
SUV: A Novel Single-Update Version-Management Scheme for Hardware
Transactional Memory Systems

Zhichao Yan∗, Hong Jiang†, Dan Feng∗�, Lei Tian∗† and Yujuan Tan∗
∗School of Computer Science

Wuhan National Laboratory for Optoelectronics
Huazhong University of Science and Technology, Wuhan, China

Email: zhichao yan@smail.hust.edu.cn, {dfeng,ltian}@mail.hust.edu.cn, tanyujuan@gmail.com
†Department of Computer Science & Engineering

University of Nebraska-Lincoln, Lincoln, USA
Email: jiang@cse.unl.edu

Abstract—In order to maintain the transactional semantics,
Transactional Memory (TM) must guarantee isolated read and
write operations in each transaction, meaning that it must
spend a non-negligible and potentially significant amount of
time on keeping track of the transactional modifications in
its undo or redo log and switching to the proper version at
the end of each transaction. Existing TMs failed to minimize
the overheads incurred by these operations that are poised
to impose more significant TM overheads in current and
future many-core CMPs. A direct consequence of this is that
extra and different data movements are needed to manage
these modifications depending on commit or abort. To address
this problem, we propose a novel Single-Update Version-
management (SUV) scheme to redirect each transactional store
operation to another memory address, track the mapping
information between the original and redirected addresses, and
switch to the proper version of data upon the transaction’s
commit or abort. There is only one data update (movement)
in our SUV regardless of commit or abort, thus significantly
reducing the TM overheads while allowing it to exploit more
thread parallelism. We use SUV to replace version-management
schemes in some existing hardware TMs to assess SUV’s perfor-
mance advantages. Our extensive execution-driven experiments
show that SUV-TM consistently outperforms the state-of-the-
art HTM schemes LogTM-SE, FasTM and DynTM under the
STAMP benchmark suite. Moreover, we use CACTI to estimate
the hardware overheads of SUV and find it is feasible in
hardware implementation.

I. INTRODUCTION

Synchronization primitives with various complexities and
overheads have been widely used to ensure the correct exe-
cution of multiple threads competing for the shared resources
in the increasingly common multicore- and manycore-based
multiprocessing environment. There have been a plethora
of studies on the tradeoff between performance and pro-
grammability of various synchronization primitives. Among
existing proposals, Transactional Memory (TM) [1] is ar-
guably one of the most competitive methods to hide syn-
chronization complexity while providing good performance.
Apart from a great deal of attention being paid by the aca-
demic community, the TM technology has been employed

in commercial products by a number of leading industrial
companies in their processor chips, including Sun Microsys-
tems [2], Azul [3] and IBM. In particular, IBM’s Blue
Gene/Q [4], a general-purpose commercial microprocessor
that employs this technology, will be shipped in 2012 to be
used as the building blocks for the Sequoia supercomputer
at Lawrence Livermore National Labs [5], which represents
a big leap forward for the TM technology in its applications
in the real world.

A TM system organizes the potentially racing blocks’
executions in transactions, which are each composed of a
series of program instructions and are ensured to execute
atomically and in isolation. To maintain atomicity and iso-
lation, two key designs, namely, conflict management and
version management, are employed to determine when to
detect and how to resolve a conflict, and where to store
the speculative modifications and how to merge the uncom-
mitted data with the safe memory respectively. And they
must be carefully designed to appropriately complement and
traded off between them to achieve the best performance/cost
ratio [6].

The transactional notion guarantees that the transaction’s
modifications either perform fully on commit or none at
all on abort, and any modifications during the transaction’s
execution cannot be accepted until the transaction has com-
mitted its work successfully. In particular, a transactional
read or write operation must acquire the access permission
and hold it until the end of the transaction, an important
TM property known as isolated-read or isolated-write. Any
memory access violating the isolated-read or isolated-write
property is regarded as a transactional conflict and needs
a proper solution to maintain the isolation. Time spent on
holding the permission is called the isolated-read window
or isolated-write window, which determines the exclusive
period for each shared variable, a key factor of contention.
The time spent on managing the transactional modifications
by the version management constitutes a significant part of
the isolation window (isolated-read window or isolated-write

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.22

131

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.22

131

Table I: The Abort Behaviors Reported in Published Studies

Study Abort Ratio Evaluation Environment and Workloads

LogTM [7] up to 15% Splash2 applications run under LogTM

PTM [8] up to 24% Splash2 applications run under PTM

LogTM-SE [9] 30% to 40%
Raytrace and BerleleyDB aborted about
30% and 40% transactions respectively

FasTM [10] up to 4.0%
Evaluate Micro-benchmarks, Splash2
and STAMP under FasTM

SBCR-
HTM [11]

up to 75.9%
Evaluate STAMP under HTM with
Speculation-Based Conflict Resolution

LiteTM [12] up to 79.4% Evaluate STAMP under TokenTM

Lee-TM [13] up to 72%
Five implementations of Lee’s routing
algorithm run under DSTM2

TransPlant [14] up to 79%
Automatically generated a program
based on the desired characteristics

RMS-TM [15] up to 69%
Selected RMS applications run under
Intel’s prototype STM compiler

window for each shared variable). It is therefore critical to
reduce this time by optimizing the version management, the
focus of this paper, in order to minimize the forced serializa-
tion among multiple transactions, which in turn enables more
transactional parallelism to be exposed, especially under
high-contention workloads.

In general, there are two main categories of version-
management schemes, the optimistic schemes (also known
as the eager schemes) and the pessimistic schemes
(also known as the lazy schemes). Optimistic version-
management is optimized for commits while pessimistic
version-management is optimized for aborts because the
former is premised on the unlikelihood of ever aborting a
transaction while the latter incurs more overheads on commit
than on abort. However, we argue that neither is efficient
for many-core CMPs of the future generation where there
will be increasingly more memory conflicts that must be
resolved with a lot of coarse-grained transactions. This is
because, while the former must maintain the undo log upon
each transactional store to hold the old data and require extra
data movement on abort, the latter must maintain the redo
log to hold the new data and redo all the transactional store
operations on commit and its buffer overflow will result
in additional memory accesses. Optimistic schemes are
designed to optimize commits that are generally considered
more likely than aborts, for which pessimistic schemes are
ill-suited. However, recent observations of increasing abort
ratios in coarse-grained and high-contention applications
demand that overheads due to aborts must also be reduced
in order to expose more parallelism that would otherwise be
blocked by lengthy and/or frequent aborts. As implied by
published results on the significant abort ratios of represen-
tative applications listed in Table I, we believe both commit
and abort operations should be optimized, especially in the
future many-core environment where thread contentions are
expected to be very high. This issue provides an opportunity
to optimize existing transactional memory systems so that
they will perform consistently well on both commit and abort
operations, which is one of the main motivations for this
paper.

TX2

TX1

st b

b>undo log

abort

end

start

start

st b

b>undo log

Conflicted

commit

end

ld a

st c

c>undo log

st d

d>undo log

st e

e>undo log

ld a

TX1

st b b>redo log

commit

end

start

ld b

TX2

start

st a

Conflicted

Negotiation

abort

end

Abort TX2 ld a

st c c>redo log

st d d>redo log

st e e>redo log

Overflow

Overflow

Overflow

Overflow

ld c

The Eager Scheme The Lazy Scheme

ld c

TX3

start

abort

end

Conflicted

Negotiation

Abort TX1

undo log>e

undo log>d

undo log>c

undo log>b Abort TX3

redo log>b

redo log>c

redo log>d

redo log>e

The undo log is stored in

the cacheable memory

The redo log is usually buffered in the

L1 data cache/write buffer, which may

overflow to the main memory

E
x
ecu

tio
n

 T
im

e

Figure 1: Repair and Merge Pathologies in Existing Version Management
Schemes Lengthen Their Isolation Windows

Our preliminary study of the existing version-management
schemes based on the high-contention and coarse-grained
workloads, such as the STAMP benchmark suite, reveals
two main sources of TM overheads [16]. One source of
TM overheads is the data movements involving the undo
log used in the optimistic schemes such as LogTM [7]
that can induce the repair pathology on abort, in which
the extra time spent on abort to repair the old data will
lengthen the isolation window of the aborted transaction’s
shared data while attempted accesses to these shared data
by the surrounding transactions will lead to transactional
conflicts that will block the thread level parallelism. This
pathological case will become more pronounced under the
high-contention and coarse-grained workloads and possibly
lead to a vicious cycle. Another source of TM overheads
is the data movements resulting from the data overflow
of the redo log used in the pessimistic schemes such as
TCC [17] that can induce the merge pathology on commit,
in which the extra time spent on commit to merge the new
data with the memory will lengthen the isolation window of
the committed transaction’s shared data while the attempted
accesses by the surrounding transactions to these shared
data will lead to transactional conflicts that will block the
thread level parallelism. Again, this case will also worsen
under the high-contention and coarse-grained workloads to
induce a possible vicious cycle. Even the hybrid schemes
that combine elements of the optimistic and pessimistic
approaches in some way and can partially mitigate the repair
pathology, such as FasTM [10], are still vulnerable to the
repair and merge pathologies. Both the repair and merge
pathologies stem from extra data movements in the version-
management schemes that lengthen the isolation-window to
introduce more transactional conflicts with the surrounding
transactions, as elaborated next.

To better understand the problem, we use an example to
illustrate the repair and merge pathologies respectively in
Figure 1. In an optimistic scheme, apart from the repair time
on abort to restore the pre-transaction old state, extra time is
needed to store the old value to the undo log before updating
the new value in-place upon each transactional modification.

132132

Both may lengthen the isolation-window for the shared vari-
ables especially on abort where the surrounding transactions’
accesses to these shared variables will conflict with the
aborting transaction during its restoration process. In this
example, TX3 is aborted due to the conflicted access to
the shared data during TX1’s restoration process. And had
TX1’s abort operation taken less time, this conflict would
have been avoided, thus exposing more thread level paral-
lelism. Fortunately, since optimistic schemes such as LogTM
couple the undo-log to hold the old data and update new data
in-place, they are prevented from the data overflow from the
limited buffer that is unavoidable in pessimistic schemes
such as TCC under the coarse-grained workloads. While
pessimistic schemes can hide the data movement latency
by organizing the new data in the redo-log and storing it to
the L1 cache or write buffer with the aid of the improved
cache coherence protocol, this data can still be overflowed to
the main memory due to the capacity and conflict problems,
which will degrade application’s performance significantly.
For the example in Figure 1, if TX1’s commit operation had
spent less time on merging the overflowed new data in the
redo log, TX2 would not have conflicted with TX1, thus
exposing more thread level parallelism. However, as more
and more coarse-grained and high-contention workloads are
introduced in TMs, the adverse impact of the repair and
merge pathologies will likely become one of the main
forces preventing the thread level parallelism from being
exposed and exploited, especially in future TM applications
of coarser granularity and higher contention.

To overcome these shortcomings of existing version-
management schemes in hardware transactional mem-
ory (HTM), we propose a novel Single-Update Version-
management (SUV) approach for HTM, called SUV-TM,
which has the potential to significantly outperform the
state-of-the-art version-management schemes. The basic idea
behind our SUV is to redirect each transactional store
to another memory address, while tracking the mapping
between the original and redirected addresses, and switching
to the proper version of data upon commit or abort. The
salient feature of our SUV-TM approach lies in the fact that
only one update operation is needed whether the transaction
commits or aborts, thus avoiding the overheads due to
extra data movements. More importantly, these eliminated
overheads imply narrowed isolation windows (i.e., forced
serialization of transactions) for HTMs, thus unlocking more
transactions earlier and exposing more thread parallelism for
performance gains.

Through the work of this paper, we aim to make the
following contributions:

(1) We propose a novel Single-Update Version-
management (SUV) scheme for HTM to overcome
the shortcomings of the existing state-of-the-art
version-management schemes that incur significant
overheads on both commit and abort;

(2) We prototype SUV-TM in a popular CMP simulator
and conduct extensive execution-driven evaluations
in both fine-grained and coarse-grained transactional
applications, and the experimental results show that
SUV-TM outperforms the state-of-the-art LogTM-SE
and FasTM schemes by 56% and 9% respectively for
all applications of the STAMP benchmark suite, and
95% and 12% respectively for the five high-contention
applications of the STAMP benchmark suite. Further,
the experimental results show that the DynTM inte-
grated with SUV as its version-management scheme
outperforms the original DynTM based on FasTM by
9.8% and 18.6% respectively for all applications and
the five high-contention applications of the STAMP
benchmark suite.

(3) We use CACTI to estimate the overheads of SUV, es-
pecially on access time, energy consumption and area
of the first level fully-associative redirect table (the
main component used in SUV), and the results show
that SUV is feasible in hardware implementation.

The rest of the paper is organized as follows. Section II
introduces the necessary background and related work. Sec-
tion III describes the architecture of SUV-TM. Design and
implementation are presented in Section IV. The evaluation
environment and experimental results are presented and an-
alyzed in Section V. The paper is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

It has been a long-standing problem to find more efficient
alternatives to the notorious lock in shared memory systems
to exploit more thread parallelism and make parallel pro-
gramming easier [1]. Existing solutions have performance
benefits but are too hard for ordinary users to write correct
programs. The main drawback of these methods lies in
their lack of efficient mechanisms to manage complexity.
Emerging as a new programming model, TM provides the
ability of composition to ease the burden on programmers
to write parallel programs correctly and enhances the ab-
straction level by using transactions to organize the parallel
executions.

Since version management in TM is the main thrust of this
paper, we will concentrate on introducing the background
and existing research in the literature related to this issue.
Most research on TM in the literature focuses on space vir-
tualization to support the overflowed transactions, instead of
optimizing version management. We believe that the reasons
for this focus are twofold. First, earlier transactional work-
loads are largely transformed from highly optimized lock-
based programs, resulting in transactions in these workloads
being generally fine-grained and low-contention. The fine-
grained and low-contention nature of these workloads makes
the overhead of version management relatively low. Second,
since most side effects of the TM execution can be attributed
to the conflicting accesses from the surrounding transactions,

133133

whose behaviors are too complex to be effectively handled
by the existing conflict management policies, a great deal of
effort has been put to designing novel conflict management
schemes while ignoring the important impact of version
management.

In this paper, we argue that version management in TM
has a significant impact on TM overhead and it is critical to
reduce the isolation window by optimizing version manage-
ment to minimize the forced serialization among multiple
transactions, thus exposing and exploiting more transac-
tional parallelism, especially under high-contention work-
loads. Unfortunately, existing version-management schemes
by and large fail to minimize the isolation window [18]. For
example, existing optimistic version-management schemes
such as LogTM [7], OneTM [19], LogTM-SE [9] and
TokenTM [20] must write the old values to the undo log
in a thread’s private space before updating the new values
in place and trapping into a software library to restore
the old values on abort. This leads to one load and one
store on commit, along with an extra load and store on
abort for each transactional write. In particular, trapping
into a software library on abort under high-contention ap-
plications dramatically widens the isolation window, which
will in turn induce more conflicts, leading to a vicious
cycle and thus significantly degrading the performance (See
Figure 1). Meanwhile, there are at least two extra cache
accesses that result from reading the old value and writing
it to the undo log in order to maintain the undo records.
Ideally, the cost of these extra accesses should be hidden
by subsequent non-memory instructions, thereby avoiding
processor stalls. However, it may be difficult to hide these
accesses without adding extra L1 data ports as the num-
ber of instructions per cycle increases or facing a stream
of continuous transactional store instructions [21]. On the
other hand, pessimistic version-management schemes such
as TCC [17], LTM [22], VTM [23], RTM [24], Scalable-
TCC [25], FlexTM [26] and Rock processor [27] buffer the
speculative values in a private memory space and broad-
cast the new values on commit, leading to added time on
commit that may in turn lengthen the isolation windows.
Additionally, the limited private memory space can easily
overflow under coarse-grained transactions, incurring extra
memory accesses and further degrading the performance. For
example, when a block is evicted from the buffer, additional
time is needed to fetch the data from the main memory.
To make things worse, the amount of data moved along
this route can be very significant if the miss happens in
a loop structure. UTM [22], PTM [8] and XTM [28] are
proposed to handle the overflowed transactions. Meanwhile,
Object-Aware HTM [29] is proposed to exploit the data
organization of object-oriented language, which updates
an object’s pointer to point to the new data on commit
and requires a significant change to the existing memory
management system to organize and manage data in objects.

FasTM [10] exploits the inconsistency between the L1 cache
and the higher memory hierarchy to prevent the new value
from spreading to the higher memory hierarchy until the
transaction commits its work. However, whenever overflow
occurs, it degenerates to LogTM-SE. Recently, DynTM [30],
based on FasTM [10], is proposed to combine the advantages
and avoid the disadvantages of existing version-management
and conflict-management schemes, but it is highly dependent
on the history-based selector (i.e., a predictor) to choose
the execution mode of the transactions and degenerates to
the existing schemes with inaccurate predictions, thus again
suffering from the known side effects of data movements.
Concurrently with our SUV scheme, A. Armejach et al. [31]
propose to use a reconfigurable L1 cache to reduce the data
movement overheads, which requires more silicon area for
the reconfigurable cache that is dedicated for transactional
access operations exclusively.

Generally speaking, optimistic version-management
schemes are more suitable for handling the applications
whose transactions are most likely to commit, while
pessimistic version-management schemes are optimized
for abort. However, if the applications do not behave as
expected, these version-management schemes will incur
significant overheads that offset the performance benefits
of TMs. The root cause of this problem is the significant
amount of time spent by existing version-management
schemes to maintain various logs that in turn lead to serial
accesses to the logs and incur many data movements,
thus widening the isolation windows and decreasing the
exposure of thread parallelism. Conflict management can
schedule the conflicted transaction to avoid some pathology.
However, after the comprehensive evaluation on various
transactional workloads, a common conclusion is that there
is no known policy that can perform universally well under
all settings [32]. So it is time to exploit the potential in
the version management schemes to expose more thread
parallelism.

Earlier studies on TM use micro-benchmarks or par-
allel applications from benchmark suites like SPLASH-
2 [33] to evaluate the performance. However, recent in-
vestigations into more complicated benchmark suites such
as STAMP [34], Lee-TM [13], TransPlant [14], and RMS-
TM [15] show that there are far more conflicts occurring in
multi-threaded applications than previously assumed, result-
ing in more transactions being aborted due to conflicts [35].
Table I lists the abort behaviors of applications reported in
published studies, which clearly suggests that, while more
optimizations should be made on the expected and common
commit operations, the side effects of abort operations can-
not be ignored, especially for the emerging coarse-grained
and high-contention applications. Lee-TM, TransPlant and
RMS-TM show an increased abort ratio and that there is
no absolute precedence of commit to abort, and vice versa.
We believe that it is time to rethink the version-management

134134

schemes of HTMs to adapt to the current and future coarse-
grained and high-contention applications. For HTMs with
optimistic version management, even the low abort ratio can
degrade the performance dramatically because trapping into
software to restore the old values in the undo logs consumes
a lot of time before releasing the access permission. On the
other hand, pessimistic version-management HTMs should
optimize the commit operations because they are still the
expected and common case in transactional applications.

Our analysis above indicates that existing version manage-
ment schemes share a common drawback in that they require
extra data movements, thus widening the isolation windows.
And the high-contention application environment makes the
system more vulnerable to the repair and merge pathologies
(as discussed in Section 1). Therefore, we propose SUV-TM,
which completely avoids extra data movements by storing
the new values in the redirected locations and keeping
track of the redirected mapping information in a zero-
latency redirect table for commit and abort. Only one update
is needed in SUV-TM whether the transaction commits
or aborts, thus narrowing the isolation windows to allow
more thread parallelism to be exposed and exploited. Our
experimental results (see Section 5) show that this method
is feasible and effective.

III. THE SUV-TM ARCHITECTURE

SUV decouples the version-management scheme from
the undo or redo logs, by directly storing the new values
of transactional write operations to the proper address and
holding the mapping information in a redirect table. It can
be implemented in either the eager or the lazy mode by
changing the default pointer to the proper data. As we
discussed earlier, commit is a more common operation than
abort and thus should be optimized, which makes it suitable
to implement SUV-TM in the eager mode. As SUV provides
a fast switch mechanism to point to the old values on abort
while saving time on maintaining the undo logs, it has a great
potential to optimize the abort operation as well. Moreover,
we also integrate SUV in DynTM to learn its potential in the
dynamic mode(See Figure 9). Here we use the eager scheme
as the case to illustrate the architecture of SUV-TM.

SUV-TM follows a two-pronged approach that uses the
read/write signatures to detect conflict eagerly and the redi-
rect table to support eager version-management, as shown
in Figure 2. Read/write signatures are compact encodings
of address sets accessed in transactions that are used to
track the read-set and write-set. SUV-TM uses a write
redirect technique to achieve eager version-management,
where actual data is written to the redirected location while
the redirect entry is stored in the redirect table to maintain
the mapping information. Each transactional modification is
required to hold both the old and new values in the original
and redirected addresses until the end of the transaction. If
the transaction is completed, the space holding the old values

can be reclaimed for the subsequent operations without any
extra space overhead or data movement except for storing
the redirect entries.

The register checkpoint module takes snapshots of the
processor so that SUV-TM has the ability to revert to the
processor’s state prior to the transaction. The signature mod-
ule is used to detect transactional conflicts among different
transactions. The TM nest register counts the transactional
depth to support nesting composition. The two-level redirect
table is used to hold redirect entries in hardware, which
keeps track of the mappings between the original and the
redirected addresses. A redirect-entry pointer is added to
point to the available slot in the preserved pool, so as to
easily redirect the next store operation. The overflow of the
redirect table is indicated by the use of the table overflow
flag when the two-level redirect table cannot hold all redirect
entries and an extra pointer is used to point to the specific
data structure for swapped out entries.

Each core in SUV-TM employs a zero-latency private
redirect table to hide the latency of accessing the redirect
entries while all cores in the CMP share a larger global
redirect table. The redirect entries in the redirect table main-
tain the relationships between the original and the redirected
addresses. In order to save the on-chip area cost, SUV-TM
exploits the address clues on both the L1 data cache and the
TLB to calculate the original and the redirected addresses.
As shown in Figure 3, for example, the redirect entry
represents the redirection of the original address 0x1000040
to the redirected address 0x8080. The L1 data cache set
index bits are stored in the redirect entry, from which the
original address can be obtained by concatenating these bits
with the tag bits in cache. While SUV-TM automatically
allocates a page in the preserved redirect pool to store the
new values written by transactional store operations, the
page mapping is stored in TLB. Thus each of SUV-TM’s
redirect entries stores an index to the corresponding TLB
entry containing the physical page address, from which the
redirected address can be obtained by concatenating it with
the in-page offset. In our current prototype configuration
described in Section 5, a first-level redirect entry contains
22 bits in size (i.e., 7-bit L1 cache index, 2-bit present
state, 6-bit TLB index and 7-bit in-page offset). The second-
level table needs more index bits than the first-level table to
represent the original address. The redirect table employs a
simple coherence protocol to guarantee its correctness, as
detailed in the next section.

SUV-TM performs the redirect operations in a preserved
memory pool whose size can be adjusted as needed. There
are four states for each entry (See Table II) that help
determine how past transactional redirect operations will
affect future memory accesses. Two bits per entry, a global
bit and a valid bit, are used to indicate these four states,
where two values (with the global bit set to “1”) indicate that
the entry is valid to all memory accesses (inside and outside

135135

addr1 addr2
addr2

addr1 old value

transaction {

store r1, (addr1);

}
single update

redirect entry

Tag State Data L1 SharersShared

L2 Cache

User Registers
Register

Checkpoint

L1

Cache

R/W Signature

Summary Signature

Tag State Data

original address redirected addressstateRedirect

Table

(First Level)

Redirect Summary

Signature
Redirect Entry Pointer

TM Nest Counter

Data Overflow Flag

Redirect Summary

Bit Vector

Table Overflow Flag

Table Overflow Pointer

original address redirected addressstate
Redirect Table

(Second Level)

regs

A

B

m

u

x

m

u

x

A

L

U

sign-

extend
I

ADD

addr1 addr2v

m

u

x

ALU

output

First level Redirect Table is

implemented in fully associative

cache and integrated in pipeline

new value

Figure 2: An Architectural View of SUV-TM

Table II: The States Represented by A Redirect Entry

State Bits
Status Explanation

G V
0 0 The private invalid entry

1 0 Speculatively deletes a global valid redirect entry

0 1 Speculatively adds a local valid redirect entry

1 1 The global redirect entry

Origianl AddressState Redirected Address

Tag State Data

0x800 valid XXX

L1 Data Cache

State Logical Page Physical Page

valid 0xA00 0x4

TLB

TLB Index In Page Offset

L1 Redirect Entry
page

0x4

VG

11 0b000001 0b0000010

L1 Set Index

0b0000001

{{1000,0000,0000},{000,0001

},{00,0000}} = 0x1000040

{{100},{000,0010},{00,

0000}} = 0x8080
redirect to

0

1

2

0

1

2

0

1

2

Figure 3: Addressing in A Redirect Entry

the transaction) while the other two values (with the global
bit set to “0”) represent the transactional transient states that
only affect memory accesses within the same transaction.

The MESI protocol [9] is used to maintain the cache
coherence, which integrates the redirect table to support the
single-update version-management in SUV-TM, thus hiding
the address redirection latencies from the upper memory
system. A load/(store) that misses on block B generates
a GETS(B)/(GETM(B)) coherence request. The core that
receives a GETS(B)/(GETM(B)) request checks its write
signature/(read and write signatures). When a core detects
that the requested address B is in its write-set/(read-set or
write-set), a conflict occurs and a NACK is sent to the
requester. Besides checking the conflicts, the receiving core
will check the redirect table to get the redirected address
because the original address B may have been previously

redirected. Upon receiving the NACK message, the request-
ing core resolves the conflict by stalling or aborting the
transaction. An alternative policy is to make the receiving
core stall or abort its transaction to guarantee the execution
of the requester’s transaction. If there is no conflict, the
receiving core will acknowledge the requester and piggyback
the redirected location in the subsequent message/(while
the store operation will book the mapping information in
its redirect table). After this, the requester can load/(store)
data from/(to) the right address whether the address B is
redirected or not. When the transaction commits, the local
valid redirect entries (with the global bit set to “0”and the
valid bit set to “1”) will be converted to global valid entries
(with the global bit set to “1”and the valid bit set to “1”). If
the transaction aborts, the local valid redirect entries (with
the global bit set to “0”and the valid bit set to “1”) will be
converted to local invalid entries (with the global bit set to
“0”and the valid bit set to “0”).

IV. DESIGN AND IMPLEMENTATION OF SUV-TM

SUV-TM is an eager version-management HTM that is
based on the framework of, but aims to significantly improve
over LogTM-SE. As a result, SUV-TM has inherited several
LogTM-SE’s proven and effective features such as nested
transactions, thread suspension/migration, etc. The novelty
of SUV-TM lies in the way it decouples managing the old
and new values of transactional modifications from the undo
logs while providing a fast switch to the proper data without
actual data movements. SUV-TM is transparent to the upper
level OS that sees an intact existing memory hierarchy. In
what follows we will illustrate the main operations of SUV-
TM that realize this transparency.

A. Redirect Entry Issues

SUV-TM uses redirect entries to hold the mapping infor-
mation to manage both the old and new transactional data
values. The redirect entry whose structure is described in

136136

load r3, (0x90)

add r3, 1

store r3, (0x90)

(d) commit_transaction(e) abort_transaction(f)

begin_transaction(a)
load r1, (0x00)

/*r1 gets 12*/
(b)

store r2, (0x48)

/*assume r2 = 99*/
(c)

12------0x00

Data BlockAddress

--23----0x40

----45--0x80

----54--0x8000

0x8040

Original

Address

Redirected

Address
G

0x90 0x8000 1

? 0x8040 0

Redirect Table

Read Signature

Write Signature

Null

Null

Redirect Summary Signature

(0x90)

Redirect Entry Pointer

V

1

0

12------0x00

Data BlockAddress

--23----0x40

----45--0x80

----54--0x8000

0x8040

Original

Address

Redirected

Address
G

0x90 0x8000 1

? 0x8040 0

Redirect Table

Read Signature

Write Signature

(0x00)

Null

Redirect Summary Signature

(0x90)

Redirect Entry Pointer

V

1

0

1

3

2

12------0x00

Data BlockAddress

--23----0x40

----45--0x80

----54--0x8000

--99----0x8040

Original

Address

Redirected

Address
G

0x90 0x8000 1

0x48 0x8040 0

Redirect Table

Read Signature

Write Signature

(0x00)

(0x48)

Redirect Summary Signature

(0x90)

Redirect Entry Pointer

V

1

1

1

3

2

4

12------0x00

Data BlockAddress

--23----0x40

----55--0x80

----54--0x8000

--99----0x8040

Original

Address

Redirected

Address
G

0x90 0x8000 1

0x48 0x8040 0

Redirect Table

Read Signature

Write Signature

(0x00)(0x90)

(0x48)(0x90)

Redirect Summary Signature

(0x90)

Redirect Entry Pointer

V

0

1

1

2

34

5678

12------0x00

Data BlockAddress

--23----0x40

----55--0x80

----54--0x8000

--99----0x8040

Original

Address

Redirected

Address
G

0x90 0x8000 0

0x48 0x8040 1

Redirect Table

Read Signature

Write Signature

Null

Null

Redirect Summary Signature

(0x48)

Redirect Entry Pointer

V

0

1

2

1 3

12------0x00

Data BlockAddress

--23----0x40

----55--0x80

----54--0x8000

--99----0x8040

Original

Address

Redirected

Address
G

0x90 0x8000 1

0x48 0x8040 0

Redirect Table

Read Signature

Write Signature

Null

Null

Redirect Summary Signature

(0x90)

Redirect Entry Pointer

V

1

0

2 1

Figure 4: Basic Operations in SUV-TM

Figure 3 is a key data structure in SUV-TM that requires a
coherence protocol to guarantee the correctness across the
CMP. Since each entry must be in one of the four states (i.e.,
two stable states and two transient states), a simple write
invalidate protocol like MSI is sufficient to maintain the
coherence. SUV-TM incorporates a number of optimizations,
such as address filtering, to speed up the address translation
on each memory access in order to support strong isolation
because it lies on the critical path.

When transactions commit successfully, their redirect en-
tries are added to the redirect table to direct subsequent ac-
cesses to the right addresses. Each memory access (including
non-transactional access) must look up the redirect table first
to get the actual address (e.g., using the redirected address
if the original address has been redirected previously). The
two-level redirect table implemented in hardware is used to
hold the frequently accessed entries during the execution.
Our design aims to achieve a high hit rate by exploiting
access locality while effectively dealing with the possible
overflow of the redirect table. The first-level table is pri-
vately integrated in the existing pipeline of each core and
implemented in a fully-associative search circuitry to provide
the zero-latency access if the requested redirect entry hits in
the first-level table. Due to the limited capacity of the first-
level tables, all cores on the chip share a second-level table
to hold more redirect entries at the cost of extra latency
to access the second-level table. When the two-level table
cannot hold all redirect entries, it can swap out some cold
entries to the main memory. This routine is managed by
software to guarantee the completeness of SUV-TM.

Intuitively, rapid increase in redirect entries under long-

running applications may exhaust the table, thus leading
to a perpetual overflow. However, if other threads update
the shared variables again, the original space of the shared
variables can be used to store the newly updated values if
others do not occupy the original space. In this case, no
redirect entry is needed because the latest redirection leads
to the original space. We exploit this feature to reduce the
number of redirect entries.

SUV-TM allocates a reserved memory space to store
the new values of transactional writes and automatically
allocates a new page on demand. SUV-TM collects the
redirected data in the proper page, and reclaims the original
addresses for subsequent redirect operations. As mentioned
earlier, in a shared-memory environment, if the same vari-
able is updated again, it can be redirected back to the original
address, which is a very useful feature in SUV-TM.

Apart from the concern on the redirect table overflow,
another problem is the extra lookup operation on the op-
erational path of each memory access. We address this
problem by using a redirect summary signature to represent
the set of already redirected addresses. The redirect summary
signature can filter out the un-redirected addresses quickly
without any lookup operation. Nevertheless, false positives
on signature may incur extra lookup, which affects the
performance but not the correctness. Moreover, it is further
found that false conflicts account for a large portion of the
total conflicts, suggesting that it is possible and beneficial to
speculatively use the original address to access memory in
advance before searching the swapped out entries in main
memory on a redirect-table miss, a relatively rare event
that occurs under coarse-grained applications. Should the

137137

speculation turn out to be wrong (i.e., a valid swapped out
entry is found in the main memory), the transaction must
be notified to discard the wrong speculative execution and
re-execute the related instructions. This aggressive method
can help exploit more thread parallelism.

B. Redirect Operations of SUV-TM

In addition to the aforementioned operations, transactional
accesses are needed to maintain the necessary transactional
information to guarantee its semantics. During each trans-
action, SUV-TM must record the read and write sets to
detect conflicts and store both the old and new values
of the data for commit or abort respectively. Meanwhile,
it must add (sometimes delete) a redirect entry for each
transactional write and make it valid only in this transaction
before the transaction commits or aborts. Other important
operations in each transaction include taking/restoring a
snapshot of the processor, recording nesting information
(depth and stacked frame structure), etc. In order to describe
these operations clearly, we use an illustrative example in
Figure 4 to delineate the operations in different stages and
their corresponding transitions in a transaction. Note that
some trivial flags such as TM nest, Table overflow, etc.,
are omitted for brevity and clarity. In each sub-figure, the
left part presents memory’s current state, indicating the
addresses and their content, and back-slashed slots label the
preserved pool for redirection. SUV-TM detects conflicts at
the granularity of a cache-line (i.e., 64 bytes), so all memory
accesses are aligned by 64 bytes. The right part of each
sub-figure presents the read/write signature to detect the
conflicts, the redirect summary signature to filter addresses
quickly, and the redirect table to manage redirect entries.
The gray-shaded areas in each sub-figure indicate changes
on them from the previous state. This figure uses the address
sets to represent the corresponding signature without the
cluttering of false conflicts for clarity. The treatment of false
conflicts is explained in the discussion of Figure 4.

The begin transaction instruction initiates a transaction
by taking a checkpoint, flushing the read and write signa-
tures and incrementing the TM nest counter. As shown in
Figure 4(a), there is a redirect entry, left by the previous
transactions, redirecting the original address @0x90 to the
target address @0x8000, which means that the accesses to
@0x90 will be redirected to @0x8000.

Figure 4(b) shows the behavior of an un-redirected trans-
actional load operation. In Step 1 the redirect summary and
write signatures are first checked to determine whether this
access needs to look up the redirect table or use the original
address to load data directly, where in this case the latter
is true and no table lookup is needed. It is followed by
adding address @0x00 to the read signature in Step 2 and
loading data 12 from address @0x00 to r1 in Step 3. If a
false positive occurs during Step 1 or this address has already
been redirected, SUV-TM must use 0x00 as the key to look

07 07

H1(x) = x mod 8

H2(x) = (x xor 2x) mod 8

0 Initialization0000000 00000000

0 Adding @1 1010000 01010000

Signature Bit-vector

0 Adding @31010100 01000100

0 Deleting @1 0010100 00000100

0 Inquirying @11010100 01000100

Figure 5: Operations on The Redirect Summary Signature

up the redirect table to determine exactly which case it is.
In case of a false conflict, the subsequent operations will
follow the process described in Steps 2 and 3 of Figure 4(b).
Otherwise SUV-TM will use the redirected address to access
memory as indicated in Step 2 of Figure 4(d). An un-
redirected transactional store operation in Figure 4(c) takes
similar actions to those described in Figure 4(b), with the
exception that it adds a new redirect entry in Step 3 and
updates the redirect entry pointer and stores 99 in @0x8040.

Figure 4(d) presents more complicated redirected transac-
tional load and store operations. SUV-TM finds that address
@0x90 has been redirected before in Step 1 and then
searches the redirect table to find the redirect entry in
Step 2, which is followed by Step 3 to update the read
signature and then load data 54 to r3 from the redirected
address @0x8000 in Step 4. Once r3 is changed from 54
to 55, Steps 5 - 8 repeat the process of Steps 1 - 4 except
that the former executes the store operation instead of the
load operation. More specifically, for the store operation
from r3(55) to @0x90, it finds that @0x90 has been redi-
rected after inquiring the redirect summary signature, then it
redirects (@0x90->@0x8000, @0x8000->@0x90) back to
the original address. It performs delete-entry and add-entry
operations on the same entry in this case.

The commit transaction instruction marks the end of
the transaction and makes all transactional modifications
valid and visible globally. In Figure 4(e), transient states
are converted to globally valid states in Step 1 by changing
the global bit from “0” to “1” if the valid bit holds a
value “1”, or changing the global bit from “1” to “0” if
the valid bit holds a value “0”. Then, SUV-TM updates
the redirect summary signature by adding or removing the
corresponding addresses in Step 2. New addresses are added
by executing the OR operation between the redirect sum-
mary signature and the write signature. On the other hand,
removing addresses from the redirect summary signature is
more complicated due to the false positive problem resulting
from the hashed signature representing a superset of the
original addresses. To address this problem, we add another
bit vector to record which bits are only written once from
hashing operations in the redirect summary signature. An
address is removed from the signature by unsetting its
unique bits in the redirect summary signature that works
as a Bloom Counter [36], as shown in Figure 5. It must be
noted that removing addresses incompletely will not impact

138138

Table III: Configuration of The Simulated CMP System

Processor Core 1.2 GHz in-order, single issue

L1 Cache 32 KB 4-way, 64-byte line, write-back, 1-cycle latency

L2 Cache 8 MB 8-way, write-back, 15-cycle latency

Main Memory 4 GB, 4 banks, 150-cycle latency

L2 Directory Bit vector of sharers, 6-cycle latency

Interconnect Mesh, 2-cycle wire latency, 1-cycle route latency

Signature 2 Kbit Bloom filters

1
st Level Table 512-entry zero-latency fully associative table

2
nd Level Table 10-cycle latency 16384-entry 8-way shared table

the correctness of the redirect summary signature because
it is allowed to present a superset of redirected addresses,
although it will induce more overheads due to the wasteful
table lookups. Finally, SUV-TM flushes the read and write
signatures, decrements the TM nest counter and discards the
checkpoint in Step 3.

The abort transaction instruction is used to abort the
transaction, which entails discarding the speculative results
and reverting to the previous state. As shown in Figure 4(f),
SUV-TM changes all transient entries to “stable”as in the
pre-transaction state, by changing the valid bit from “0”
to “1” if the global bit holds a value “1”, or changing
the valid bit from “1” to “0” if the global bit holds a
value “0”. Finally, SUV-TM flushes the read/write signature,
decrements the TM nest counter, and restores the checkpoint.

C. Other Operations of SUV-TM

To deal with the transactional nesting, we adopt the
method proposed by the LogTM-Nested method [37], which
uses a stacked frame to save the checkpoint, read and write
signatures in the thread’s private space while maintaining a
nest relationship among these data. As a result, a nested
transaction is executed as normal, reverting to the outer
transaction’s data at the end of the current transaction. This
approach can easily support closed nested transactions with
partial abort. It can also be extended to support open nested
transactions to free more threads by registering both commit
and compensate actions and handing over the compensate
jobs to the parent transaction when the inner transaction
commits successfully. When already committed inner trans-
actions must be aborted because their parent transactions are
aborted, it is the parent transaction’s responsibility to notify
the affected transactions and guarantee a consistent view.

In order to support context switching, SUV-TM copies the
conflicting state to the logs. When a thread running a trans-
action is suspended by the scheduler, the new thread on the
same core starting another transaction must check conflict
with the suspended transaction. The summary signature used
in LogTM-SE is sufficient to cope with this problem.

V. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we evaluate the performance of SUV-
TM by comparing it with LogTM-SE [9], FasTM [10] and

Table IV: Workload Characteristics of Benchmarks

Input Parameters Length Contenion

bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2 43K High

genome -g256 -s16 -n16384 1.7K High

intruder -a10 -l4 -n2038 -s1 237 High

kmeans -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt 106 Low

labyrinth -i random-x32-y32-z3-n64.txt 317K High

ssca2 -s13 -i1.0 -u1.0 -l3 -p3 21 Low

vacation -n4 -q60 -u90 -r16384 -t4096 2.1K Low

yada -a20 -i 633.2 6.8K High

DynTM [30] through extensive execution-driven experi-
ments under various workloads. Further, we discuss the ben-
efits of the SUV-TM design philosophy relative to FasTM
and DynTM, the latest progresses in version-management
reported in the literature. We also examine the sensitivity
of important SUV-TM design parameters to performance.
Finally, we analyze the hardware and performance overheads
incurred by SUV-TM.

A. Experimental Environment and Workloads

To evaluate SUV-TM, we set up a 16-core CMP system
with TM functionalities based on GEMS 2.1 [38] in the
Simics simulation infrastructure [39]. In particular, these
cores are interconnected in a mesh topology via 64-byte
links and adaptive routing. Four memory controllers are
configured to access the main memory. The detailed con-
figuration parameters are listed in Table III.

We choose LogTM-SE [9] with the same configuration as
the baseline system since it is open source, publicly avail-
able, and considered the state-of-the-art scheme. In order
to compare with the latest progress in version-management
schemes, we implement FasTM and DynTM to assess
SUV-TM against the latest and state-of-the-art version-
management schemes. For simplicity and objectivity, we
adopt the Stall policy (Stalling the requester and avoid-
ing any possible cyclical dependence among those stalled
transactions) to resolve conflicts among transactions. Many
existing studies on LogTM also adopt this policy, which
enables indirect comparisons with other schemes [9, 10, 40].

STAMP [34] is the first comprehensive benchmark suite
designed specifically for TM in that programmers’ habits
in parallel programming are considered and integrated. It is
also easy to vary different parameters in STAMP to conduct
comprehensive evaluations. The key workload characteristics
we use throughout this paper are summarized in Table IV.

B. Experimental Results

Existing TMs including LogTM-SE have been proven to
have better, or at least comparable, performance than lock
mechanisms [7, 9, 41], so we focus on the performance
improvement gained by SUV-TM over LogTM-SE, FasTM
and DynTM.

To obtain a comprehensive understanding of the per-
formances of various TMs, we break the execution time

139139

Figure 6: Distribution of The Execution Times of LogTM-SE (L), FasTM (F)
and SUV-TM (S)

down to these components: time due to non-transactional
work (NoTrans), time due to un-stalled transactional work
(Trans), time waiting on a barrier (Barrier), time stalling
after an abort (Backoff), time stalling to resolve conflict
(Stalled), time due to wasted work when a transaction is
aborted (Wasted), and time due to rolling back during abort
(Aborting). The first three components, NoTrans, Trans, and
Barrier, are necessary costs while the remaining, Backoff,
Stalled, Wasted, and Aborting, are extra overheads of seri-
alizing transactions.

Before presenting the experimental results of LogTM-SE,
FasTM and SUV-TM, let us briefly review their version-
management mechanisms. LogTM-SE uses the undo logs
to hold old values while updating in-place to implement
eager version-management, and it traps into software to
restore the old values on abort. FasTM modifies the cache
coherence protocol on top of LogTM-SE to improve the
undo log technique on managing transactional modifications
by exploiting the data inconsistency among different levels
in the memory hierarchy. It first writes back the dirty data
in the L1 cache to the lower-level memory, keeping the new
values in the L1 cache and the old values in the lower-
level memory, but degenerates to LogTM-SE when the L1
cache overflows. SUV-TM directly stores the new values
in redirected addresses, keeps the mapping information of
the original and redirected addresses in the redirect table,
switches to the proper version at the end of each transaction.

Figure 6 shows a significant performance improvement
by SUV-TM and FasTM over LogTM-SE, where SUV-TM
outperforms FasTM. FasTM and SUV-TM’s advantages are
more pronounced under high-contention applications such
as bayes, genome, intruder, labyrinth and yada. The
main reasons behind SUV-TM’s superiority to LogTM-SE
are fourfold. First, SUV-TM removes the Aborting time for
the most part except in the relatively rare event when the
redirect entries miss in the first-level table. Second, the
redirected write operation shortens the time spent on version-

management (without data movement), thus narrowing the
isolation windows and reducing the time spent on Trans
and Wasted. Third, releasing the isolation window early
lessens conflicts by allowing more transactions to execute
simultaneously, resulting in less time being spent on Stalled,
Wasted and Backoff. Finally, the redirect table speeds up
memory access by reducing the transactional overflows,
which in turn lowers the overheads. FasTM achieves a good
performance gain over LogTM-SE because it removes most
of the Aborting time if the L1 cache does not overflow.
Based on a similar idea, SUV-TM shortens the duration
of holding the exclusive access permission to expose more
thread parallelism by freeing more blocked threads. More-
over, besides removing the Aborting time, SUV-TM uses
a more aggressive method to reduce the time spent on
maintaining the undo logs, further optimizing both commit
and abort operations and thus exploiting more parallelisms
than FasTM. An important feature distinguishing SUV-TM
from FasTM is that the former does not degenerate to
LogTM-SE when the L1 cache overflows as the latter does,
meaning that, while FasTM may fail to cope with the future
coarse-grained and high-contention applications, SUV-TM
is more suitable for such workloads. Another reason why
SUV-TM outperforms FasTM is that the former does not
need to write back the shared dirty data in the L1 cache
before starting a new transaction and avoids extra accesses
to the low-level memory to fetch the old value on abort.

Table V lists statistic information about the overflows,
which indicates that the redirect table avoids nearly half
of the transactional data overflow in these applications.
LogTM-SE and FasTM suffer from transactional overflow
severely while SUV-TM mitigates the transactional over-
flows but incurs some redirect table overflows under these
three coarse-grained applications. This is because the redi-
rect operations can be used to store data from frequently
accessed addresses to other addresses in order to reduce
conflicts on the hottest addresses. Although the write-set
of each overflowed transaction is big, there is a strong
access locality among the transactions. We find that the
working set of these three applications are less than 8MB.
In addition to transactional data cache overflows, some large
transactions in the bayes, labyrinth and yada benchmarks
with huge write-sets also overflow the redirect table, thereby
resulting in extra latency on accessing to the redirect entries
residing in the second-level table or the main memory.
Fortunately, this is shown to be a rare case throughout our
extensive evaluations. This feature, repeatedly updating the
value of the shared variable among different transactions
(i.e., writing to a shared variable in transaction t1 redirects
the original address @A to the redirect address @R, later
writing to the same variable in transaction t2 redirects the
actual address @R back to the original address @A), can
effectively reduce the number of redirect entries. So the
redirect table overflow rate is rather low even under coarse-

140140

Table V: Statistics on The Overflows for bayes, labyrinth and yada

Overflow footprint Cache Overflow Rate Redirect Table Hit Rate The Total Overheads

Read-Set Write-Set LogTM-SE FasTM SUV-TM L1 Table L2 Table Memory LogTM-SE FasTM SUV-TM

bayes 223 190 22.2% 21.6% 13.1% 87.2% 10.1% 2.7% 17.1% 15.8% 8.8%

labyrinth 222 225 40.0% 38.5% 19.2% 81.4% 15.2% 3.4% 11.2% 10.4% 3.5%

yada 256 184 15.7% 15.3% 8.7% 90.3% 9.5% 0.2% 7.8% 6.1% 3.2%

(a) The 1
st Table Miss Rates (b) The Total Execution Time

Figure 7: Sensitivity to The Size of The 1
st Redirect Table

(a) The Total Execution Time (b) The Total Execution Time

Figure 8: Sensitivity to The Size and Latency of The 2
nd Redirect Table

grained applications. FasTM degenerates to LogTM-SE on
the L1 cache overflow, with the overall performance being
adversely affected by abort operations. SUV-TM’s advantage
over FasTM is likely to be more pronounced with coarse-
grained and high-contention transactions.

To better understand the first-level redirect table overflow
and its impact, we conducted a sensitivity study to quantify
the impact of the first-level redirect table miss rate and
the total execution time by varying the size of the first-
level redirect table. Then we further vary the size and the
access latency of the second-level redirect table to learn their
impacts on the total execution time.

Figure 7(a) clearly indicates that a 512-entry first-level
redirect table can achieve a high hit rate with a relatively
low space and time cost. There is almost no improvement
on the execution time by scaling the table size beyond 512,
as shown in Figure 7(b). Our extensive experimental results
show that SUV-TM is effective and efficient in handling
most transactions with a moderate implementation cost.

Figure 8(a) shows that the execution time decreases with
the increasing size of the second-level table, but the perfor-
mance gain is insignificant when the size rises beyond 16K.
Figure 8(b) shows that the execution time will dramatically
increase when the latency of the second-level table rises

beyond 10 cycles and the zero-latency of the second-level
table improves the performance by less than 5%.

Finally, we integrate the SUV scheme into DynTM to
replace its original version management scheme adopted
from FasTM to compare their performance in a flexible
framework. DynTM [30] uses a history-based selector to
choose either the eager version management and eager
conflict management scheme or the lazy version manage-
ment and lazy conflict management scheme to execute each
transaction. So it will iccur some time overhead spent on
committing, which is labeled as “Committing” in Figure 9
while the other parts of the latency are defined the same
as that in Figure 6. As shown in Figure 9, DynTM with the
SUV scheme as its version management scheme outperforms
the original DynTM with the FasTM version-management
scheme, with an average speedup of 9.8% across the 8 appli-
cations of the STAMP benchmark suite. More importantly,
the performance advantage of DynTM with SUV over the
original DynTM becomes more significant under the 5 high-
contention and coarse-grained applications of the STAMP
benchmark suite, achieving an average speedup of 18.6%,
because the former can flexibly point to either the old or
new copy data with the help of the prediction results from
the history-based selector.

141141

Figure 9: Distribution of The Execution Times of The Original DynTM (D) and
The DynTM with SUV as Its Version-Management Scheme (D+S)

Table VI: Parameters of Some Contemporary Processors

Processor Tech
(nm)

Clock
(GHz)

Cores/
Threads

TDP
(W)

Area
(mm2)

UltraSPARC T1 [42] 90 1.4 8/32 72 378

UltraSPARC T2 [42] 65 1.4 8/64 84 342

Rock Processor [2] 65 2.3 16/32 250 396

C. Complexity of SUV

SUV adds a zero-latency, 512-entry fully-associative first-
level redirect table, a 2K-bit redirect summary signature and
a 2K-bit vector for each core, and a 10-cycle latency 16K-
entry 8-way second-level redirect table shared across the
CMP. Each core needs 1.9KB (i.e., (2Kb + 2 Kb + 22b
x 512/1024)/8 = 1.875KB) memory element, which is about
5.86% of the L1 data cache (32KB) capacity of modern
processors. The area cost of the shared second-level redirect
table is not a big problem considering the size of the L2
cache (i.e., usually several megabytes).

To better understand the extra overheads of the 512-
entry fully-associative redirect table on access time, energy
consumption and silicon area, we estimate these overheads
by CACTI 5.3 [43] and find that it is feasible in hardware
implementation. In order to compare with the state-of-the-
art processors, we gather some contemporary processors’
parameters in Table VI, and list the results of the 512-entry
fully-associative table from CACTI in Table VII. Due to the
CACTI requirement that the minimum size of a line be 8-
byte, we set a 4KB 512-entry fully-associative table to obtain
its overheads and we believe that the actual SUV overheads
should be less than half of the estimates given by CACTI
because each entry in the SUV redirect table occupies
only 22-bit instead of the 64-bit required by CACTI. From
Table VII, an access to the fully-associative table can be
finished in 1 cycle with the 45 nm CMOS process at
1.2GHz, meanwhile, the read/write energy consumption is
0.150/0.163 nj, so the maximum extra energy consumption
of the fully-associative table in the simulated CMP is less
than 0.5 x (0.150 nj + 0.163 nj) x 16 x 1.2 x 109 = 3 j, which

Table VII: Overheads of The First-Level Fully-Associative Table Estimated by
CACTI

Tech

(nm)

Access Time

(ns)

Dynamic Energy (nj) Area

(mm2)Read Write

90 1.382 0.403 0.434 0.951

65 0.995 0.239 0.260 0.589

45 0.588 0.150 0.163 0.282

32 0.412 0.072 0.078 0.143

is about 1.2% of the Rock processor power consumption.
Moreover, the silicon area required by the fully-associative
table (i.e., 0.5 x 16 x 0.282 = 2.26 mm2), which is 0.6% of
the Rock processor silicon area, is also acceptable.

In order to support the strong isolation to detect the con-
flicts between transactional accesses and non-transactional
accesses, the redirect table lookup operation lies on the
critical path of memory access operations. It will necessarily
slow the non-transactional accesses, if a miss occurs in the
first-level table. Fortunately, the miss rate of the first-level
table is rather low even under coarse-grained applications.
This side effect is relatively insignificant and we consider it
a moderate overhead required to support strong isolation.

VI. CONCLUSION

To address the observed repair and merge pathologies,
we propose SUV, a novel single-update version-management
scheme, that can take advantage of a redirect table to provide
zero-latency commit and abort operations. Redirecting each
transactional store to a redirected address eagerly requires
only one data movement regardless of commit or abort.
Removing execution time on commit and abort shortens
isolation windows, thus reducing the forced serialization
among multiple transactions and enabling more transactional
parallelism to be exploited.

We have evaluated SUV in SUV-TM by comparing it
with the state-of-the-art LogTM-SE, FasTM and DynTM
schemes, through extensive execution-driven experiments
under the STAMP benchmark suite that represents a wide
spectrum of high-contention applications. SUV-TM shows
significant performance advantages, outperforming the state-
of-the-art LogTM-SE and FasTM schemes by 56% and 9%

respectively for all applications of the STAMP benchmark
suite, and 95% and 12% respectively for the five high-
contention applications of the STAMP benchmark suite.
Further, the experimental results show that the DynTM
integrated with SUV as its version-management scheme
outperforms the original DynTM based on FasTM by 9.8%

and 18.6% respectively for all applications and the five high-
contention applications of the STAMP benchmark suite.
Moreover, we use CACTI to evaluate the hardware over-
heads of SUV and find that it is feasible in hardware
implementation.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
suggestions and comments. This work was supported by the

142142

National Basic Research 973 Program of China under Grant
No.2011CB302301, the National High Technology Research
and Development Program (“863” Program) of China un-
der Grant No.2009AA01A402, National Natural Science
Foundation of China (NSFC) under Grant No.61025008,
No.60933002, No.60873028 and No.61173043, the US NSF
under Grants IIS-0916859, CCF-0937993, CNS-1016609,
and CNS-1116606.

REFERENCES
[1] M. Herlihy and J. Moss, “Transactional Memory: Architectural Support for

Lock-Free Data Structures,” in Proceedings of the 20th Annual International
Symposium on Computer Architecture (ISCA), 1993, pp. 289–300.

[2] S. Chaudhry, “Rock: A third Generation 65nm, 16-Core, 32 Thread + 32 Scout-
Threads CMT SPARC Processor,” in Proceedings of the 20th IEEE International
Symposium on High Performance Chips (HotChips), 2008.

[3] C. Click, “Azul’s Experiences with Hardware Transactional Memory,” in Trans-
actional Memory Workshop, 2009.

[4] R. Haring, “The IBM Blue Gene/Q Compute Chip+SIMD Floating-point Unit,”
in Proceedings of the 23th IEEE International Symposium on High Performance
Chips (HotChips), 2011.

[5] “Sequoia, http://en.wikipedia.org/wiki/ibm sequoia.”

[6] T. Harris, J. Larus, and R. Rajwar, Transactional Memory (2nd edition). Morgan
& Claypool, 2010.

[7] K. Moore, J. Bobba, and et.al, “LogTM: Log-based Transactional Memory,”
in Proceedings of the 12th IEEE Symposium on High-Performance Computer
Architecture (HPCA), 2006, pp. 254–265.

[8] W. Chuang, S. Narayanasamy, and et.al, “Unbounded Page-based Transactional
Memory,” in Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2006,
pp. 347–358.

[9] L. Yen, J. Bobba, and et.al, “LogTM-SE: Decoupling Hardware Transactional
Memory from Caches,” in Proceedings of the 13th IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2007, pp. 261–272.

[10] M. Lupon, G. Magklis, and A. González, “FasTM: A Log-based Hardware
Transactional Memory with Fast Abort Recovery,” in Proceedings of the 18th
International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2009, pp. 293–302.

[11] R. Titos, M. E. Acacio, and J. M. Garcia, “Speculation-based Conflict Reso-
lution in Hardware Transactional Memory,” in Proceedings of the 23rd IEEE
International Symposium on Parallel & Distributed Processing (IPDPS), 2009,
pp. 1–12.

[12] S. Jafri, M. Thottethodi, and T. Vijaykumar, “LiteTM: Reducing Transactional
State Overhead,” in Proceedings of the 16th IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2010, pp. 1–12.

[13] M. Ansari, C. Kotselidis, and et.al, “Lee-TM: A Non-trivial Benchmark for
Transactional Memory,” in Proceedings of the 8th International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP), 2008, pp. 196–
207.

[14] J. Poe, C. Hughes, and T. Li, “TransPlant: A Parameterized Methodology for
Generating Transactional Memory Workloads,” in Proceedings of the 17th IEEE
International Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2009, pp. 1–10.

[15] G. Kestor, S. Stipic, and et.al, “RMS-TM: A Transactional Memory Benchmark
for Recognition, Mining and Synthesis Applications,” in TRANSACT ’09: The
4th Workshop on Transactional Computing, 2009.

[16] Z. Yan, D. Feng, and Y. Tan, “Poster: Dissection The Version Management
Schemes in Hardware Transactional Memory Systems,” SIGMETRICS Perform.
Eval. Rev., vol. 39, pp. 78–78, September 2011.

[17] L. Hammond, V. Wong, and el.al, “Transactional Memory Coherence and
Consistency,” in Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA), 2004, pp. 102–113.

[18] M. Lupon, G. Magklis, and A. González, “Version Management Alternatives
for Hardware Transactional Memory,” in Proceedings of the 9th Workshop on
MEmory performance: DEaling with Applications, systems and architecture
(MEDEA), 2008, pp. 69–76.

[19] C. Blundell, J. Devietti, and et.al, “Making the Fast Case Common and the
Uncommon Case Simple in Unbounded Transactional Memory,” in Proceedings
of the 34th Annual International Symposium on Computer Architecture (ISCA),
2007, pp. 24–34.

[20] J. Bobba, N. Goyal, and et.al, “TokenTM: Efficient Execution of Large Transac-

tions with Hardware Transactional Memory,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA), 2008, pp. 127–138.

[21] A. McDonald, “Architectures for Transactional Memory,” Ph.D. dissertation,
Stanford University, June 2009.

[22] C. Ananian, K. Asanovic, and et.al, “Unbounded Transactional Memory,” in
Proceedings of the 11th IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2005, pp. 316–327.

[23] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional Memory,”
in Proceedings of the 32nd Annual International Symposium on Computer
Architecture (ISCA), 2005, pp. 494–505.

[24] A. Shriraman, M. Spear, and et.al, “An Integrated Hardware-Software Approach
To Flexible Transactional Memory,” in Proceedings of the 34th Annual Interna-
tional Symposium on Computer architecture (ISCA), 2007, pp. 104–115.

[25] S. H. Pugsley, M. Awasthi, and et.al, “Scalable and Reliable Communication
for Hardware Transactional Memory,” in Proceedings of the 17th international
conference on Parallel Architectures and Compilation Techniques (PACT), 2008,
pp. 144–154.

[26] A. Shriraman, S. Dwarkadas, and M. Scott, “Flexible Decoupled Transactional
Memory Support,” in Proceedings of the 35th Annual International Symposium
on Computer Architecture (ISCA), 2008, pp. 139–150.

[27] D. Dice, Y. Lev, and et.al, “Early Experience with a Commercial Hardware
Transactional Memory Implementation,” in Proceeding of the 14th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), 2009, pp. 157–168.

[28] J. Chung, C. Minh, and et.al, “Tradeoffs in Transactional Memory Virtualiza-
tion,” in Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2006,
pp. 371–381.

[29] B. Khan, M. Horsnell, and et.al, “An Object-Aware Hardware Transactional
Memory System,” in Proceedings of the 10th IEEE International Conference on
High Performance Computing and Communications (HPCC), 2008, pp. 93–102.

[30] M. Lupon, G. Magklis, and A. González, “A Dynamically Adaptable Hardware
Transactional Memory,” in Proceedings of the 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2010, pp. 27–38.

[31] A. Armejach, A. Seyedi, and et.al, “Using a Reconfigurable L1 Data Cache
for Efficient Version Management in Hardware Transactional Memory,” in
Proceedings of the 20th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2011, pp. 361 –371.

[32] W. N. Scherer, III and M. L. Scott, “Advanced contention management for
dynamic software transactional memory,” in Proceedings of the 24th Annual
ACM Symposium on Principles of Distributed Computing (PODC), 2005, pp.
240–248.

[33] M. Woo, S.and Ohara and et.al, “The SPLASH-2 Programs: Characterization
and Methodological Considerations,” in Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture (ISCA), 1995, pp. 24–36.

[34] C. Minh, J. Chung, and et.al, “STAMP: Stanford Transactional Applications for
Multi-Processing,” in Proceedings of the 4th IEEE International Symposium on
Workload Characterization (IISWC), 2008, pp. 35–46.

[35] C. Hughes, J. Poe, and et.al, “On the (Dis)similarity of Transactional Memory
Workloads,” in Proceedings of the 5th IEEE International Symposium on
Workload Characterization (IISWC), 2009, pp. 108–117.

[36] L. Fan, P. Cao, and et.al, “Summary Cache: A Scalable Wide-area Web Cache
Sharing Protocol,” IEEE/ACM Trans. Netw., vol. 8, pp. 281–293, June 2000.

[37] M. Moravan, J. Bobba, and et.al, “Supporting Nested Transactional Memory in
LogTM,” in Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2006,
pp. 359–370.

[38] M. Martin, D. Sorin, and et.al, “Multifacet’s General Execution-driven Multi-
processor Simulator (GEMS) Toolset,” SIGARCH Computer Architecture News,
vol. 33, pp. 92–99, November 2005.

[39] P. Magnusson, M. Christensson, and et.al, “Simics: A Full System Simulation
Platform,” IEEE Computer, vol. 35, pp. 50–58, 2002.

[40] J. Bobba, K. Moore, and et.al, “Performance Pathologies in Hardware Transac-
tional Memory,” in Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA), 2007, pp. 81–91.

[41] C. Rossbach, O. Hofmann, and E. Witchel, “Is Transactional Programming
Really Easier,” in Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2010, pp. 47–56.

[42] “Opensparc, http://www.opensparc.net/.”

[43] “Cacti, http://www.hpl.hp.com/research/cacti/.”

143143

