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Abstract

Data Deduplication is becoming increasingly popular in
storage systems as a space-efficient approach to data
backup and archiving. Most existing state-of-the-art
deduplication methods are either locality based or sim-
ilarity based, which, according to our analysis, do not
work adequately in many situations. While the former
produces poor deduplication throughput when there is
little or no locality in datasets, the latter can fail to iden-
tify and thus remove significant amounts of redundant
data when there is a lack of similarity among files. In this
paper, we present SiLo, a near-exact deduplication sys-
tem that effectively and complementarily exploits sim-
ilarity and locality to achieve high duplicate elimina-
tion and throughput at extremely low RAM overheads.
The main idea behind SiLo is to expose and exploit
more similarity by grouping strongly correlated small
files into a segment and segmenting large files, and to
leverage locality in the backup stream by grouping con-
tiguous segments into blocks to capture similar and du-
plicate data missed by the probabilistic similarity detec-
tion. By judiciously enhancing similarity through the ex-
ploitation of locality and vice versa, the SiLo approach
is able to significantly reduce RAM usage for index-
lookup and maintain a very high deduplication through-
put. Our experimental evaluation of SiLo based on real-
world datasets shows that the SiLo system consistently
and significantly outperforms two existing state-of-the-
art system, one based on similarity and the other based
on locality, under various workload conditions.

1 Introduction

As the amount of the important data that needs to be
digitally stored grows explosively to a worldwide stor-
age crisis, data deduplication, a space-efficient method,
has gained increasing attention and popularity in data
storage. It splits files into multiple chunks that are

each uniquely identified by a 20-byte SHA-1 hash sig-
nature, also called a fingerprint [21]. It removes dupli-
cate chunks by checking their fingerprints, which avoids
a byte-by-byte comparison. Data deduplication not only
reduces the storage space overheads, but also minimizes
the network transmission of redundant data in the net-
work storage system [19].

One of the main challenges for centralized backup
services based on deduplication is the scalability of
fingerprint-index search. For example, to backup a
dataset of 800TB and assuming an average chunk size
of 8KB, at least 2TB of fingerprints have to be generated,
which will be too large to be stored in the memory. Since
the access to on-disk index is at least 1000 times slower
than that to RAM, the frequent accesses to on-disk fin-
gerprints are not acceptable for backup services and have
become the main performance bottleneck of such dedu-
plication systems.

Most of the existing solutions aim to make the full
use of RAM, by putting the hot fingerprints into RAM
to minimize accesses to on-disk index and improve the
throughput of deduplication. There are two primary ap-
proaches to scaling data deduplication: locality based
acceleration of deduplication, and similarity based dedu-
plication. Locality-based approaches exploit the inherent
locality in a backup stream, which is widely used in state-
of-the-art deduplication systems such as DDFS [26] and
ChunkStash [8]. Locality in this context means that the
chunks of a backup stream will appear in approximately
the same order in each full backup with a high proba-
bility. Exploitation of this locality increases the RAM
utilization and reduces the accesses to on-disk index,
thus alleviating the disk bottleneck. Similarity-based ap-
proaches are designed to address the problem encoun-
tered by locality-based approaches in backup streams
that either lack or have very weak locality (e.g., incre-
mental backups). They exploit data similarity instead
of locality in a backup stream, and reduce the RAM us-
age by extracting similar characteristics from the backup



stream. A well-known similarity-based approach is Ex-
treme Binning [3] that exploits the file similarity to
achieve a single on-disk index access for chunk lookup
per file.

While these scaling approaches have significantly alle-
viated the disk bottleneck in data deduplication, there are
still substantial limitations that prevent them from reach-
ing the peta- or exa-scale, as explained below. Based
on our analysis of experimental results, we find that
in general a locality-based deduplication approach per-
forms very poorly when the backup stream lacks locality
while a similarity-based approach underperforms for a
backup stream with a weak similarity. Unfortunately, the
backup data in practice are quite complicated in how or
whether locality/similarity is exhibited. In fact, DDFS is
shown to run very slowly in backup streams with little
or no locality (e.g., when users only do the incremen-
tal backup). On the other hand, the similarity-based Ex-
treme Binning approach is shown to fail to find signifi-
cant amount of duplicate data in datasets with little or no
file similarity (e.g., when the files are edited frequently).
Fortunately, our preliminary study indicates that the ju-
dicious exploitation of locality can compensate for the
lack of similarity in datasets, and vice versa. In other
words, both locality and similarity can be complemen-
tary to each other, and can be jointly exploited to improve
the overall performance of deduplication.

To this end, we propose SiLo, a scalable and low-
overhead near-exact deduplication system, to overcome
the aforementioned shortcomings of existing state-of-
the-art schemes. The main idea of SiLo is to consider
both similarity and locality in the backup stream simul-
taneously. Specifically, we expose and exploit more sim-
ilarity by grouping strongly correlated small files into a
segment and segmenting large files, and leverage locality
in the backup stream by grouping contiguous segments
into blocks to capture similar and duplicate data missed
by the probabilistic similarity detection. The main con-
tributions of this paper include:

• SiLo proposes a new similarity algorithm that
groups many small strongly-correlated files into a
segment or segments a large file to better expose and
exploit their similarity characteristics. This group-
ing of small files results in much smaller similar-
ity index for segments than chunk index, which can
easily fit into RAM for a much larger dataset. The
segmenting of large files can expose and thus ex-
tract more similarity characteristics so as to remove
duplicate data with a higher probability.

• SiLo proposes an effective approach to mining the
locality characteristics to capture similar and dupli-
cate data missed by the probabilistic similarity de-
tection by grouping multiple contiguous segments

into a block, the basic cache and write-buffer unit,
while preserving the spatial locality inherent in the
backup stream on the disk. By keeping the similar-
ity index and preserving spatial locality of backup
streams in RAM (i.e., hash table and locality cache),
SiLo is able to remove large amounts of redun-
dant data, dramatically reduce the numbers of ac-
cesses to on-disk index, and substantially increase
the RAM utilization.

• Our experimental evaluation of SiLo, based on real-
world datasets, shows that the SiLo system con-
sistently and significantly outperforms two exist-
ing state-of-the-art systems, the similarity-based
Extreme Binning system and the locality-based
ChunkStash system, under various workload con-
ditions. According to our evaluations on du-
plicate elimination, SiLo can remove 1%∼28%
more redundant data than Extreme Binning and
only 0.1%∼1% less than the exact-deduplicating
ChunkStash. Our evaluations on deduplication
throughput (MB/sec) suggest that SiLo outperforms
ChunkStash by a factor of about 3 and Extreme Bin-
ning by a factor of about 1.5. On the RAM utiliza-
tion for the same datasets, SiLo consumes a RAM
capacity that is only 1/41∼1/60 and 1/3∼1/90 re-
spectively of that consumed by ChunkStash and Ex-
treme Binning.

The rest of the paper is organized as follow. Section
2 presents background and motivation for this research.
Section 3 describes the architecture and the design of the
SiLo system. Section 4 presents our experimental eval-
uation of SiLo and discusses the results, including the
comparisons with the state-of-the-art ChunkStash and
Extreme Binning systems. Section 5 gives an overview
of related work, and Section 6 draws conclusions and
outlines future work.

2 Background and Motivation

In this section, we first provide the necessary background
for our SiLo research by introducing the existing acceler-
ation approaches for data deduplication, and then moti-
vate our research by analyzing our observations based on
extensive experiments on locality- and similarity-based
deduplication acceleration approaches under real-word
workloads.

2.1 Deduplication Acceleration Ap-
proaches

Previous studies have shown that the main challenge fac-
ing data deduplication lies in the on-disk index-lookup
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bottleneck [26, 15, 8]. As the size of dataset to be dedu-
plicated increases, so does the total size of fingerprints
required to detect duplicate chunks, which can quickly
overflow the RAM capacity for even high TB-scale and
low PB-scale datasets. This can result in frequent disk
accesses for fingerprint-index lookups, thus severely lim-
iting the throughput of the deduplication system. Cur-
rently, there are two general approaches to accelerat-
ing the index-lookup of deduplication and alleviating the
disk bottleneck, namely, the locality based and the simi-
larity based methods.

The locality in the former refers to the observation
that files, say A and B (thus their data chunks), in a
backup stream appear in approximately the same order
throughout multiple full backups with a high probability.
DDFS [26] makes full use of this locality characteristic
by storing the chunks in the order of the backup stream
on the disk and preserving the locality in the RAM. It
significantly reduces accesses to the on-disk index by in-
creasing the hit ratio in the RAM. It also uses Bloom
filters to quickly identify new (non-duplicate) chunks,
which helps compensate for the cases where there is
no or little locality, but at the cost of significant RAM
overhead. Sparse Indexing [15] improves this method
by sampling index instead of using Bloom filters. It
uses less than half of the RAM capacity of DDFS. As a
novel content-defined chunking algorithm, Bimodal [14]
suggests that the neighboring data of duplicate chunks
should be assumed to be good deduplication candidates
due to backup-stream locality, which can be exploited to
maximize the chunk size.

Nevertheless, all these approaches still produce unac-
ceptable performance in face of very large datasets with
little or no locality. The similarity-based approaches are
proposed to exploit the similar characteristics in backup
streams to minimize the chunk-lookup index in the mem-
ory. For example, Extreme Binning [3] exploits the simi-
larity among files instead of locality, allowing it to make
only one disk access for chunk lookup per file. It sig-
nificantly reduces the RAM usage by storing only the
similarity-based index in the memory. But it often fails
to find significant amounts of redundant data when simi-
larity among files is either lacking or weak. It puts sim-
ilar files in a bin whose size grows with the size of the
data, resulting in decreased throughput as the size of the
similarity bin increases.

2.2 Small Files and Large Files

Our experimental observations, as well as intuition, sug-
gest that the deduplication of small files can be very
space and time consuming. A file system typically con-
tains a very large number of small files [1]. Since the
small files (e.g., ≤64KB) usually only take up a small

fraction (e.g., ≤20%) of the total space of a file system
but account for a large percentage (e.g., ≥80%) of the
number of files, the chunk-lookup index for small files
will be disproportionally large and likely out of mem-
ory. Consequently, the inline deduplication [26, 15] of
small files will tend to be very slow and inefficient be-
cause of the more frequent accesses to the on-disk index
for chunk lookup and the higher network-protocol costs
between the client and the server.

This problem of small files can be addressed by group-
ing many highly correlated small files into a segment. We
consider files with the logic sequence within the same
parent directory to be highly correlated and thus simi-
lar. We exploit the similarity and the locality of a group
(i.e., segment) of adjacent small files rather than one in-
dividual file or chunk. As a result, at most one access to
on-disk index is needed per segment instead of per file
or per chunk. The segmenting approach can also min-
imize the network costs by avoiding the frequent inline
interactions per file.

A typical file system also contains many large files
(e.g., ≥2MB) that only account for a small fraction (e.g.,
≤20%) of total number of files but occupy a very large
percentage (e.g., ≥ 80%) of the total space [1]. Ob-
viously, these large files are an important considera-
tion for a deduplication system due to their high space-
capacity and bandwidth/time requirements in the backup
process. When a large file is being deduplicated inline,
the server must often wait for a long time for the chunk-
ing and hashing processes, resulting in low efficiency of
the deduplication pipeline. In addition, the larger the
files, the less similar they will appear to be even if sig-
nificant parts within the files may be similar or identical,
which can cause the similarity-based approaches to miss
the identification of significant redundant data in large
files.

To address this problem of large files, our SiLo ap-
proach divides a large file into many small segments to
better expose similarity among large files while increas-
ing the efficiency of the deduplication pipeline. More
specifically, the probability that file S1 and file S2 share
the same representative fingerprint is highly dependent
on their similarity degree according to Broder’s theorem
[5]:

Theorem 1: Consider two sets S1 and S2, with H(S1)
and H(S2) being the corresponding sets of the hashes
of the elements of S1 and S2 respectively, where H is
chosen uniformly and randomly from a min-wise inde-
pendent family of permutations. Let min(S) denote the
smallest element of the set of integers S. Then:

Pr[min(H(S1) = min(H(S2)))] =
|S1 ∩ S2|
|S1 ∪ S2|
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This probability can be increased by segmenting the
files and detecting all the segments of the file, as follows:

Pr[min(H(S1) = min(H(S2)))] =
|S1 ∩ S2|
|S1 ∪ S2|

≪

Pr[min(H(S11) = min(H(S21)))] ∪ · · · ∪ Pr[min(H(S1n) = min(H(S2n)))]

=

n∪
i=1

Pr[min(H(S1i) = min(H(S2i)))]

= 1 −
n∩

i=1

Pr[min(H(S1i) ̸= min(H(S2i)))]

= 1 −
n∏

i=1

(1 −
|S1i ∩ S2i|
|S1i ∪ S2i|

)

As files S1 and S2 are segmented into S11 ∼ S1n and
S21 ∼ S2n respectively, the detection of similarity be-
tween S1 and S2 is determined by the union of the prob-
abilities of detections of similarity between S11 ∼ S1n

and S21 ∼ S2n. Based on the above probability analysis,
this segmenting approach will only fail in the worst-case
scenario where all the segments in file S1 are not similar
to segments of file S2. This, based on the inherent lo-
cality in the backup streams, happens with a very small
probability because it is extremely unlikely that two files
are very similar but none or very few of their respective
segments are detected as being similar.

2.3 Similarity and Locality
Now we further analyze the relationship between similar-
ity and locality with respect to backup streams. As men-
tioned earlier, chunk locality can be exploited to store
and prefetch groups of contiguous chunks that are likely
to be accessed together with a high probability in the
backup stream, while files’ similarity may be mined so
that the similarity characteristics instead of the whole
sets of fingerprints of files, are indexed to minimize the
index size in the memory. The exploitation of locality
maximizes the RAM utilization to improve the through-
put but can cause RAM overflows and frequent accesses
to on-disk index when datasets lack or are weak in local-
ity.

The similarity-based approaches minimize the RAM
usage at the cost of potentially missing large amounts
of redundant datawhich is dependent on the similar-
ity degree of the backup stream. We have exam-
ined the similarity degree and the duplicate-elimination
measure of our similarity-only deduplication approach
on four datasets, as shown in Figure 1 and Figure 2.
The four datasets represent one-backups, incremental-
backups, Linux-versions and full-backups respectively,
whose characteristics will be detailed in Section 4.

The similarity degree is computed by our similarity
detection on the Linux dataset as: Simi(Sinput) = Max
(| Sinput ∩ Si |)/|Sinput|,(Si ∈ Sstore, Simi(Sinput) ∈
[0,1]). Thus, the similarity degree “1” signifies that the
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Figure 1: The distribution of the segment similarity on
four datasets by our similarity-only approach. It can be
used to describe the similarity characteristics of datasets.
A large proportion of data with low similarity degrees is
observed here.
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Figure 2: Percentage of duplicate data eliminated by our
similarity-only deduplication approach.

input segment is completely duplicate and the similarity
degree “0” states that the segment is detected to match
no other segments at all by our similarity-only approach.

Figure 3 further examines the duplicate elimination
missed by the similarity approach on the Linux dataset.
The missed portion of duplication elimination is de-
fined as the difference between the measure achieved
by the exact deduplication and that by the similarity-
based deduplication. Therefore, Figure 3 shows that the
similarity-based deduplication efficiency is heavily de-
pendent on the similarity degree of the backup stream
which is well consistent with Broder’s Theorem in (see
Section 2.2). The similarity approach often fails to re-
move large amounts of duplicate data, especially when
the backup stream has a low similarity degree.

Inspired by Bimodal [14], which shows that the
backup-stream locality can be mined to find more po-
tentially duplicate data, we believe that such locality can
also be mined to expose and thus detect more data sim-
ilarity, a point well demonstrated by our experimental
study in Section 4. More specifically, SiLo mines lo-
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Figure 3: Percentage of duplicate data eliminated as
a function of different similarity degree on the Linux
dataset by our similarity-only deduplication approach.

cality in conjunction with similarity by grouping multi-
ple contiguous segments in a backup stream into a block.
While this exploitation of locality helps find more po-
tential deduplication candidates by detecting similar seg-
ments’ adjacent segments in a block, it also reduces the
accesses to on-disk index to improve the deduplication
throughput.

Now we analyze the combined exploitation of simi-
larity and locality. Given two blocks B1 and B2, each
containing n segments (S11 ∼ S1n, S21 ∼ S2n), accord-
ing to the Broder’s theorem, the percentage of duplicate
eliminated by the similarity-only approach can be com-
puted as: DeDupSimi(B1, B2) = |B1∩B2| / |B1∪B2|.
The combined and complementary exploitation of simi-
larity and locality can be computed as follows:

DeDupSiLo(B1, B2)

=

n∪
i=1

Pr[min(H(S1i) = min(H(S2i)))]

= 1 −
n∩

i=1

Pr[min(H(S1i) ̸= min(H(S2i)))]

= 1 −
n∏

i=1

(1 −
|S1i ∩ S2i|
|S1i ∪ S2i|

)

= 1 − (1 − a)
N
(assume all the

|S1i ∩ S2i|
|S1i ∪ S2i|

= a)

Assume that the value a follows a uniform distribu-
tion in the range [0,1] (It may be much more compli-
cated in the real world datasets), the expected value of
duplicate elimination can be further calculated under the
aforementioned assumption as:

ESimi =

∫ 1

0

(a)da =
1

2

ESiLo =

∫ 1

0

(1− (1− a)N )da =
N

N + 1

Thus the larger the value N (i.e., the number of seg-
ments in a block), the more locality can be exploited

in deduplication. ESimi is equal to ESiLo when N=1.
SiLo can remove more than 99% of duplicate data when
N > 99. Thus the combined exploitation of similar-
ity and locality makes it possible to achieve the near-
complete duplicate elimination (recall that exact dedu-
plication achieves complete duplicate elimination) and
requires at most one disk access per segment (a group
of chunks or small files) rather than one access per
chunk (as in locality-based approaches) or per file (as in
similarity-based approaches), thus avoiding the disk bot-
tleneck of data deduplication. In addition, the throughput
of the deduplication system also tends to be improved by
reducing the expensive accesses to on-disk index. As a
result, our SiLo approach, through its judicious and joint
exploitation of locality and similarity, is able to signifi-
cantly improve the overall performance of the deduplica-
tion system as demonstrated in Section 4.

3 Design and Implementation

SiLo is designed for large-scale and disk-inline backup
storage systems. In this section, we will first describe the
architecture of SiLo, followed by detailed discussions of
its design and implementation issues.

3.1 System Architecture Overview
As depicted in Figure 4, the SiLo architecture consists
of four key functional components, namely, File Dea-
mon (FD), Deduplication Server (DS), Storage Server
(SS), and Backup Server (BS), which are distributed in
the datacenters to serve the backup requests. BS and DS
reside in the metadata server (MDS) while FD is installed
on each client machine that requires backup/restore ser-
vices.

• File Deamon is a deamon program providing a
functional interface (e.g., backup/restore) in users’
computers. It is responsible for gathering backup
datasets and sending/restoring them to/from Stor-
age Servers for backups/restores. The processes
of chunking, fingerprinting and segmenting can be
done by FD in the preliminary phase of the inline
deduplication. It also includes a File Agent that is
responsible for communicating with BS and DS and
transferring backup data to/from SS.

• Backup Server is the manager of the backup sys-
tem that globally manages all jobs of backup/restore
and directs all File Agents and Storage Servers. It
maintains a metadata database for administering all
backup files’ information.

• The main function of Deduplication Server is to
store and look up all fingerprints of files and chunks.
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Chunking

User Interface

File Agent Job Agent Deduplication Metadata Agent

Storage Agent

Contain Store

Job MetaData Cache HashTable Block Store

Storage Agent

Contain Store

Storage Agent

Contain Store

Disk Disk Disk

Figure 4: The SiLo system architecture.

• Storage Server is the repository for backed-up
data. SS in SiLo manages multiple Storage Nodes
for scalability and provides fast, reliable and safe
backup/restore services.

In this paper, we focus on Deduplication Server since
it is the most likely performance bottleneck of the entire
deduplication system. DS consists of the locality hash ta-
ble (LHTable), the similarity hash table (SHTable), write
buffer and read cache. While SHTable and LHTable in-
dex segments and blocks, the similarity and locality units
of SiLo respectively, the write buffer and read cache pre-
serve the similarity and locality of the backup stream, as
shown in Figure 5.

Block Block

Block Block

Block Block

Seg Key

SHTable
Read Cache

Write Buffer

Block

Block

RepChunk ID

Block ID

Chunk ID

LHTable

Segment

Figure 5: Data structures of Deduplication Server.

The notion of segment is used to exploit the similar-
ity of the backup stream while the block preserves the
stream-informed locality layout of segments on the disk.
SHTable provides the similarity detection for input seg-
ments and LHTable serves to quickly index and filter
out duplicate chunks. Note that, since this paper mainly
aims at improving the performance of accessing on-disk
fingerprints in the deduplication system, all write/read

operations in this paper are performed in the form of
writing/reading chunks’ fingerprints rather than the real
backup data.

3.2 Similarity Algorithm
As mentioned in Section 2.3, SiLo exploits similarity
and locality jointly. It exploits similarity by grouping
strongly correlated small files and segmenting large files,
while locality is exploited by grouping contiguous seg-
ments in a backup stream to preserve the locality layout
of these segments as depicted in Figure 6. Thus, seg-
ments are the atomic building units of a block that is
in turn the atomic unit of the write buffer and the read
cache.

Figure 6: Data structure of the SiLo similarity algorithm.

As a salient feature of SiLo, the SiLo similarity algo-
rithm is implemented in File Deamon, which structures
data from backup streams into segments according to the
following three principles.

• P1. Correlated small files in a backup stream (e.g.,
those under the same parent directory) are to be
grouped into a segment.

• P2. A large file in a backup stream is divided into
several independent segments.

• P3. All segments are of approximately the same size
(e.g., 2MB).

Where, P1 aims to reduce the RAM overhead of index-
lookup; P2 helps expose more similarity characteristics
of large files to eliminate more duplicate data; and P3
simplifies the management of segments. Thus, the simi-
larity algorithm exposes and then exploits more similar-
ity by leveraging file semantics and preserving locality-
layout of a backup stream to significantly reduce the
RAM usage.

SiLo employs the method of representative finger-
printing [3] to represent each segment by a similarity-
index entry in the similarity hash table. By virtue of P1,
the SiLo similarity design solves the problem of small
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      (block)
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Figure 7: The workflow of the locality algorithm: it helps
detect more potentially duplicate chunks that are missed
by the similarity algorithm.

files taking up disproportionally large RAM space. For
example, assuming an average segment size of 2MB and
an average chunk or small file size of 8KB, a segment ac-
commodates 250 chunks or small files, thus significantly
reducing the required index size in the memory. If we
assume a 60-byte primary key for the similarity index-
ing of a 2MB segment of backup data, which is consid-
ered economic, a 1TB backup stream only needs 30MB
similarity-index for deduplication that can easily fit in the
memory.

3.3 Locality Algorithm

As another salient feature of SiLo, the SiLo locality al-
gorithm groups several contiguous segments in a backup
stream into a block and preserves their locality-layout on
the disk. Since block is also the minimal write/read unit
of the write buffer and read cache in the SiLo system, it
serves to maximize the RAM utilization and reduce fre-
quent accesses to on-disk index by retaining access lo-
cality in the backup stream. By exploiting the inherent
locality in backup streams, the block-based SiLo locality
algorithm is able to eliminate more duplicate data.

Figure 7 shows the workflow of the locality algorithm.
According the locality characteristic of backup streams,
if input segment S1k in block B1 is determined to be sim-
ilar to segment S2k by hitting in the similarity hash table,
SiLo will consider the whole block B1 to be similar to
block B2 that contains S2k. As a result, this grouping of
contiguous segments into a block can eliminate more po-
tentially duplicate data that is missed by the probabilistic
similarity detection, thus complementing the similarity
detection.

When SiLo reads the blocks from disk by the simi-
larity detection, it puts the recently accessed block into

the read cache. By preserving the backup-stream local-
ity in the read cache, the accesses to on-disk index due to
similarity detection can be significantly reduced, which
alleviates the disk bottleneck and increases the dedupli-
cation throughput. Since it is at the block level where
locality is preserved and exploited, the block size is an
important system parameter that affects the system per-
formance such as duplicate elimination and throughput.
The smaller the block size, the more disk accesses will be
required by the server to read the index, weakening the
locality exploitation. The larger the block size, on the
other hand, the more unrelated segments will be read by
the server from the disk, increasing system’s space and
time overheads. Therefore, a proper block size not only
provides good duplicate elimination, but also achieves
high throughput and low RAM usage in the SiLo system.

Each block in SiLo has its own Locality Hash Ta-
ble (i.e., LHTable shown in Figure 5) for chunk filter-
ing. Since a block contains several segments, it needs an
indexing tool for thousands of fingerprints. The finger-
prints in a block are organized into the LHTable when
reading the block from the disk. The additional time
required for constructing LHTable in a block is signifi-
cantly compensated by its quick indexing.

3.4 Cache and RAM Considerations

SiLo uses a very small portion of RAM as its write buffer
and read cache to store a small number of recently ac-
cessed blocks to avoid the frequent and expensive disk
read/write operations. In our current design of SiLo, the
read cache and the write buffer each contains a fixed
number of blocks. As illustrated in Figures 5 and 6, a
locality-block contains only metadata information such
as LHTable, segment information, chunk information,
and file information, which enables a 1MB locality-block
to represent a 200MB data-block.

Since users of file systems tend to duplicate files or di-
rectories under the same directories, a significant amount
of duplicate data can be eliminated by detecting the du-
plication in the write buffer that also preserves the local-
ity of a backup stream. For example, a code directory
may include many versions of source code files or docu-
ments that can be good deduplication candidates.

The largest portion of RAM in the SiLo system is oc-
cupied by the similarity hash table (i.e., SHTable shown
in Figure 5). Assuming an average segment size of 2MB
and a primary-key size of 60B, the SiLo SHTable re-
quires 300MB for an average backup data of 10 TB. Thus
the RAM usage for the cache becomes negligibly small
as the data size further increases.
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3.5 SiLo Workflow
To put things together and in perspective, Figure 8 shows
the main workflow of the SiLo deduplication process.
For an incoming backup stream, SiLo goes through the
following key steps:

Look up the SHTable for 

the input segment

Is existed in SHTable Is Similar or Dup?

Filter the fingerprints in 

the cache's LHTable

No

Yes

Read the block from disk 

to the cache.

Similar

Write input segment into

block in the write buffer.

Is block in the cache?

NoYes

Is write buffer Full?
Flush the Write buffer to 

the Disk.
Yes

Update the Similarity 

Hash Table

No

The segment is complete 

duplicate !
Dup

Figure 8: The SiLo deduplication workflow.

1. Files in the backup stream are first chunked, fin-
gerprinted and packed into segments by grouping
strongly correlated small files and segmenting large
files in the File Agent.

2. Each newly generated segment Snew is checked
against SHTable for similarity detection. If the new
segment hits in SHTable, SiLo checks if the block
Bbk containing Snew’s similar segment is in the
cache. If it is not in the cache, Bbk is read from
the disk to the read cache, where a block is replaced
in the FIFO order if the cache is full. If Snew misses
in SHTable, it is then checked against recently ac-
cessed blocks in the read cache for potentially sim-
ilar segment in one of the cached blocks (Bbk).

3. The duplicate chunks in Snew are eliminated by
checking LHTable of Bbk in the read cache. Then
the chunks in the neighbouring segments of Snew

in the backup stream are filtered by the locality-
enhanced similarity detection (i.e., these chunks are
checked against LHTable of Bbk for possible dupli-
cation).

4. After chunk filtering and constructing a new and
non-duplicate block Bnew from the backup stream,
SiLo checks if the write buffer is full. If the write
buffer is full, a block there is replaced in the FIFO
order by Bnew and then written to the disk.

As demonstrated in Section 4, SiLo is able to minimize
both the time and space overheads of indexing finger-

prints while maintaining a duplicate elimination perfor-
mance comparable to exact deduplication methods such
as ChunkStash.

4 Evaluation

In order to evaluate SiLo, we have implemented a pro-
totype of SiLo that allows us to examine several impor-
tant design parameters to provide useful insights. We
compare SiLo with the similarity-based and locality-
based state-of-the-art approaches Extreme Binning and
ChunkStash in the key deduplication metrics of duplicate
elimination, RAM usage and throughput. The evaluation
is driven by four real-world traces collected from real
backup datasets that represent different workload char-
acteristics.

4.1 The Experimental Setup

We use a standard server configuration to evaluate and
compare the inline deduplication performances of the
SiLo, ChunkStash and Extreme Binning approaches run-
ning on a Linux environment. The hardware configura-
tion includes a quad-core CPU running at 2.4GHz, with
a 4GB RAM, 2 gigabit network interface cards, and two
500GB 7200rpm hard disks.

Due to our lack of access to the source code of ei-
ther the ChunkStash or Extreme Binning scheme, we
have chosen to implement both of them. More specifi-
cally, we have implemented the locality-based and exact-
deduplication approach of ChunkStash incorporating the
principles and algorithms described in the ChunkStash
paper [8]. The ChunkStash approach makes full use
of the inherent locality of backup streams and uses a
novel data structure called Cuckoo hash for fingerprint
indexing. We have also implemented a simple ver-
sion of the Extreme Binning approach, which repre-
sents a similarity-based and approximate-deduplication
approach according to the algorithms described in the
Extreme Binning paper [3]. Extreme Binning exploits
file similarity instead of locality in the backup streams.

Note that our evaluation platform is not a production-
quality deduplication system but rather a research pro-
totype. Hence, our evaluation results should be inter-
preted as an approximate and comparative assessment
of the three systems above, and not be used for abso-
lute comparisons with other deduplication systems. The
RAM usage in our evaluation is obtained by recording
the space overhead of index-lookup. The duplicate elim-
ination performance metric is defined as the percentage
of duplicate data eliminated by the system. Throughput
of the system is measured by the rate at which finger-
prints of the backup stream are processed, not the real
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Feature One-set Inc-set Linux Full-set
Total size 530GB 251GB 101 GB 2.51TB
Total files 3.5M 0.59M 8.8M 11.3M
Total chunks 51.7M 29.4M 16.9M 417.6M
Avg.chunk size 10KB 8KB 5.9KB 6.5KB
Dedupe factor 1.7 2.7 19 25
Locality weak weak strong strong
Similarity weak strong strong strong

Table 1: Workload characteristics of the four traces used
in the performance evaluation. All use SHA-1 for chunk
fingerprints and the content-based chunking algorithm.
The deduplication factor is defined as the Totalsize /(To-
talsize - Dedupsize) ratio.

backup throughput in that it does not measure the rate at
which the backup data is transferred and stored.

Four traces representing different strengths of locality
and similarity are used in the performance evaluation of
the three deduplication systems and are listed in Table
1. The four traces are collected from real-world datasets
of One-backup, Incremental-backup, Linux-version and
Full-backup respectively.

The One-set trace was collected from 15 graduate stu-
dents of our research group. To obtain traces from this
backup dataset, we have built a deduplication analysis
tool that crawls the backup directory, and generates the
sequences of chunk and file hashes for traces. Since we
obtain only one full backup for this group, this trace has
weak locality and weak similarity. The Inc-set is a subset
of the trace reported by Tan et al. [24] and was collected
from initial full backups and subsequent incremental
backups of eight members in a research group. There are
391 backups with a total of 251GB data. Therefore, Inc-
set represents datasets with strong similarity but weak
locality.

Linux-set, downloaded from the website [16], consists
of 900 versions from version 1.1.13 to 2.6.33, and repre-
sents the characteristics of small files. Full-set consists
of 380 full backups of 19 researchers’ PCs, which is also
reported by Xing et al. [25] and can be downloaded from
the website [10]. Full-set represents datasets with strong
locality and strong similarity. Both Linux-set and Full-
set are used in [25] and [3] to evaluate the performance of
Extreme Binning, and our use of these datasets resulted
in similar and consistent evaluation results with the pub-
lished studies.

With the above traces representing different but typ-
ical workload characteristics, this evaluation intends to
answer, among other things, the following questions:
Can the SiLo locality algorithm compensate for the
probabilistic similarity detection that may miss detect-
ing large amounts of duplicate data? How effective is
the SiLo similarity algorithm under different workload
conditions? How is SiLo compared with existing state-

of-the-art deduplication approaches in key performance
measures?

4.2 Interplay between Similarity and Lo-
cality

The mutually interactive nature of similarity and locality
in SiLo dictates a good understanding of the relationship
between locality and similarity before a thorough perfor-
mance evaluation is carried out. Thus, we first examine
the impact of the SiLo design parameters of block size
and segment size on duplicate elimination and time over-
head, which is critical for the SiLo locality and similarity
algorithms.

From Figure 9 that shows the percentage of duplicate
data not eliminated, we find that the duplicate elimina-
tion performance, defined as the percentage of dupli-
cate data eliminated, increases with the block size but
decreases with the segment size. This is because the
smaller the segment is (e.g., segment size of 512KB),
the more similarity can be exposed and detected, en-
abling more duplicate data to be removed. On the other
hand, the larger the block is (e.g., block size of 512MB),
the more locality of the backup stream will be retained
and captured, allowing SiLo to eliminate more (i.e.,
97%∼99.9%) of redundant data regardless of the seg-
ment size.

Although more redundant data can be eliminated by
reducing the segment size or filling a block with more
segmentsas indicated by the results shown in Figure 9,
it results in more accesses to on-disks index and higher
RAM usage due to the increased index entries in the
SHTable (see Figure 5). As the deduplication-time-
overhead results of Figure 10 clearly suggest, continu-
ously decreasing the segment size or increasing the block
size can become counterproductive after a certain point.
From Figure 10, we further find that, for a fixed block
size, the time overhead is inversely proportional to the
segment size. This is consistent with our intuition that
smaller segment size results in more frequent similar-
ity detections for the input segments, which in turn can
cause more accesses to on-disk index.

Figure 10 also shows that there is a knee point for each
curve, meaning that for a given segment size and work-
load the time overhead decreases first and then increases
(except Figure 10 (c)). This may be explained by the fact
that, with a very small block size (e.g., 8MB), there is
little locality to be mined, resulting in frequent accesses
to on-disk index. With a very large block size (e.g.,
512MB), SiLo also runs slower because the increased
disk accesses for locality exploitation may result in more
unrelated segments being read in. The Linux-set are dif-
ferent from other datasets in Figure 10, because the av-
erage size of a Linux version is 110MB, which enables
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Figure 9: Percentage of duplicate data eliminated as a function of block size and segment size.
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Figure 10: Time overhead of SiLo deduplication as a function of block size and segment size.
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Figure 11: Percentage of duplicate data eliminated as
a function of different similarity degrees on the Linux-
dataset by the similarity-only approach and locality-only
approach respectively.

more related locality to be exploited at the block size of
256MB.

As analyzed above, there evidently exist an optimum
segment size and an optimum block size, subject to a
given workload and deduplication requirements (e.g., du-
plicate elimination or deduplication throughput). The
choice of segment size and block size can be dynami-
cally adjusted by the user’s specific requirements (e.g.,
the backup throughput or duplicate elimination or the
RAM usage).

Figures 11 and 12 suggest that the full exploitation of
locality jointly with that of similarity can remove almost
all redundant data missed by the similarity detection un-
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Figure 12: Percentage of duplicate data eliminated
on four datasets by the similarity-only approach and
locality-only approach respectively.

der all workloads. These results can be compared with
Figure 2 and 3, then well verify our motivation of simi-
larity and locality in Section 2. In fact, only an extremely
small amount of duplicate data is missed by SiLo even on
the datasets with weak locality and similarity.

4.3 Comparative Evaluation of SiLo

This subsection presents evaluation results comparing
SiLo with two other state-of-the-art deduplication sys-
tems, the similarity-based Extreme Binning system and
the locality-based ChunkStash system, by executing the
four real-world traces described in Section 4.1 on these
three systems. Note that in this evaluation SiLo assumes
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Figure 13: Comparison among ChunkStash, SiLo, and
Extreme Binning in terms of percentage of duplicate data
eliminated on the four datasets.

a block size of 256MB, while SiLo-2MB and SiLo-4MB
represent SiLo with a segment size of 2MB and 4MB
respectively.

A. Duplicate elimination
Figure 13 shows the duplicate elimination perfor-

mance of the three systems under the four workloads.
Since ChunkStash does the exact deduplication, it elim-
inates 100% of duplicate data. Compared with Extreme
Binning that eliminates 71%∼99% of duplicate data in
the four datasets, SiLo removes about 98.5%∼99.9% of
duplicate data. Note that, while Extreme Binning elimi-
nates about 99% of duplicate data as expected in Linux-
set and Full-set that has strong similarity and locality, it
fails to detect almost 30% of duplicate data in One-set
that has weak locality and similarity, and about 25% of
duplicate data in Inc-set with weak locality but strong
similarity. Although there is strong similarity in Inc-
set, Extreme Binning still fails to eliminate a significant
amount of duplicate data primarily due to its probabilistic
similarity detection that simply chooses one representa-
tive fingerprint for each file regardless of the file size.

On the contrary, SiLo-2MB eliminates 99% of dupli-
cate data even in One-set with both weak similarity and
locality, and also removes almost 99.9% of duplicate data
in Linux-set and Full-set with both strong similarity and
locality. These results show that SiLo’s joint and com-
plementary exploitation of similarity and locality is very
effective in detecting and eliminating duplicate data un-
der all workloads evaluated, achieving near-complete du-
plicate elimination (i.e., exact deduplication).

B. RAM usage
Figure 14 shows the RAM usage for deduplication

among these three systems under the four workloads.
For Linux-set that has a very large number of small files
and small chunks, the highest RAM usage is incurred for
both Chunkstash and Extreme Binning. There is also a
clear negative correlation between the deduplication fac-
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Figure 14: Comparison among ChunkStash, SiLo, and
Extreme Binning in terms of RAM usage (B: RAM re-
quired per MB backup data).

tor and the RAM usage for the approximate deduplica-
tion systems of SiLo and Extreme Binning on the other
four workloads. That is, for One-set that has the lowest
deduplication factor, the highest RAM usage is incurred,
while for Full-set that has highest deduplication factor,
the smallest RAM space is required.

The average RAM usage for ChunkStash is the high-
est among the three approaches, except for the Linux-
set trace, as it does the exact deduplication that needs
a large hash table in the memory to put all the indices
of chunk fingerprints. Although ChunkStash uses the
Cuckoo hash to store compact key signatures instead of
full chunk-fingerprints, it still requires at least 6 bytes for
each new chunk, resulting in a very large cuckoo hash
table for millions of fingerprints. In addition, accord-
ing to the open-source code of Cuckoo Hash [14], the
ChunkStash system needs to allocate about two million
hash table slots in advance to support one million index
entries.

Since only the file similarity index needs to be stored
in RAM, Extreme Binning only consumes about 1/9∼
1/15 of the RAM space required of ChunkStash except
on the Linux-set where it consumes more RAM usage
than ChunkStash due to the extremely large number of
small files. However, SiLo-2MB’s RAM efficiency al-
lows it to reduce the RAM consumption of Extreme Bin-
ning by a factor of 3∼900. The extremely low RAM
overhead of the SiLo system stems from the interplay be-
tween its similarity algorithm, which groups many small
correlated files into segments and extracts their similarity
characteristics, and its locality algorithm, which groups
contiguous segments of the backup stream into blocks
to effectively exploit the locality residing in the backup-
streams. On the other hand, the RAM usage for Extreme
Binning depends on the average file size of the file set, in
addition to the deduplication factor. The smaller the av-
erage file size is, the more RAM space Extreme Binning
will consume, which is demonstrated in the Linux-set.
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The RAM usage of the SiLo system remains relatively
stable with the change in average file size in the four
traces and is inversely proportional to the deduplication
factor of the traces.

Now we analyze the RAM usage in a PB-scale dedu-
plcation system for the three approaches. As a 2MB-
segment needs 60 bytes of key index in the memory, SiLo
takes up about 30GB of RAM in a PB-scale deduplica-
tion system. With 4MB-segments, SiLo’s RAM usage
is halved to 15 GB in a PB-scale deduplication system
while its performance degrades gracefully as shown in
Figures 9 and 10. Extreme Binning needs almost 300GB
of RAM space with an average file size of 200KB while
ChunkStash consumes almost 2TB of RAM space to
maintain a global index in a PB-scale deduplication sys-
tem.Figure 15 also shows RAM usage of these three ap-
proaches with different deduplication factors. According
to [15], Sparse Indexing uses 170GB of RAM space for a
PB-scale deduplication system, whereas it estimates that
DDFS would require 360GB RAM to maintain a partial
index depending on locality in backup streams.

C. Deduplication throughput
Figure 16 shows a comparison among the three ap-

proaches in terms of deduplication throughput, where the
throughput is observed to more than double as the aver-
age chunk size changes from 6KB (e.g., Linux-set) to
10KB (e.g., One-set).

ChunkStash achieves an average throughput of about
335MB/sec with a range of 24MB/sec∼ 654MB/sec on
the four datasets. The frequency of accesses to on-disk
index by Chunkstash’s compact key signatures algorithm
on the Cuckoo hash lookup tends to increase with the
size of the dataset, thus adversely affecting the through-
put. Extreme Binning achieves an average throughput of
904MB/sec with a range of 158MB/sec∼1571/sec on the
four datasets, since it only needs to access the disk once
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Figure 16: Comparison among ChunkStash, SiLo, and
Extreme Binning in terms of deduplication throughput
(MB/sec).

per similar-file and eliminates the duplicate files in the
memory. As SiLo-2MB makes at most one disk access
per segment, it deduplicates data at an average through-
put of 1167 MB/sec with a range of 581MB/sec∼1486
MB /sec on the four datasets.

Although Extreme Binning runs faster than SiLo-2MB
under Inc-set where many duplicate files exist, it runs
much slower in other datasets. Since each bin stores all
similar files and it tends to grow in size with the dataset
size. As a result, Extreme Binning will slow down as
the size of each bin increases since each similar file must
read its corresponding bin in its entirety. In addition, the
design of bin fails to exploit the backup-stream locality
that can help reduce disk accesses and increase the RAM
utilization by preserving the locality layout in the mem-
ory.

Since SiLo uses significantly less RAM space than
other approaches for a given dataset, SiLo can also boost
the deduplication throughput by caching more index in-
formation in RAM to reduce accesses to on-disk index.
In fact, the SiLo system can be dynamically configured
with users’ requirements such as the throughput and du-
plicate elimination by tuning the appropriate system pa-
rameters (e.g., the number of blocks in the cache, the seg-
ment size and block size, etc.). Therefore, compared with
Extreme Binning and ChunkStash, SiLo is shown to pro-
vide robust and consistently good deduplication perfor-
mance, achieving higher throughput and near-complete
duplicate elimination at a much lower RAM overhead.

5 Related work

Data deduplication is an essential and critical compo-
nent of backup/archiving storage systems. It not only
reduces storage space requirements, but also improves
the throughput of the backup/archiving systems by elim-
inating the network transmission of redundant data. We
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briefly review the work that is most relevant to our SiLo
system to put it in the appropriate perspective, as follows.
LBFS [19] first proposes the content-based chunking al-
gorithm with the adoption of the Rabin fingerprints [22],
and applies it to the network file system to reduce trans-
mission of redundant data. Venti [21] employs dedupli-
cation in an archival storage system and significantly re-
duces the storage space requirement. Policroniades etc.
[20] compares the performance of several deduplication
approaches, such as file-level, fixed-size chunking and
content-based chunking.

In recent years, more attention has been paid to avoid-
ing the fingerprint-lookup disk bottleneck and enabling
more efficient and scalable deduplication in mass storage
systems. DDFS [26] is the earliest research to propose
the idea of exploiting the backup-stream locality to re-
duce accesses to on-disk index and avoid the disk bottle-
neck of inline deduplication. Sparse Indexing [15] also
exploits the inherent backup-stream locality to solve the
index-lookup bottleneck problem. Different from DDFS,
Sparse Indexing is an approximate deduplication solu-
tion that samples index for fingerprint-lookup and only
requires about half of the RAM usage of DDFS. But its
duplicate elimination and throughput are heavily depen-
dent on the sampling rate and chunks locality of backup
streams.

ChunkStash [8] stores the chunk fingerprints on an
SSD instead of an HDD to accelerate the index-lookup.
It also preserves the backup-stream locality in the mem-
ory to increase the RAM utilization and reduce ac-
cesses to on-disk index. Cuckoo hash is used by
ChunkStash to organize the fingerprint index in RAM,
which is shown to be more efficient than Bloom filters
in DDFS. ChunkStash study also shows that the disk-
based Chunkstash scheme performs comparable to the
flash-based ChunkStash scheme when there is sufficient
locality in the data stream.

The aforementioned locality-based approaches would
produce unacceptably poor performance of deduplica-
tion in the case of the data streams with little or no lo-
cality [3]. Several earlier studies [17, 5, 9, 4] propose to
exploit similarity characteristics for small-scale dedupli-
cation of documents in the field of knowledge discovery
and database. SDS [2] exploits the similarity of backup
streams in mass deduplication systems. It divides a data
stream into large 16MB blocks and constructs signatures
to identify possibly similar blocks. A byte-by-byte com-
parison is conducted to eliminate duplicate data, which
is also the first deduplication scheme that uses similar-
ity matching. But the index structure in SDS appears
to be proprietary and no details are provided in the refer-
ence paper. Extreme Binning [3] exploits the file similar-
ity for deduplication to apply to non-traditional backup
workloads with low-locality (e.g., incremental backup).

It stores a similarity index of each new file in RAM and
groups many similar files into bins that are stored on the
disks, thus it eliminates duplicate files in RAM and du-
plicate chunks inside each bin by similarity detection.

SiLo is in part inspired by the Cumulus system and
Bimodal algorithm. Cumulus is designed for file-system
backup over the Internet under the assumption of a thin
cloud [18]. It proposes the aggregation of many small
files to a segment to avoid frequent network transfers of
small files in the backup system, and implements a gen-
eral user-level deduplication. Bimodal [14] aims to re-
duce the size of index by exploiting data-stream local-
ity. It merges some contiguous and duplicate chunks,
produces a chunk size that is 2-4 times larger than that
of general algorithms, and finds more potential duplicate
data among the boundaries of duplicate chunks.

Most recently, there have also been studies that ex-
plore the emerging applications of deduplication, such
as the virtual machines [12, 7], the buffer cache [23],
I/O deduplication [13] and flash [6, 11], suggesting an
increasing popularity and importance of data deduplica-
tion.

6 Conclusion and future work

In this paper, we present SiLo, a similarity-locality based
deduplication system that exploits both similarity and lo-
cality in backup streams to achieve higher throughput
and near-complete duplicate elimination at a much lower
RAM overhead than existing state-of-the-art approaches.
SiLo exploits the similarity of backup streams by group-
ing small correlated files and segmenting large files to
reduce the RAM usage for index-lookup. The backup-
stream locality is mined in SiLo by grouping contigu-
ous segments in backup streams to complement the sim-
ilarity detection and alleviate the disk bottleneck due
to frequent accesses to on-disk index. The combined
and complementary exploitation of these two backup-
stream properties overcomes the shortcomings of exist-
ing approaches based on either property alone, achieving
a robust and consistently superior deduplication perfor-
mance.

Results from experiments driven by real-world
datasets show that the SiLo similarity algorithm signif-
icantly reduces the RAM usage while the SiLo locality
algorithm helps eliminate most of the duplicate data that
is missed by the similarity detection. And there exists
a solution that optimizes the trade-off between duplicate
elimination and throughput by appropriately tuning the
locality and similarity parameters (i.e., the size of seg-
ment and block).

As our future work of SiLo, we plan to build a mathe-
matical model to quantitatively analyze why SiLo works
well with the combined and complementary exploitation
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of similarity and locality and learn and adapt to the opti-
mal parameter automatically by the real-time deduplica-
tion factor and other system status. Due to its low sys-
tem overheads, we also plan to apply the SiLo system to
other deduplication applications such as cloud storage or
primary storage environments that desire to deduplicate
redundant data with extremely low system overheads.
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