABdedupe is the first deduplication

scheme trying to address this problem from both angles of

data backup and data restore over WAN in cloud backup

environments. CABdedupe uses the causality information

among dataset versions in the source client, instead of a

large chunk index, to identify and remove the redundant

data from transmission for not only backup but also restore

operations. The causality information is widely used by file

system designers for a variety of different purposes [32],

[33]. For example, Taser [34] uses it to identify files tainted

by intrusions, BackTracker [35] captures it to analyze intru-

sions, and [36] uses it to enhance personal search capability.

In addition to the deduplication technology employed in

the cloud backup environment, the wide area data services

(WDS), such as Riverbed [37], can also be leveraged to

remove the redundant data from transmission over WAN to

alleviate the network bottleneck. However, due to the fact

that CABdedupe is specially designed for backup/restore

workloads at the application level, we argue that CABdedupe

is more effective than WDS-based approaches. Moreover,

CABdedupe, as a middleware that is orthogonal to and can

be integrated into any existing backup system, is also capable

of accelerating the performance of any existing cloud backup

system that is based on the WDS approaches.

VII. CONCLUSION

Based on the observations that both the backup time and

restore time in the cloud backup environment are too high

for small businesses and telecommuters alike due to the

relatively low WAN bandwidth, and the existing solutions

that use the deduplication technology only focus on the

reduction of backup time while ignoring the restore time,

we propose CABdedupe, a causality-based deduplication

performance booster for both cloud backup and cloud re-

store operations. CABdedupe first captures and preserves

the causal relationship among chronological versions of

datasets using three key components, File Monitor, File List,

and File Recipe, and then exploits this captured causality

information to fast identify which files and data chunks

have been changed or remained unchanged, thus enabling

the removal of the unmodified data from transmission for

each backup/restore operation to improve backup/restore

performance. CABdedupe is a middleware that is orthogonal

to and can be integrated into any existing backup system.

Our extensive experiments with CABdedupe integrated into

two existing backup systems and driven by real world

datasets show that both the backup time and restore time

are significantly reduced, with a reduction ratio of up to

103 : 1.
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