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ABSTRACT
Shared last-level caches (SLLCs) on chip-multiprocessors play
an important role in bridging the performance gap between
processing cores and main memory. Although there are
already many proposals targeted at overcoming the weak-
nesses of the least-recently-used (LRU) replacement policy
by optimizing either locality or utility for heterogeneous
workloads, very few of them are suitable for practical SLLC
designs due to their large overhead of log associativity bits
per cache line for re-reference interval prediction. The two
recently proposed practical replacement policies, TA-DRRIP
and SHiP, have significantly reduced the overhead by relying
on just 2 bits per line for prediction, but they are oriented to-
wards managing locality only, missing the opportunity pro-
vided by utility optimization.

This paper is motivated by our two key experimental ob-
servations: (i) the not-recently-used (NRU) replacement pol-
icy that entails only one bit per line for prediction can satis-
factorily approximate the LRU performance; (ii) since local-
ity and utility optimization opportunities are concurrently
present in heterogeneous workloads, the co-optimization of
both would be indispensable to higher performance but is
missing in existing practical SLLC schemes. Therefore, we
propose a novel practical SLLC design, called COOP, which
needs just one bit per line for re-reference interval prediction,
and leverages lightweight per-core locality & utility monitors
that profile sample SLLC sets to guide the co-optimization.
COOP offers significant throughput improvement over LRU
by 7.67% on a quad-core CMP with a 4MB SLLC for 200
random workloads, outperforming both of the recent prac-
tical replacement policies at the in-between cost of 17.74KB
storage overhead (TA-DRRIP: 4.53% performance improve-
ment with 16KB storage cost; SHiP: 6.00% performance im-
provement with 25.75KB storage overhead).

Categories and Subject Descriptors
B.3.2 [Memory Structures/Design Styles]: Cache Mem-
ories
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1. INTRODUCTION
The shared last level cache (SLLC) organization is com-

monly adopted in chip multiprocessor (CMP) products, such
as AMD’s Phenom II X6 and Intel’s Core i7, to simplify both
cache capacity sharing and coherence support for processing
cores. Although the SLLC of a CMP is accessible to all
cores, its large aggregate capacity alone cannot guarantee
optimal performance without good management strategies.
This is especially true when the cores are running a hetero-
geneous mix of threads that have diverse requirements for
SLLC resources, which becomes increasingly common with
the widespread deployment of CMPs in complex applica-
tions, such as cloud computing [1].

Because of their vital role in minimizing the expensive
memory traffic, SLLC capacity management schemes have
been extensively studied for a long time by the research
community. It has been noticed that the least-recently-used
(LRU) replacement policy becomes less effective for SLLCs
due to the diminished access locality 1 at the last cache level
[2–5] and the uncoordinationed capacity allocation among
heterogeneous threads [6, 7]. In response to LRU’s limita-
tions, two approaches have emerged in the literature. First,
alternative replacement policies, such as TADIP [2], SDBP
[3] and NUcache [5], have been proposed to manage locality
by temporally assigning and adjusting lifetime for blocks.
Second, working with a different principle, cache partition-
ing schemes, including UCP [6] and PIPP [7], try to optimize
utility 2 by spatially partitioning the SLLC capacity among
concurrent threads to maximize performance.

Although the aforementioned proposals have demonstrated
desirable performance improvement over LRU in simula-
tions, they are not practically useful due to the high storage
overhead entailed by them. Specifically, they are all based on
the assumption that each cache line has logA bits for its re-
reference interval prediction value (RRPV) [8] that is used to
estimate how soon an accessed block will be reused, where A
is the set associativity. But the logA-bit overhead per line is

1In this paper, locality specifically refers to temporal locality
2Utility is defined as a thread’s ability to reduce misses with
a given amount of allocated cache capacity.
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considered prohibitive for SLLCs according to industry stan-
dards [4]. As a result, since the uniprocessor era, commodity
processors have relied on lightweight LRU approximations
for cache management, such as the not-recently used (NRU)
replacement policy that requires just one-bit overhead in
each cache line. It has been experimentally shown that the
lightweight NRU is able to perform almost (99.52% [8]) as
well as LRU but still cannot provide optimized performance
for CMPs either.

Recent efforts have attempted to bridge the gap between
the theoretical cache research and practical SLLC designs.
Jaleel et al. [8] propose to use 2 bits in each line’s RRPV
field for a thread-aware dynamic SLLC replacement pol-
icy called TA-DRRIP. TA-DRRIP outperforms the baseline
LRU and NRU policies by coordinating locality optimiza-
tion for all of the co-scheduled threads. Rooted in the same
two-bit RRPV substrate, the recent work SHiP [9] further
improves over TA-DRRIP by accounting for the variations
in locality at the finer-grained memory instruction level for
re-reference interval prediction, but incurs more overhead
than the thread-level TA-DRRIP approach.

Through our analysis of and experimental study on prac-
tical SLLC capacity management solutions, we obtain two
important insights that counter the previous research: (i)
since the minimum-overhead NRU achieves almost the same
practical performance as LRU but lacks such theoretical
traits as the LRU stack property, it is possible to adopt
the minimum-overhead 1-bit RRPV substrate in the entire
SLLC and utilize monitors with good theoretical properties
yet at a slightly more storage cost for just sample sets, so
that the goals of overhead reduction and performance im-
provement can be achieved at the same time; (ii) both local-
ity and utility optimization opportunities are present in het-
erogeneous CMP workloads, but the practical schemes such
as TA-DRRIP and SHiP are oriented only towards locality
management, missing performance potentials provided by
utility optimization.

Hence, we propose a novel practical SLLC management
design, called COOP (an acronym for locality and utility
CO-OPtimization), which achieves higher performance than
both TA-DRRIP and SHiP but at comparable or lower over-
head. COOP uses a single bit in each line’s RRPV field,
and employs a classic LRU-stack hit profiler and a novel
logarithmic-distance BNRU (a.k.a., bimodal NRU, for thrash-
ing prevention) hit profiler to monitor the interleaved local-
ity and utility of each thread. Leveraging the information
about all co-scheduled threads, COOP spatially allocates
SLLC cache ways among the threads and temporally makes
the best use of their partitions in an interactive way, so
that the highest utility provided by either NRU or BNRU,
whichever is better, can be exploited by locality and utility
co-optimization for all of the threads. Our evaluation shows
that COOP improves the throughput performance for 200
random workloads by 7.67% on a quad-core CMP with a
4MB SLLC, all at the cost of only 17.74KB storage overhead
which is comparable to TA-DRRIP (16KB) but lower than
SHiP (25.75KB), while outperforming both of them (com-
pared to TA-DRRIP’s 4.53% and SHiP’s 6.00% throughput
improvements).

The rest of the paper is organized as follows. Section 2
elaborates on essential background and research motivations.
Section 3 describes the design and implementation of our
proposed solution, followed by a thorough performance eval-
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Figure 1: The Structure of a Cache Line

uation in Section 4. Related work is discussed in Section 5
and the paper concludes in Section 6.

2. BACKGROUND & MOTIVATIONS
Although the entire SLLC capacity can be accessed by

all cores, allowing free use, without constraints, does not
lead to efficient utilization of SLLC resources. Therefore,
various strategies have been proposed to make the best use
of the SLLC capacity. We will briefly describe their working
principles here but place our research in a broader context of
related work in Section 5. Since practical SLLC management
is our main focus in the paper, we will analyze the strengths
and weaknesses of the state-of-the-art practical schemes and
provide quantitative evidence in support of our conclusions.

2.1 Theoretical SLLC Management Proposals
As is illustrated in Figure 1, a cache line typically con-

sists of two parts, metadata and a data block. The meta-
data includes such fields as a tag, a re-reference prediction
value (RRPV), a valid bit, a dirty bit and other informa-
tion bits (e.g., coherence bits). Given the set associativity
A, the LRU replacement policy adopts logA bits for each
line’s RRPV field to indicate its current position in the LRU
stack. For instance, the RRPVs of the most-recently-used
and the least-recently-used blocks are 0 and A − 1 respec-
tively. We note that most previous SLLC management pro-
posals [2, 3, 5–7] are based on the assumption of logA-bit
RRPVs. But since this overhead is prohibitive for SLLCs
that have large set associativity from the industry’s point of
view [4], those proposals may arguably only be used for the-
oretical research. In general, the theoretical proposals can
be categorized into either alternative replacement policies
for locality management or capacity partitioning schemes
for utility optimization, as follows.

Locality-Oriented Alternative Replacement Poli-
cies: Because the LRU replacement policy aims to favor
cache access recency (or locality) only, it can result in thrash-
ing when the working set size of a workload is larger than
the cache capacity and the cache access pattern is locality-
unfriendly (e.g., a large cyclic working set [10]). Alternative
replacement policies, such as TADIP [2], SDBP [3] and NU-
cache [5], are proposed to optimize locality by temporally
assigning and adjusting lifetimes for cached blocks.

Utility-Oriented Capacity Partitioning Schemes:
The utility of a thread represents its ability to reduce misses
with a given amount of allocated SLLC capacity [6]. Al-
though threads may vary greatly in their utility, an LRU-
managed SLLC is oblivious of such differences when threads
are co-scheduled and their cache accesses are mixed. In re-
sponse to this shortcoming, several previous studies, such
as UCP [6] and PIPP [7], propose to spatially partition the
SLLC among competing threads based on the utility infor-
mation captured by per-thread LRU-stack profilers, notably
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Figure 2: The HPKIs (hits per thousand instructions) of LRU, BIP, NRU and BNRU as a function of the
SLLC capacity for the SPEC benchmarks. The x-axis shows the SLLC capacity measured in the number
of ways (given that the number of sets and line size are fixed), while the y-axis represents HPKIs. The
dotted roofline in each figure indicates the total number of SLLC accesses per 1k instructions (independent
of the SLLC capacity). The 8 benchmarks are divided into four classes according to their locality and utility
characteristics.

improving the performance over the baseline LRU replace-
ment policy.

2.2 Practical SLLC Management Schemes
The LRU approximations, such as the not-recently-used

(NRU) replacement policy, are practically adopted in com-
modity processors because its RRPV filed requires just a
single bit. In NRU, a 0-valued (or 1-valued) RRPV in-
dicates that the block was recently used (or not recently
used). Upon a cache hit, NRU updates the block’s RRPV
bit to 0. In order to select a victim block for eviction fol-
lowed by a cache miss, there are two possible cases: (i) if
there are any blocks with 1-valued RRPVs in the target set,
the first such block found by scanning the set will be se-
lected as the replacement candidate; (ii) otherwise, NRU
increments all blocks’ RRPVs and then repeats the process
(i) to find the replacement candidate. Upon a cache fill,
the RRPV of the newly-inserted block is set to 0. Accord-
ing to extensive experimental statistics [8], NRU achieves a
desirable 99.52% performance approximation to LRU. But
since LRU is not performance-effective for CMPs, the NRU
replacement policy that closely approximates LRU is not
performance-effective for the CMP SLLC management ei-
ther.

Recently, Jaleel et al. [8] have proposed a high-performance
practical replacement policy called RRIP (an acronym for
Re-Reference Interval Prediction). With 2 bits in the RRPV
field, a block can have any of the three different categories of
re-reference intervals: near (RRPV=0 or 1), long (RRPV=2)
and distant (RRPV=3). RRIP always predicts a long re-
reference interval for incoming blocks in an effort to prevent
the cache pollution due to a subset of incoming blocks be-
ing dead-on-fill. Additionally, the bimodal variant of RRIP
(called BRRIP) can prevent thrashing by predicting a dis-
tant (or a long) re-reference interval for an incoming block
with a high (or a complementarily low) probability. TA-

DRRIP is a thread-aware extension of RRIP to CMPs with
SLLCs by coordinating either RRIP or BRRIP for individual
threads under set-dueling and feedback control. Rooted in
the same 2-bit RRPV substrate, SHiP, proposed in the most
recent work [9], assigns either a distant or a long re-reference
interval to an incoming block, depending on whether or not
it is predicted to be dead-on-fill. Specifically, SHiP lever-
ages a history table and sample sets to dynamically learn
which memory instructions (identified by their PC signa-
tures) tend to insert dead-on-fill blocks, and predicts a dis-
tant (or a long) re-reference interval for new blocks if they
are inserted by those PCs (or otherwise).

2.3 Our New Perspective and Its Supporting
Experimental Evidence

If we apply the same categorization in Section 2.1 to TA-
DRRIP and SHiP, they are both classified as alternative re-
placement policies but for practical use in that they aim to
optimize locality for SLLCs. While the alternative replace-
ment policies excel in locality management, they are likely
unable to coordinate the best capacity provisioning among
all co-scheduled threads for utility optimization. This is due
to their lack of utility monitors [6], a critical component in
judicious capacity partitioning, which estimate how many
SLLC hits each thread would deliver with various capac-
ity allocated. Therefore, one of our research motivation
lies in the question of whether or not locality optimiza-
tion alone can provide high enough performance for prac-
tical SLLC capacity management. The answer to this ques-
tion, to be shortly backed with workload characterization
and performance comparison, is no, suggesting that local-
ity and utility co-optimization is indispensable to the best
utilization of SLLC resources. Further, if locality and util-
ity co-optimization is out of necessity, another key question
is whether or not the minimum-overhead 1-bit RRPV sub-
strate is sufficient for such a purpose. The experiments de-
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tailed in the following provide an affirmative answer to this
question.

2.3.1 Workload Characterization
Before elaborating on the workload characterization, we

supplement a little more background on the bimodal inser-
tion policy (BIP) [10] that is a thrashing-prevention replace-
ment alternative to LRU. Based on the logA-bit RRPV sub-
strate, BIP assigns A− 1 (or 0) to the RRPV of an incom-
ing block with a high (or complementarily low) probability,
in contrast to LRU’s constant 0-RRPV assignment for new
blocks. LRU and BIP are the two basic optional replace-
ment policies used in thread-aware dynamic insertion policy
(TADIP) [2] that functions for locality optimization. Given
that NRU is shown to closely approximate LRU, we are mo-
tivated to propose a new practical replacement policy, called
bimodal NRU (BNRU), which approximates BIP by filling
1 (or 0) into the RRPV of an incoming block with a high
(or complementarily low) probability.

Figure 2 illustrates the SLLC performance in terms of
hits per thousand instructions (HPKIs), for 8 of the bench-
marks in our study, as a function of assigned cache capacity,
managed by LRU, BIP, NRU and BNRU respectively (see
Section 3 and Section 4 for more details of experimental se-
tups). Here, with fixed 2048 sets and 64B lines assumed,
we can measure the capacity in terms of the associativity.
Looking at the performance aspects of the 4 policies in Fig-
ure 2, we can make the following observations: (1) the NRU
and LRU hit curves overlap each other nearly completely for
all of the 8 figures, indicating that NRU approximates LRU
almost perfectly regardless of the SLLC capacity and asso-
ciativity configurations; (2) the BNRU and BIP hit curves
also match each other very well, except for the benchmark
facerec, in a variety of SLLC configurations; (3) BNRU is as
capable as BIP for thrashing prevention, as evidenced in Fig-
ure 2 (a)-(c) where the BNRU and BIP hit curves are higher
than the NRU and LRU hit curves for the three benchmarks
omnetpp, sphinx3 and mcf within certain ranges of SLLC
capacity configurations. In addition, the three observations
also hold for other benchmarks in our study (see Table 2).

From the perspective of benchmark characteristics, the 8
benchmarks can be divided into four classes depending on
their locality and utility features. The first two classes rep-
resent the cases where the performance can be improved
with extra capacity allocated, but they differ in their NRU
vs. BNRU utility. The last two classes saturate in perfor-
mance after a minimal allocation of capacity, but with very
different hit rates. In the first class, as indicated in Figure 2
(a)-(c), benchmarks omnetpp, sphinx3 and mcf all have in-
ferior locality because their NRU curves are significantly be-
low the BNRU curves within certain capacity ranges (e.g.,
from associativity 2 to 20 for mcf ). If any of them runs in a
CMP with a mix of co-scheduled threads, an alternative re-
placement policy such as BNRU can potentially improve the
SLLC hit performance over NRU. These are the cases where
locality optimization can come into more prominent play
for SLLC management. For example, with the replacement
policy simply altered from NRU to BNRU for the same al-
located capacity of 8 cache ways, the SLLC hit performance
of mcf can be improved by 2.5x (≈ 42.4−12.2

12.2
).

In contrast, the workloads in the second class, represented
by applications astar, facerec and swim (illustrated in Fig-
ure 2 (e)-(g)), show good locality since their NRU curves are
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Figure 3: The difference between TA-DRRIP and
PUCP in throughput normalized to that of LRU
for individual quad-core workloads. Overall, TA-
DRRIP and PUCP improve the throughput over
LRU by 4.53% and 3.56% respectively. But, TA-
DRRIP and PUCP have different performance com-
fort and discomfort zones due to their fundamentally
distinct working principles and optimization objec-
tives of locality vs. utility.

never below the BNRU curves. However, they can still be
set apart from each other with respect to their utility. For
instance, when assigned 16 ways, astar has a higher utility
than facerec in that astar can yield a 22.53 HPKI (corre-
sponding to a hit rate of 87.3%) while facerec can deliver
only a 6.2 HPKI (with a hit ratio of 40.0%). If a CMP work-
load consists of applications all from this category, much less
room is available for locality improvement that alternative
replacement policies are good at, while utility optimization
is still likely to make a difference in performance by favoring
threads with higher utility in SLLC capacity partitioning
(e.g., preferring astar to facerec).

Figure 2 (d) and (h) illustrate the third and the fourth
classes whose applications require very few SLLC resources.
In particular, milc is a streaming application due to its high
miss rate regardless of the amount of allocated SLLC capac-
ity, while crafty is CPU-bound and can yield very high hit
rates given a small amount of allocated SLLC capacity.

2.3.2 Performance Comparison
The workload characterization experiments above indicate

that (i) NRU and its bimodal variant BNRU are competent
for favoring good locality and preventing thrashing respec-
tively, and (ii) locality optimization alone cannot work con-
sistently well for heterogeneous CMP workloads consisting of
threads with various locality and utility features. To quan-
titatively demonstrate the limitation of practical alternative
replacement policies that are oriented towards locality op-
timization only, we compose a simple practical utility-based
cache partitioning (PUCP) scheme and compare it against
the locality-oriented TA-DRRIP on 200 random quad-core
workloads (see Section 4 for experimental details). In essence,
PUCP makes cache-way partitioning decisions for co-scheduled
threads by relying on the per-core sampling-based LRU util-
ity monitors (the same as in [6]) and then leverages the NRU
replacement policy (instead of LRU in [6]) to manage each
thread’s allocated ways. More related details will be pre-
sented in Section 3. The final performance comparison re-
sult is that TA-DRRIP and PUCP improve the throughput
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performance over LRU by 4.53% and 3.56% on average re-
spectively, which indicates TA-DRRIP is better than PUCP
overall. However, if we investigate Figure 3 that illustrates
the difference in throughput normalized to that of LRU
between TA-DRRIP and PUCP for individual workloads
(sorted in ascending order), we can clearly see that there
are 112 out of the 200 workloads for which TA-DRRIP un-
derperforms PUCP. Since PUCP does nothing beyond util-
ity optimization with its LRU-based utility monitors and
the 1-bit NRU substrate, the detailed view of performance
difference in Figure 3 verifies our speculation on the limita-
tion of practical alternative replacement policies with local-
ity management alone. But utility optimization alone as is
provided by PUCP is not sufficient either, since TA-DRRIP
outperforms PUCP for the remaining 88 workloads, which
also contributes to TA-DRRIP’s better overall performance
in spite of its performance disadvantage for the 112 work-
loads. In summary, we can infer from this motivational ex-
periment that neither locality nor utility optimizations alone
can consistently perform well under a variety of workloads
for practical SLLC capacity management due to their differ-
ent working principles and optimization objectives.

3. DESIGN & IMPLEMENTATION
Our practical scheme, called COOP (an acronym for local-

ity and utility CO-OPtimization) is designed to achieve three
specific goals: (i) to base the SLLC capacity management
on the 1-bit RRPV substrate; (ii) to be aware of locality and
utility features of individual threads by profiling their NRU
and BNRU hit curves; and (iii) to decide on the SLLC op-
timal management policy by conducting interactive locality
and utility co-optimization for all co-scheduled threads.

3.1 The Overall Architecture
Figure 4 depicts an architectural view of COOP. In the

SLLC, every cache line has a single bit in its RRPV field. As-
sociated with each core, there is a locality & utility monitor
that dynamically profiles both NRU and BNRU hit curves
from the core’s SLLC reference sequence. In particular, the
NRU and the BNRU hit curves are captured by an LRU
profiler and a BNRU profiler respectively, both of which are
based on auxiliary tag directories (ATD) and the set sam-
pling technique [10]. On every time interval boundary, the
profilers feed the locality and utility information about sam-
pler sets to the decision unit. Based on the information, the
decision unit makes and enforces the capacity management
decisions of cache-way partitions and replacement policies
for all co-scheduled threads during the next time period.

3.2 The Locality & Utility Monitor
The locality & utility monitor counts the SLLC hits that

a thread would contribute if it were running alone, while the
amount of space assigned to it and the replacement policy
(NRU vs. BNRU) adopted to manage its allocated space are
both varied. By doing so, the monitor attempts to capture
the runtime interplay between locality and utility optimiza-
tions in the SLLC management. Assuming that an SLLC
has an associativity of 64, for example, the monitor counts
the number of hits a thread would contribute if it were allo-
cated 1-, 2-, . . . , or 64-way SLLC space, being managed by
NRU and BNRU respectively. Consequently, the monitor is
able to deduce both NRU and BNRU hit curves as functions
of cache ways, as illustrated in Figure 2 and generalized in

Figure 5. The two curves can jointly convey two critical
pieces of information:

• Which replacement policy should be adopted under a
given capacity quota for the thread. As depicted in
Figure 5, if the thread can get 4 cache ways, then it
should apply the NRU replacement policy to manage
the given amount of space, since the NRU hit curve
(solid) is above the BNRU curve (dotted) when the
way count equals 4; but if the assigned way-count is
12, the thread should alter the policy to BRNU that
can help it obtain far more hits. Therefore, with the
two curves, COOP can implicitly derive a composite
hit curve (bold) which consists of the higher segments
of the NRU or BNRU curves, as illustrated in Figure 5.
• What the preferred utility is under the best replace-

ment policy. For instance, if the hit counts of the de-
rived composite hit curve at the way counts of 10 and
12 are assumed to be 100 and 110 respectively, then we
know that the utility of 10 ways is better than that of
12 ways because 100

10
> 110

12
. In this way, COOP fully

exploits the interactions between locality and utility
dimensions.

As described below, we apply two different profiling mech-
anisms to deduce the NRU and the BNRU hit curves of a
thread respectively because of their distinct features.

Profiling an NRU Hit Curve: Since NRU and LRU hit
curves have been experimentally shown to be almost identi-
cal, as exemplified in Figure 2, we approximate an NRU hit
curve with its corresponding LRU hit curve, which can be
easily obtained by the well-established LRU utility monitor
(LRU UMON) [6]. In an LRU UMON, an auxiliary tag di-
rectory (ATD) with an associativity A and a size-A array of
stack-hit counters are adopted to implement Mattson’s LRU
stack algorithm [11], where A is also the SLLC’s set asso-
ciativity. Here, an ATD structure, with each of its entries
containing only a hashed tag, a valid bit and an logA-bit
RRPV field mimics the LRU stack of a small group of sam-
pler SLLC sets, as if the monitored thread were exclusively
occupying the whole space of these sampler sets. Upon every
hit on ATD, it reports the LRU-stack position where the hit
takes place so that the corresponding stack-hit counter h(i)
can be incremented by one. As a result of the LRU stack
property, the values of the NRU and the LRU hit curves at
way count i, denoted NH(i) and LH(i) respectively, can be
expressed by Equation 1, where h(k) is the hit counter at
LRU-stack position k and 1 ≤ k ≤ i ≤ A.

NH(i) ≈ LH(i) =
∑

1≤k≤i

h(k) (1)

Profiling a BNRU Hit Curve: The profiling of a
BNRU hit curve, on the other hand, is more challenging
because BNRU violates the stack property with its non-
deterministic 0-valued or 1-valued RRPV assignment for in-
coming blocks. Thus, the simple stack algorithm cannot be
applied to deducing a BNRU hit curve. To resolve this issue,
we first propose an exact but complex approach and follow
it with an approximate but practical solution.

The exact approach is also based on set sampling, and uses
a number A of ATD structures representing the A different
associativities from 1 to A. Therefore, in the exact approach,
we use a group of A ATD structures, {ATD(1), ATD(2),
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distance monitoring & curve fitting

approach to profiling the BNRU hit

curve for benchmark mcf (by ap-

proximating the exact curve).

ATD(3) . . . , ATD(A− 1) and ATD(A)}, to mimic BNRU’s
operations on the sampler SLLC sets with an associativity
ranging from 1 to A respectively. Although this approach
provides an exact measure of the BNRU curve, it requires
a significant number A of ATD structures, rendering the
implementation prohibitively expensive when A is large.

The practical solution is based on four key observations
derived from an analysis of the BNRU hit curves for the
benchmarks in our study (exemplified in Figure 2): (i) the
BNRU hit curve is monotonically non-decreasing with re-
spect to the assigned way count; (ii) the BNRU hit curve
is a concave function, which means that the curve’s gra-
dient is always non-increasing as the way count increases.
The intuition behind concave BNRU curves is that, with the
high-probability 1-valued RRPV assignment for an incoming
block, the block will most likely be victimized due to its 1-
valued RRPV upon a subsequent cache miss in the same set,
thus preventing other blocks from getting evicted (namely,
stationary).; (iii) the BNRU hit curve has a long flat tail as
the way count approaches a high value; and (iv) it is prov-
able that BNRU and NRU hit curves have the same value at
way count 1 (BH(1) = NH(1)), since neither of them lets an
incoming line bypass the cache. Therefore, it is sufficient to
monitor the BNRU hit values at a small number of discrete
logarithmic way-count points by using a dedicated ATD for
each of these points, and then apply the curve fitting tech-
nique to deducing the entire BNRU hit curve. Specifically,
as illustrated in Figure 6, we employ m = logA ATD struc-
tures {ATD(21), ATD(22), . . . , ATD(2m)} to capture the
BNRU hit counts {BH(21), BH(22), . . . , BH(2m)} in a

small number of way-count cases {21, 22, . . . , 2m}. We
carry out curve fitting based on the m discrete BNRU hit
values by linearly interpolating between the two monitored
BNRU curve counts (2k, BH(2k)) and (2k+1, BH(2k+1))
for 1 ≤ k ≤ m−1. Then, the BH(i) value can be calculated
iteratively by Equation 2. Figure 7 shows an example of ap-
plying our logarithmic-distance monitoring & curve fitting
approach with up to 64 ways for benchmark mcf.

BH(i) =


BH(2k), where i = 2k and BH(2k)

monitored by ATD(2k)

BH(i + 1)−∆, ∆ = BH(2k+1)−BH(2k)

2k

and 1 ≤ 2k < i < 2k+1 ≤ 2m = A

(2)

The specific design choice of monitoring at logarithmic
way-count points stems from our empirical observations men-
tioned above, suggesting a denser number of monitoring
points to more accurately profile the high-gradient portion
of the BNRU hit curve when A is small, which is also a prop-
erty of a logarithmic/geometric series. As a result, the prac-
tical solution needs only m = logA, instead of A, BNRU-
managed ATD structures at the associativities of 2, 4, . . . ,
A
2

and A respectively, as well as m BNRU-hit counters. It
is worth remarking that the storage overhead (measured in
the total number of ATD ways) required by the practical

BNRU profiling is 2 + 4 + 8 + · · · + A
2

+ A = 2×(A−1)
2−1

=

2 × (A − 1) < 2 × A, which is less than twice the stor-
age overhead required by a single A-way ATD structure for
the NRU/LRU hit curve profiling and makes our solution
very practical in hardware implementation. It must be noted
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Table 2: Selected Benchmarks & Classification

Class Descriptor Benchmarks 

I Poor  

Locality 

galgel, libquantum, mcf, omnetpp, 
sphinx3, xalancbmk 

II Good  

Utility 

astar, ammp, bzip2, calculix, facerec, 
GemsFDTD, swim, twolf, vpr 

III Streaming lucas, milc 

IV CPU-Bound crafty, eon, fma3d 

that, (i) the RRPV field of each BNRU-managed ATD entry
has only a single bit, and (ii) upon an access to one sam-
pler SLLC set, the LRU-managed ATD and the m BNRU-
managed ATDs are operated concurrently to profile both
NRU and BNRU hit curves.

3.3 The Decision Unit
With the locality and utility characteristics of co-scheduled

threads profiled during each time interval, the decision unit
will periodically determine the optimal space partitions and
replacement policies for individual threads. Since the space
partitioning logic of COOP is also utility-based and tar-
geted at maximizing the overall performance, we adopt but
with modification the framework of the lookahead utility-
based cache partitioning algorithm [6] in the decision unit.
The original algorithm evaluates every potential partition-
ing decision and provisions cache ways to a thread that cur-
rently has the highest utility of these ways based on its LRU
hit curve. We modify the algorithm to determine the best
utility-based partitioning of the cache ways according to the
composite hit curve, which is composed of the higher seg-
ments of the NRU and the BNRU hit curves.

In the decision unit, there is an m-bit partition quota
counter, an A-bit global replacement mask [12] and a single
locality management bit associated with each core, where
m = logA and A is the associativity. On each time interval
boundary, the SLLC’s space partitioning result for Corei is
kept in the partition quota counter, denoted as Qi, where
0 ≤ i ≤ N − 1. Assuming that A is greater than N , COOP
also guarantees that at least one way is provisioned to every
core. The global replacement mask is used to specify which
cache ways are currently allocated to the corresponding core.
For example, if a core is allocated with two cache ways, say,
Way 0 and Way 1, only the first and the second bits on its
global replacement mask are set to one. A core can access
any lines in an SLLC set but is only allowed to replace a
line in its own allocated ways. The locality management bit,
LMi, is utilized to indicate whether the NRU (LMi=0) or
BNRU (LMi=1) policy is adopted for the core to manage its
allocated SLLC cache ways. LMi can be determined by ex-
amining the difference between the NRU and BNRU curves
at the way count k that is also the value of Qi: the bit is
set 0 if NH(k) ≥ BH(k) or 1 otherwise.

4. EVALUATION
In this section, we first briefly describe our simulation-

based experimental methodology and then present and an-
alyze the evaluation results.

4.1 Evaluation Methodology
Simulation Setup: We simulate our scheme using the

cycle-accurate M5 full system simulator [13] with the key
configuration parameters listed in Table 1. We model a
quad-core CMP with two levels of on-chip caches. The L1
instruction and data caches adopt a coupled tag & data store
organization. For the shared L2 cache, we model decoupled
tag and data stores for each L2 slice and also account for
the NoC latency when calculating the L2 access time. The
SLLC capacity management schemes in comparison include
LRU (baseline), NRU, PUCP, TA-DRRIP, SHiP and our
proposed COOP scheme. PUCP and COOP make man-
agement decisions periodically every 5M cycles 3, and their
profiler hit counters are reset upon each periodic decision
boundary. We have not found any overflow problems with
these 16-bit hit counters in our experiments.
Performance Metrics: We adopt two standard metrics,
throughput and fair speedup, to quantify the CMP perfor-
mance. Specifically, throughput measures the utilization of
a system, while fair speedup balances both performance and
fairness. Let IPCi be the instructions per cycle performance
of the ith thread when it is co-scheduled with other threads
and SingleIPCi be the IPC of the same thread when it
executes in isolation. Then, for a system where N threads
execute concurrently, the formulas for the two metrics are
shown in Equation 3 and Equation 4 respectively.

throughput =
∑

i=1,2,··· ,N
IPCi (3)

fair speedup =
N∑

i=1,2,··· ,N
SingleIPCi

/
IPCi

(4)

Workload Construction: As listed in Table 2, we select
20 benchmarks from the SPEC CPU 2000 and 2006 bench-
mark suites and categorize them into four classes by inves-
tigating their locality and utility features via experiments
similar to Section 2.3.1. Class I is a collection of bench-
marks that exhibit poor locality and can benefit from judi-
cious replacement policies. The benchmarks in Class II have
excellent utility and need dedicated SLLC space partitions.
Class III is a group of streaming applications that require
little SLLC capacity and need to be prevented from pollut-
ing the SLLC. Finally, Class IV benchmarks are CPU-bound
with small working sets in the SLLC. From the four classes
of benchmarks, 200 random quad-core workloads are gener-
ated by randomly selecting 200 4-benchmark combinations
out of the 20 individual benchmarks.
Simulation Control: In the experiments, all threads un-
der a given workload are executed starting from a check-
point that has already had the first 10 billion instructions
bypassed. They are cache-warmed with 1 billion instructions
and then simulated in detail until all threads finish another
1 billion instructions. Performance statistics are reported
for a thread when it reaches 1 billion instructions. If one
thread completes the 1 billion instructions before others, it
continues to run so as to still compete for the SLLC capac-
ity, but its extra instructions are not taken into account in
the final performance report. This is in conformation with
the standard practice in CMP cache research [2, 3, 5–9].

4.2 Performance Comparison
Figure 8 shows the geometric mean of throughput per-

formance for NRU, PUCP, TA-DRRIP, SHiP and COOP,

3The period is experimentally tuned.
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Table 1: Major Configuration Parameters
Core four cores, Alpha ISA, in-order, IPC=1 except for memory accesses, 128/128 I/D TLBs, 44-bit physical addresses
L1 2-way, 32KB, 1-cycle delay, 16 MSHRs, write back & 4 write buffer entries for L1D, LRU-managed
L2 16-way, 4MB, 6/8-cycle tag/data store delay, totally 1024 MSHRs, write back & totally 256 write buffer entries

mesh NoC topology (1 × 2, 2 × 2, 2 × 4) with 1 cycle delay per hop; 300-cycle off-chip memory access delay
Schemes #sample sets = 1

32
× #SLLC sets for all sampling-based schemes; BNRU’s low probability = 1

32
; PUCP/COOP’s

LRU-managed ATD: 16-bit hit counters, 10-bit hashed tags, 4-bit RRPVs, 1 valid bit; TA-DRRIP: 10-bit saturating
counters; SHiP: 16K 3-bit saturating counters in the history table, 14-bit PC signatures + 1 reuse bit in each sampled
cache line; COOP’s BNRU-managed ATDs: 16-bit hit counters, 10-bit hashed tags, 1-bit RRPVs, 1 valid bit.
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(b) 4-Core Fair Speedup

Figure 9: Detailed views of the quad-core throughput and fair speedup improvement for TA-DRRIP, SHiP
and COOP. The performance values on each curve are sorted in ascending order.
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(b) Comparison between COOP and SHiP

Figure 10: The difference between COOP and the two state-of-the-art practical replacement policies in
throughput normalized to that of LRU for individual quad-core workloads.

normalized to the baseline (LRU) on the simulated quad-
core configuration. Averaged over all of the 200 random
workloads, COOP provides a throughput improvement of
7.67%, which is noticeably higher than the improvements
achieved by the practical replacement policies (TA-DRRIP:
4.53%, SHiP: 6.00%) and the simple utility-oriented scheme
(PUCP: 3.56%). The NRU replacement policy degrades
the throughput performance by 0.24%, which indicates that
both NRU and LRU are clearly inadequate for CMPs with
SLLCs. If we look closer at the details of throughput im-
provement in Figure 9(a), we can find that the worst case
performance of COOP is -9.57% and its best improvement
is up to 69.67%, while the (worst, best) performance mar-
gins for TA-DRRIP and SHiP are (-15.47%, 74.49%) and
(-15.90%, 53.21%) respectively. Figure 9(a) also shows that
the throughput performance curve of COOP is almost al-
ways above that of TA-DRRIP except for a very small frac-
tion of the 200 workloads (i.e., a very small x-axis range

at the end). COOP’s curve is also above that of SHiP ex-
cept for a small fraction of the 200 workloads (i.e., a small
x-axis range at the beginning), which means that COOP of-
fers a consistent and robust throughput performance that is
generally better than the two existing practical replacement
policies.

Figure 10(a) and Figure 10(b) show the head-to-head com-
parison between COOP and the two state-of-the-art schemes
for individual workloads. COOP outperforms the two prac-
tical replacement policies for the majority of the workloads,
and in many cases significantly. However, it does not do
so in all cases. We speculate that it is because COOP
must strike a balance between both locality and utility op-
timizations. COOP may not optimize locality fully when a
workload heavily or exclusively favors locality optimization
but does show stronger performance improvement over both
of the state-of-the-arts (indicated by the portions of bars
above the 0/equal line in Figure 10(a) and Figure 10(b)).

286



Throughput Fair Speedup
−2

0

2

4

6

8

10

N
o
rm

a
liz

e
d
 I

m
p
ro

v
e
m

e
n
t 

(%
)

 

 

NRU PUCP TA−DRRIP SHiP COOP

Figure 8: The 4-Core Configuration: the through-
put and the fair speedup improvement (over LRU,
in geometric mean) averaged over the 200 random
quad-core workloads for all of the schemes in com-
parison.

If we specifically compare Figure 10(a) against Figure 3
in Section 2.3.2, we can make the following two observa-
tions: (i) COOP significantly boosts the performance be-
yond capacity partitioning provided by PUCP by addition-
ally adapting to the better replacement policy between NRU
and BNRU; (ii) it relies on its partitioning module besides
the alternative replacement mechanism, which is based on
1-bit RRPVs, to surpass a TA-DRRIP-like replacement pol-
icy which only conducts locality optimization even with 2-bit
RRPVs. Therefore, COOP is arguably capable of bridging
the performance gap between the locality and the utility
optimization schemes via its co-optmization strategies.

In terms of the fair speed improvement, COOP improves
over LRU by 9.17%, which matches the 9.16% performance
improvement of SHiP. Other schemes, NRU, PUCP and TA-
DRRIP, improve the fair speedup metric by 0.02%, 5.41%,
7.19% respectively. Figure 9(b) depicts the detailed result
of fair speedups for individual workloads. While the curves
of COOP and SHiP are both above that of TA-DRRIP in
most cases, the difference between the curves of the two
bests seems to be minor.

However, we notice in both Figure 9(a) and Figure 9(b)
that SHiP’s curves are barely below the zero horizontal line,
while COOP’s curves have a small portion below. This may
suggest that SHiP is slightly more robust in the sense that it
seldom underperforms LRU. But this robustness may come
at the cost of its weakened ability to exploit the highest
performance when available, which is evident in Figure 9(a)
because the curves of both COOP and TA-DRRIP are above
that of SHiP at the end of the x-axis range. TA-DRRIP
seems to be able to exploit the highest performance, but
it underperforms LRU in quite a few cases. In this sense,
COOP also shows its ability to strike a reasonable balance
between the exploitation of the highest possible performance
and keeping performance robust in the worst cases.

4.3 Overhead Analysis
Table 3 gives a detailed comparison of hardware overhead

for the various schemes in this paper (see their specific con-
figurations in Table 1). For all of the schemes, the total
number of their RRPV bits as well as the extra monitoring
logic is counted into their total hardware costs. In partic-

Table 3: Overhead & Throughput

 LRU NRU TA-DRRIP SHiP COOP 

RRPVs 32KB 8KB 16KB 16KB 8KB 

Monitors 0 0 5B 9.75KB 9.74KB 

Total Overhead 32KB 8KB 16KB 25.75KB 17.74KB 

Throughput 1 0.9976 1.0453 1.0600 1.0767 

ular, for COOP, since it requires an LRU profiler and an
BNRU profiler for per-core locality & utility monitoring, the
ATD structures will dominate hardware overhead in its de-
sign. But the hashing function that has shown provably low
collision rate in [14] and the logarithmic-distance monitor-
ing technique in the BNRU profiler contribute to much less
cost in the per-core locality & utility monitor. Most im-
portantly, COOP is based on the minimum-overhead 1-bit
RRPV substrate, which can greatly help reduce the over-
head from the 2-bit RRPV substrate in both TA-DRRIP and
SHiP in spite of COOP’s extra monitoring logic. As a result,
COOP’s 3.88KB LRU profiler, 5.86KB BNRU profiler and
8KB RRPVs contribute to its 17.74KB total overhead. In
contrast, the recently-proposed practical scheme SHiP, re-
quires more hardware resources due to the large prediction
history table (6KB) and also additional PC signature stores
(3.75KB), in addition to the 16KB 2-bit RRPVs. Overall,
COOP can provide better performance improvement than
both TA-DRRIP and SHiP but at a comparable cost of stor-
age overhead to TA-DRRIP and a lower cost than SHiP.

5. RELATED WORK
As our paper focuses on the SLLC capacity management,

in what follows, we briefly review the representative work
related to the shared LLC organization.

5.1 SLLC Capacity Management
Theoretical Alternative Replacement Policies: As LRU is

ineffective in handling workloads with inferior locality, al-
ternative replacement policies have been proposed to adapt
management decisions to workloads’ specific locality char-
acteristics, by means of sophisticated block insertion, pro-
motion or victimization. The thread-aware dynamic inser-
tion policy (TADIP) [2] identifies the locality of individual
threads through set-sampling and dueling, and then coordi-
nates locality optimization for all of the co-scheduled threads
under feedback control. The next-use cache (NUcache) [5]
scheme differentiates the locality of individual memory in-
structions, selects a small group of instructions with supe-
rior locality through a cost-benefit analysis and allows their
inserted blocks to stay longer in the SLLC by the FIFO
replacement policy. Based on LRU-managed set samples
and skewed dead-block prediction tables, the sampling dead
block prediction (SDBP) scheme [3] learns which memory in-
structions (identified by their PC signatures) tend to access
cache blocks that immediately become“dead”, victimizes the
blocks touched by those PCs prior to default replacement
candidates and also bypasses predicted dead-on-fill blocks.

Theoretical Capacity Partitioning Schemes: The commonly
used LRU policy implicitly divides the SLLC capacity among
competing threads on a miss-driven basis, which is also inef-
fective in that a thread may occupy much capacity by bring-
ing into the cache a number of missed blocks but without
re-referencing them. SLLC capacity partitioning is targeted

287



at allocating LLC resources to threads on a utility, fairness
or quality-of-service (QoS) basis. The utility-based cache
partitioning (UCP) [6] and the pseudo insertion/promotion
partitioning (PIPP) schemes are proposed to partition the
SLLC space among co-scheduled threads to maximize the
throughput performance. With the thread-level utility in-
formation profiled by LRU utility monitors (LRU UMON)
that are based on Mattson’s LRU stack algorithm [11], UCP
partitions SLLC space in the form of assigning cache ways
to threads and favors those with higher utility under LRU,
while PIPP achieves a similar effect by relying on a com-
bination of insertion and promotion policies. In [15], Kim
et al. propose fairness-based cache partitioning so that all
threads are slowed down equally from where each thread
monopolizes the SLLC. In [16], Nesbits et al. introduce the
notion of virtual private caches to facilitate QoS guarantees.
Zhou et al. [17] argue that the SLLC miss count, which is
a commonly used metric in the literature, is inadequate for
QoS considerations. They propose to take into account the
measures of both miss count and miss penalty of each thread
when performing QoS-oriented SLLC partitioning.

5.2 Hit-Latency Reduction
In the context of non-uniform cache architecture (NUCA)

[18], the SLLC organization can incur higher hit latencies,
because the block being accessed by a core may reside in a
non-local SLLC slice. Victim replication (VM) [19] reduces
SLLC hit latency by retaining/replicating each core’s L1 vic-
tim blocks in its local SLLC slice if a victim’s home slice
is non-local. Noticing that blind replication would dimin-
ish the effective SLLC capacity and in turn adversely affect
performance, the adaptive selective replication (ASR) [20]
mechanism selectively replicates shared read-only data and
adaptively determines the replication level that minimizes
hit latency without an obvious increase in cache misses.

5.3 Page-Coloring Management
Page coloring is an OS-based approach to cache manage-

ment by manipulating an overlapped section (namely the
page color) between a physical page index and an SLLC set
index. First proposed in [21], by using the physical page in-
dex rather than the set index in determining a block’s home
LLC slice, OS-assisted SLLC management is shown to have
a direct and flexible impact on CMP’s SLLC hit latency
and sharing degrees. Lin et al. [22] propose to partition the
SLLC capacity to optimize throughput, fairness or QoS for
CMPs by allocating page colors to different cores. Awasthi
et al. [23] propose to utilize shadow address bits in mi-
grating shared pages to optimal locations. Chaudhuri [24]
devises a HW mechanism to support the decision-making on
when and where to migrate an entire page so as to amortize
the performance overhead. A recent SLLC design called re-
active NUCA (R-NUCA) [25] classifies SLLC accesses into
distinct categories and adapts data placement, replication
and migration to individual categories via page coloring.

6. CONCLUSION
The research community has introduced a substantial vol-

ume of theoretical proposals to optimize either locality or
utility in the SLLC capacity management. But their high
storage overhead for re-reference interval prediction discour-
ages the industry from adopting them in practical CMP de-
signs. Although there are already two practical replacement

policies TA-DRRIP and SHiP that significantly reduce over-
head by relying on a 2-bit RRPV substrate, their perfor-
mance is suboptimal due to their single-pronged approach
of locality optimization. Different from the existing studies,
our proposed COOP design (i) combines the strengths of
both the minimum-overhead 1-bit RRPV substrate and the
profilers with good theoretical traits and, importantly, (ii)
carries out locality and utility co-optimization in capacity
management. By employing lightweight monitors that pro-
file both NRU (approximated by LRU) and BNRU hit curves
(curve-fitted with logarithmic-distance monitoring), our pro-
posed design can exploit the co-optimized locality and utility
of concurrent threads and thus effectively manage the SLLC
capacity for CMP workloads with heterogeneous resource re-
quirements. Our execution-driven simulation shows that the
proposed scheme improves the throughput performance over
the baseline LRU for 200 random workloads by 7.67% on a
quad-core CMP with a 4MB SLLC, outperforming both TA-
DRRIP (4.53%) and SHiP (6.00%), all at the cost of only
17.74KB storage overhead that is slightly higher than TA-
DRRIP (16KB) but lower than SHiP (25.75KB).

The present work opens up opportunities for future re-
search. For instance, our current proposed design is evalu-
ated using multiprogrammed workloads for which the het-
erogeneous capacity requirements of co-scheduled threads
are the most important concern. But for multithreaded
workloads, the interactions between data sharing and capac-
ity sharing among threads need to be taken into account in
the SLLC management [26]. In our future work, the perfor-
mance impact of COOP on multithreaded workloads will be
investigated, for the purpose of devising an amended scheme
that incorporates enhancements to promote both data and
capacity sharing.
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