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Abstract—File-search service is a valuable facility to accelerate
many analytics applications, because it can drastically reduce the
scale of the input data. The main challenge facing the design of
large-scale and accurate file-search services is how to support
real-time indexing in an efficient and scalable way. To address
this challenge, we propose a distributed file-search service, called
Propeller, which utilizes a special file-access pattern, called access-
causality, to partition file-indices in order to expose substantial
access locality and parallelism to accelerate the file-indexing
process. The extensive evaluations of Propeller show that it is real-
time in file-indexing operations, accurate in file-search results,
and scalable in large datasets. It achieves significantly better
file-indexing and file-search performance (up to 250×) than a
centralized solution (MySQL) and much higher accuracy and
substantially lower query latency (up to 22×) than a state-of-
the-art desktop search engine (Spotlight).

I. INTRODUCTION

Many analytics applications [9], [16], [32] run on top of

file systems, since file systems provide performance features

that are by and large unmatched by database solutions [9],

[14], [27], [31], [39], [43]. However, compared to databases,

file systems fall short of providing flexible data retrieval

capabilities: the static file path scheme is incapable of adapting
to various data retrieval demands [19], [33].

File-search service, which helps applications retrieve desired

files out from larger dataset, should be an ideal solution to

accelerating such analytics applications by reducing the scale

of input data [33], [44] (i.e., data filtering). Unfortunately,

the existing file-search services [11], [20], [25], [26], [30]

are neither scalable for nor capable of being deployed in

data-intensive environments. For example, the crawling-based

file-search engines[11], [30] introduce inevitable and non-

negligible crawling delays in updating index, which leads to

unpredictable accuracy of file-search results.

Serving file-search requests for analytics applications, es-

pecially the time-critical ones, in large-scale systems impose

several unique challenges that have not been well addressed

by previous studies and existing solutions[19], [22], [25], [26],

[30], [41]:

– The file-search results must be strongly consistent with

the file content. This is because, unlike the web search

engines [16], [40] or the desktop search engines [11],

[20], [30] where human users can usually tolerate inac-

curate or outdated results to some extend, many analytics

applications cannot tolerate such inaccuracy or staleness

[4], [8], [31],

– The file-indexing overhead must be small, because the

file indices must be frequently updated to be consistent

with the file content. However, intensively updating file

indices is costly and usually impractical for data-intensive

systems [26], [30].

Clearly, the most critical requirement for such a real-

time file-search service is to keep file indices always up-
to-date (a.k.a., the inline file-index model) in a large-scale

data-intensive system. The high overhead of keeping strong

consistency between the file indices and file contents stems

from the increasing scale of file index (i.e., the number of

files) and the file re-indexing triggered by the continuous file

updates. While techniques have been proposed to reduce the

file index scale [25], [30], they fail to keep file index always

up-to-date or overcome the performance bottleneck resulting

from continuous file index updates.

To this end, we propose a distributed file-search service,

called Propeller, to offer real-time file-indexing and file-

search functionality in data-intensive environments. Propeller

is specially designed to speedup file-indexing operations to

ensure the freshness and timeliness of file-search results so that

they fully reflect the latest changes to files. Therefore, the file-

indexing operations are on the I/O critical path to ensure the

freshness of index content, while the file search requests that

are each capable of accomplishing the work of a huge number

of “readdir” operations are relatively rare in real-world work-

loads [6]. For example, log analytic workloads [31] can index

petabytes of logs in real-time before dozens of ad-hoc queries

issued by either data scientists or applications. Propeller’s real-

time indexing scheme is designed based on the observation that

file accesses of analytics applications tend to frequently cluster

amongst and around correlated files. To effectively leverage

the access locality exposed from this application-aware file-

access behavior, Propeller introduces Access-Causality Graph
(ACG), which represents the files (i.e., vertices) access causal

relationships (i.e., edges), to capture and exploit the file-access

patterns. ACG enables Propeller to automatically partition the

large file indices into smaller ones while preserving access

locality by applying graph partitioning algorithms [24], [28],

[37] to confine the index updates to a few smaller indices (i.e.,

sub-graphs).

This paper aims to make the following contributions:

1) The development of a real-time distributed file-search

service prototype, Propeller, with the real-time file-
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indexing capability, enabled by its novel index partition-

ing technique, Access-Causality Graph (ACG), which is

designed to effectively address both the index scalability

and the intensive index update challenges.

2) The extensive evaluation demonstrating Propeller’s fea-

sibility and efficacy in data-intensive environments. The

Propeller prototype significantly outperforms a central-

ized SQL database solution (MySQL) in file-indexing

and file-search, and offers better file-search latency and

accuracy than a state-of-the-art desktop search engine

(Spotlight), especially under write-intensive I/O work-

loads.

The rest of this paper is organized as follows. Section

II presents the necessary background and key observations

to motivate the work on Propeller. The notion of ACG is

described in Section III. The design and implementation of

Propeller distributed architecture, are described in Section IV.

We evaluate the scalability, performance and effectiveness of

the Propeller prototype in Section V. Section VI concludes

the paper with remarks on directions of future research on

Propeller.

II. RELATED WORK, BACKGROUND AND MOTIVATION

Given the explosively growing volume of data stored in

the file systems [9], [14], [23], [27], [31], [39], efficient

and flexible file-search solutions have been recognized as

an essential service for end-users and system administrators

alike [11], [20], [25], [26], [30], [35]. Furthermore, many

analytics applications can greatly benefit from utilizing these

file-search services to accelerate their computations by filtering

out most of the input data. For instance, Molegro Virtual

Docker (MVD) [45], a computational drug-discovery applica-

tion, stores the full structure information of a particular protein

in a single input file. Its protein-structure dataset typically

is very large (107 ∼ 108 files), and there are hundreds

of different attributes from each protein (i.e., structures or

energy characteristics). With a file-search service, the MVD

application can continuously compute a smaller and refined

set of proteins that share similar characteristics observed from

the previous computation to evaluate the effectiveness of a

new drug. Unfortunately, existing file-search solutions are not

designed nor adequate for serving such analytics applications

in large-scale data-intensive environments.

Analytics applications [16], [32], instead of human end-

users, require a file-search service to return real-time results

that are always accurate and up-to-date (i.e., consistent with

all the file contents within the file system), so that the

analytics applications can immediately process these data with

confidence [31]. Therefore, it requires files being re-indexed

immediately (i.e. real-time) after their contents have changed.

Nonetheless, since the current practice of file-indexing is

crawling based and the file indexing is done in the background

(i.e., offline indexing), the indexing overhead can be hidden

from the I/O critical path [11], [20], [30]. This practice,

however, cannot guarantee the accuracy or the freshness of

the file-search results for an obvious reason: the inevitable and

often significant delay from when a change is made to a file to

when the file’s index is updated, caused by the asynchronous

crawling process, makes the file indices always outdated.

In order to demonstrate the inaccuracy introduced by the

asynchronous crawling process, we use Spotlight [11] as the

test platform to evaluate how the continuous updates impact

the accuracy, or recall [5], of file-search results. Although only

running on a single machine, Spotlight shares the crawling

essence of the other distributed solutions [21], [30], to which

we do not have access. Therefore, Spotlight is arguably

adequate and convincing in exposing the inaccuracy of file-

search results for a class of file-search services [11], [21],

[30], [35].

In this demonstration, the recall of file-search results is mea-

sured as a function of the background I/O intensity, denoted

by the number of files copied per second (FPS). The measure

of recall is defined to be the fraction of relevant files that are

returned as file-search results. As illustrated in Figure 1, the

recalls of Spotlight are low (< 53%), because it only supports

limited pre-defined file types and thus it cannot include all

files in the test dataset, which consists of 10 workstation

and virtual machine file system images, and sensitive to the

intensity of background file copying. With highly intensive file

copying (e.g., > 10 FPS in this test), the re-indexing process

in Spotlight is so frequently triggered to update the index

that the recall values are dropped to 0 during re-indexing!

It is worth mentioning that the desktop search engines like

Spotlight and Google Desktop Search integrate the file-system

notification mechanisms [10], [34], which enable them to

respond much faster to the new file modifications than the

distributed search appliances do. Additionally, the I/O intensity

in large-scale data-intensive environments will be orders of

magnitude higher than what has been shown in this test. As

a result, it is reasonable to expect that the inaccuracy of the

file-search results is inevitable for the asynchronous crawling-

based solutions [21], [30].
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Fig. 1. Recall Values of the Spotlight Search Results. FPS: file-copy
operations per second. After completing the Spotlight index rebuilding, we
immediately spawn a background process to copy files at various speeds and
a foreground process to continuously send queries to Spotlight. 0 FPS means
that there is no background process.

Evidently, the real-time file-indexing capability is a prereq-

uisite to guaranteeing the accuracy and freshness of the file-
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search results, which further enables the analytics applications

to utilize the file-search service to accelerate computing. How-

ever, applying real-time file-indexing on large-scale systems is

difficult, because maintaining large-scale index usually results

in poor indexing performance and adds considerable overhead

along the I/O critical path. Therefore, to address these chal-

lenges, we propose Propeller, a highly scalable distributed

file-search service that is designed to provide real-time file-

indexing performance in data-intensive environments.

III. ACCESS-CAUSALITY BASED FILE PARTITIONING

The primary obstacle to real-time file indexing in large-scale

file systems is the poor scalability of the costly index-updating

operations. A common remedy for this scalability problem

has been to partition the index to narrow down the scope of

operations. Existing solutions are either namespace-based [30],

[38] or file-metadata attribute-based [25] partitioning, which

are all based on static file attributes (e.g., file location or file

metadata). However, our analysis and ongoing experiments

suggest that partitioning based on the static file attributes can
result in significant traffic to the I/O critical path due to the
frequent real-time file-indexing operations.

To better understand the performance impact of partitioning

schemes, we develop a program to conduct a sensitivity study

of partition scale and inter-partition updates on one machine.

It simulates a typical application issuing 50,000 writes to

partitions of files to trigger inline indexing and measures the

execution time as a function of partition size and of access

concentration (inter-partition accesses). Each partition main-

tains three file indices on HDDs: a B+tree, a Hash Table and

a K-D-Tree [12]. As shown in Figure 2(a), 50,000 file update

requests are randomly distributed to a fixed total number of

files that are evenly partitioned into groups of a given size,

which ranges from 1, 000 files per partition to 8, 000 files per

partition. For each configuration, the experiment runs 3 times

and the average result is measured. The evaluation results

clearly demonstrate that a larger group size leads to worse

indexing performances. In the second test, 50,000 updates

are issued to an increasing number (i.e., 1∼32) of partitions

in a given partitioning scheme (i.e., a given group size), to

evaluate the impact of the inter-partition accesses, or access

concentration. The result, shown in Figure 2(b), indicates that

the number of accessed partitions significantly impacts the

indexing performance as well. More specifically, the higher

the access concentration is, the higher the inline indexing

performance will be. The key takeaway from these experimen-

tal observations is that not only the partition scale, but also
multi/cross-partition accesses, have a significant performance
impact on file-indexing operations. Unfortunately, this cross-
partition accesses cannot be observed and controlled from

the static file attributes (e.g., file location or file metadata).

For instance, we observed that programs usually access files

located at various physically separated directories, which are

highly likely to be located in different namespace-based parti-

tions [30], [38], [47]. Figure 3 shows that a Linux Firefox web

browser accesses the “bin” directory, “log” directory, “home”
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(a) Impact of Partition Size. Randomly accessing the same number of
files that are partitioned into different number of equally-sized groups.
Larger partition leads to lower update performance.
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Fig. 2. Performance Impacts of Partition Size and Inter-Partition Accesses.

directory, etc. during its execution. Additionally, many big data

datasets have large fan-out directories, in which there is an

enormous number of files in the same directory [9], [31], [32],

[46]. Both of the aforementioned examples make it difficult,

if not impossible, for the existing partitioning approaches to

reduce the prohibitively costly inter-partition updates.

/

usr var

bin
log

lib ... sbin

etc

ld.so

gccfirefoxbash
...

libc.so libgtk.so

...

home

john

.mozilla

prefs.js bookmarks.js

....syslog

Mike Eddy

apache.log
...

Fig. 3. Firefox Dataflow

Consequently, to efficiently perform real-time file-indexing

operations, the partitioning scheme of file index must limit
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the scale of the partition while reducing inter-partition IOs.

The file-access patterns, considered the dynamic file attributes,

must be taken as a significant partitioning criteria. Unsurpris-

ingly, we have found that it is applications that determine

their accessed file sets and corresponding file-access patterns.

This suggests that file sets may be naturally partitioned by
virtue of semantic and access correlations of applications. For

instance, Table I, which summarizes the file-access patterns

we monitored from the executions of four commonly-used

applications on a Linux machine, clearly indicates that any

two different applications share very few files, implying that

file accesses are highly application-oriented and application-

isolated. This observation can also be extended to many classes

of analytics applications [13], [32].

Program
Execution

Apt-get Firefox OpenOffice Linux
Kernel

Accessed
Files

279 2279 2696 19715

Apt-get N/A 31 (1.36%) 62 (2.29%) 29
(0.15%)

Firefox 31 (11.1%) N/A 464 (17.2%) 48
(0.24%)

OpenOffice 62 (22.2%) 464 (20.3%) N/A 45
(0.22%)

Linux
Kernel

29 (10.3%) 48 (2.11%) 45 (1.69%) N/A

TABLE I
COMMON FILES ACCESSED BY EXECUTIONS OF DIFFERENT

PROGRAMS: APT-GET[17] (SYSTEM MANAGEMENT), FIREFOX (WEB

BROWSING), OPENOFFICE (DOCUMENT EDITING) AND LINUX KERNEL

BUILDING.

To this end, we propose a distributed file-search service,

Propeller, which first captures the file-access correlation, called

access-causality, and then uses this correlation to partition the

files by a partitioning algorithm. Access-causality is defined

as the access correlation that represents the causality of the

file content. To be more specific, two files fA and fB are

considered access-causal, denoted by fA → fB , if file fA is

opened by a process P that either reads or writes at time t0
and file fB is opened by the same process P that writes at time

t1, where t0 < t1. That is, file fA is considered as the content

producer of file fB . Propeller constructs directed access-
causality graphs (ACGs) from these captured file causalities.

In each such graph, a vertex represents a unique file and a

weighted edge connecting two vertices represents the access

causality between two files, that is, the number of times these

two files are opened by the same process in the defined order.

Figure 4 illustrates the process of updating the ACG during a

program’s execution.
These ACGs have the following beneficial properties that

enable Propeller to automatically partition and organize file

indices to significantly improve the file-indexing performance.

1) The definition of an ACG guarantees that ACG can

accurately predict the possibility of files being accessed

together, since it actually represents the execution se-

mantics of applications, which are very stable.

2) The ACGs between two different applications, or even

within a single application on two different datasets [9],
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oN: output file of this execution

iN: input file of this execution
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this execution

Other files in this ACG group

Existing weighted edge in 
this ACG group

7

Fig. 4. Updating File Access-Causality Graph

[13], [32], are only loosely connected or completely

disconnected, as observed from Table I.

3) The ACGs captured from a single application are still

likely to have several disconnected components, as evi-

denced and elaborated in Section 4.1.

4) For a connected component of a large ACG, since the

weight of an edge is defined as the number of times

the two files are accessed together, it is amenable to

be further partitioned into sub-graphs with a minimal

weight of cut that represents the number of inter-

partition accesses.

Thus, Propeller is able to partition the files by directly

finding the connected components in the ACGs. Note that

Propeller clusters small connected components of the ACG

from the same application into a single partition to prevent the

fragmentation of indices. However, if the scale of a connected

component of an ACG grows and exceeds a certain threshold

(e.g., 50, 000 files), Propeller is capable of starting a back-

ground process to cut the connected component into two sub-

graphs that 1) have similar scale and 2) have minimal weight of

cut. Therefore, Propeller’s partitioning problem can be reduced

to the 2 − way graph partition problem. Given the existence

of several heuristics and approximation algorithms [24], [37],

[42] that have been widely used to solve this problem, we

choose the METIS [28] algorithm, because it is shown to be

very stable and reliable in obtaining approximately equal-sized

sub-graphs for our context of the problem.

IV. DESIGN AND IMPLEMENTATION

In this section we present the design and implementation

of a Propeller prototype in a distributed system. As a dis-

tributed file-search service, Propeller utilizes ACGs to provide

a practical highly-scalable real-time file-indexing facility in

data-intensive environments. It is worth noting that Propeller

is a general-purpose file-search service, which means that it

supports not only the indexing of file metadata, such as file

size, modification time or user id [25], [30], but also the

indexing of arbitrary user-defined attributes on files. Users can

define an arbitrary index with a globally unique name with the

supported index structures (i.e., b-tree, hash table or K-D-tree).

Moreover, in order to simplify the development, the Propeller
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prototype is organized as a Propeller cluster consisting of

one Master Node, multiple Index Nodes, as illustrated in

Figure 5 [9], [18]. Specifically, in order to automatically

capture the file access-causality, Propeller’s distributed client

is implemented under the existing file system on the client

side. These distributed components are elaborated in details

below.

Shared Storage

Application

File Query Engine File Access Mgnt File System API
FUSE

Cluster 
Mgmt

Master Node

Index 
Lookup

Index 
Node

Index 
Node

Propeller File-Search Service
IO

File Index/Search

Fig. 5. The Propeller File-Search Service Software Stack

Client. In order to transparently capture the file access be-

haviors, Propeller’s client is implemented in a FUSE-based file

system [2]. We implement a File Access Management module

in the client-side FUSE file system to intercept every file open
and close operation. The client constructs ACGs from these

captured open and close operations in RAM, using the ACG

construction algorithm described in Section III. These newly

constructed ACGs are initially cached in the client-side RAM

and flushed to the Index Nodes after the I/O process finishes.

Propeller does not guarantee the consistency for the ACGs to

protect against scenarios such as node failures. This is because

the inconsistency of an ACG is tolerable since it does not affect

the quality (i.e., the accuracy) of file-search results. Choosing a

weak consistency model for ACGs also significantly alleviates

the I/O overhead of file indexing operations. Additionally, a

File Query Engine module is implemented as a local RPC

service on the client machine, interpreting the file-search

requests from either the file system namespace [19], [33] (e.g.,

a dynamic query-directory “/foo/bar/?size>1m”) or a file-

search API for applications, and sending the corresponding

requests to the Propeller cluster.

Master Node (MN) is the central index metadata and

coordination server that 1) manages the Propeller cluster, and

2) determines and coordinates how and where the clients send

their file-search and file-indexing requests to the corresponding

Index Nodes. First, it manages the metadata of indices, such

as the locations of ACGs and a hash table that maps from

files (i.e., inode) to ACGs identified by the ACG IDs. Second,

it maintains the running status of the cluster, such as the

location of each ACG, as well as the available resources

(e.g., free disk space) on each node. Because it only makes

the routing decisions for the file-indexing/search requests,

instead of serving the heavy IOs or the actual file-indexing

requests, this single Master Server architecture can perform

reasonably well in supporting hundreds of Index Nodes [9],

[18]. Additionally, the metadata of indices (i.e., file-to-ACG

mappings) are periodically flushed to the shared storage to

prevent data loss when the server crashes. Finally, as this paper

mainly focuses on the index partitioning scheme, designing

highly-available Master Node(s) (e.g., to preventi the single

point of failure) is beyond the scope of this paper.

Index Node (IN) manages the partitioned file indices and

services the client’s file-indexing or file-search requests. Three

categories of index structures are supported at the current stage

of the prototype: B-tree, hash table and K-D-Tree. Each ACG

can have all three types of file indices, although not all of

these indices must be filled with contents. To support user-

customized indices, each ACG has a table to point an index

name to the actual index within this ACG, and this table is

managed by the Index Node. As a result, all file indices within

an ACG must be managed by the same Index Node. All the

indices, as well as the ACGs and their metadata, are stored as

regular files in the underlying shared file system. To reduce

the real-time file-indexing latency, Index Nodes aggressively

cache the file-indexing requests. When a client sends a file-

indexing request, this request is appended to a write-ahead log

and inserted into the in-memory index cache. The in-memory

cached file-indexing requests are only committed to the index

in either of the following events: 1) after a predetermined

time interval (also called timeout, e.g., 5 seconds), or 2) upon

the arrival of the next file-search request, whichever occurs

first. Because file-search requests, as presented as “readdir”
operations, are very rare in typical file system workloads [6],

the file-indexing cache is shown to be very effective for

indexing-intensive workloads. Finally, as shown in Fig 6,

each Index Node periodically sends heart-beat requests to the

Master Node to acknowledge its runtime status as well as the

metadata of ACGs.

Parallel File-Indexing and File-Search Operations. As

illustrated in Figure 6, a typical file-indexing or file-search

request starts from the File Query Engine at the client-side,

asking MN for the ACGs and their locations (i.e., INs). For

update requests (i.e., file-indexing or ACG updates), if the

file or the ACG does not exist in MN, MN first allocates

the metadata for this new ACG, and then assigns it to the

least loaded IN. After the MN successfully locates the ACGs

and the corresponding INs, a list of ACGs and INs are

sent to clients. Because ACGs are partitioned in a way that

significantly reduces the intra-ACG updates, it offers Propeller

a great opportunity to send the file-indexing or file-search

requests to the selected INs in parallel. Moreover, there is no

cross-ACG or cross-IN transaction needed to be maintained.

As a result, the clients can process the file-indexing or file-

search requests from different applications simultaneously, as

illustrated in Figure 6. Finally, for the file-search request, the

client-side File Query Engine sends the file query requests to

all INs, which hold the ACGs that have the indices with the

given globally unique name, and each IN issues the query to

these ACGs, then the client aggregates the file names returned

from these INs.
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Fig. 6. Propeller’s Distributed Architecture

Workflow. As mentioned above, Propeller is implemented

as a prototype of a general file-search service, which supports

indexing and searching the fields that are not limited to the

inode metadata (i.e., size, uid or mtime) [25], [30]. Therefore,

users or applications need to first create a customized file index

with a unique name, for the convenience of future operations.

To this end, Propeller is able to autonomously manage the

location and scale of ACGs for performance optimization,

because all ACG performance criteria are observable during

the execution of the applications. For instance, the client-

side File Access Management module captures file-creation

and file-deletion operations and updates the file to the ACG

mapping in the MN accordingly. For another example, when it

observes that the scale of an ACG exceeds a certain threshold,

the IN initializes a background ACG-splitting task and sends

acknowledgement to MN. MN assigns the newly partitioned

ACG a new IN, and instructs the original IN to migrate the

split ACG to the new IN. Additionally, the contents of each

index are fed directly by users or applications. It is worth

noting that the file-indexing and file-search operations are not

on the I/O critical path, because users and applications can

choose when to update the indices. Eventually, the file raw

data and file metadata are managed by the underlying shared

storage (Figure 5), with the exception of the mapping from

files to ACGs that must be managed by MN. Thus the raw

file system metadata and I/O operations do not increase the

stress on Propeller either.

V. EVALUATIONS

We evaluate the performance of the Propeller prototype us-

ing representative datasets and workloads. In the experiments,

we examine the performance metrics in terms of file-indexing
performance, file-search performance, query accuracy, query
scalability, and system overhead, in order to assess how

effectively Propeller service will likely perform in a real

environment.

Experimental Setup.

We prototype Propeller on a 9-node Linux storage cluster

to evaluate its scalability, where one node runs as Master

Node, and the other 8 nodes run as Index Nodes. These

nodes are connected by a NetGear ProSafe 24-port Gigabits

switch. Each node in this cluster features an Intel Quad-

Core Xeon X3440 (4 cores, 8M cache, 2.53GHz) CPU with

4 ∼ 16GB RAM running Ubuntu Linux Server 12.10. Each

node is equipped with a Seagate Barracuda ST31000524AS

1TB, 7,200 RPM and 32MB Cache hard drive formatted

as Ext4 for the experiments. We compare Propeller against

the open-sourced relational database (MySQL) and Spotlight

because they are the de facto standard file-search and/or file-

metadata management solutions for most file systems [11],

[15], [20], [30]. Furthermore, although the scalability of full-

text search engines (e.g., ElasticSearch) and NoSQL databases

(e.g., MongoDB) are significantly better than SQL databases,

the indexing latency of them are expected comparable to

SQL databases [48], because the essential data-structures (e.g.,

B+tree) used as index have similar time complexity (e.g.,

O(logn) insert). Finally, the current SQL (MySQL cluster),

NoSQL (MongoDB) and full text search (ElasticSearch) so-

lutions can partition (shard) datasets based on a chosen key,

and thus they are not aware of file-system access patterns. We

leave their comparison to our future work.

To perform a fair comparison with a centralized MySQL, we

run Propeller in the single-node mode (i.e., the Master Node

and a single instance of Index Node run on the same Linux

machine) to evaluate its single-node file-indexing and file-

search performance. In this test, the MySQL data and Propeller

index data are stored on the same clean Ext4 file system.

Additionally, only B-tree based index is used in MySQL

and Propeller tests. Propeller’s update timeout is 5 seconds.

MySQL’s buffer size is set to 2GB, and the request batch size

is 128 in both tests. Furthermore, we compare the file-search

latency and accuracy of Propeller (in the single-node mode)

against Spotlight on a Mac Mini machine with Intel i5-2415M

CPU, 8GB RAM, 500GB, 5,400 RPM hard drive running Mac

OSX 10.8.2. Finally, we also evaluate the I/O performance of

Propeller by comparing it to several production-level Linux

file systems.
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A. File Access-Causality Partitioning

We use three traditional applications to show the character-

istics of file access-causality graphs. In order to capture the

ACGs, we download the source code of three different real

applications: Git version management software [3], Remote

Procedure Call package Thrift [1] and Linux Kernel, and then

compile them on the Propeller’s FUSE-based file system on

one client machine. The ACG obtained from compiling Thrift

is drawn in Figure 7. The ACGs from other applications are

similar. This graph clearly shows two disjoint connected com-

ponents with no inter-partition accesses at all. This means that

grouping the files corresponding to the connected components

in the ACG graph would minimize inter-group accesses (in

fact, to zero in this case). In the meantime, each connected

component can be further divided into approximately equal-

sized sub-graphs with the minimal inter-partition accesses (i.e.,

balanced cut) by applying graph partitioning algorithms [28],

[37], [42]. Table II summarizes the key characteristics of

the access-causality graphs obtained from the aforementioned

three applications and the execution time of applying the

METIS graph partitioning algorithm [28] on the largest con-

nected component from each application.

e applications and the execution time of applying

TIS graph partitioning algorithm [28] on the largest

ted component from each application.

Fig. 7. The Access-Causality Graph of Compiling Thrift. Each vertex
in the graph is a source file in the thrift application [1]. The blue cycles
illustrates the potential cuts of this ACG. It clearly indicates that there are
disconnected components in the access-causality graph for single application.

In conclusion, access-causality graph is an effective tech-

nique for clustering files in such a way that the inter-group

accesses, the largest contributor to the file-indexing latency,

can be significantly reduced or eliminated. Additionally, since

splitting a large file-index partition (e.g., by running the

METIS algorithm [28]) is a rare operation compared to file-

indexing and file-search operations, and is performed in back-

ground, we argue that its relatively high overhead is acceptable

in Propeller.

B. Single-Node Performance

We compare Propeller against MySQL on a single Linux

node to evaluate Propeller’s performance advantages over the

centralized file-search approaches [35], [36]. Two tables are

used in MySQL in favor of its file-search performance: one

for storing the full file path and inode attributes and the

other for storing the mapping from keyword to file path, in

which the keywords are extracted from the full file path. Due

to the fact that publicly accessible file-system snapshots [6],

[7] do not contain explicit file-access patterns necessary for

the construction of access-causality partitions, we choose a

set of well-known applications and open-source projects (e.g.,

Firefox, OpenOffice, Linux Kernel, etc.) to construct access-

causality partitions, because they are representative of typical

real-world workloads and are publicly accessible. To obtain a

dataset of a desired scale, we duplicate these samples with an

appropriate scaling factor.

Fig. 8. File Indexing Times (log) on 50-million-file and 100-million-file
datasets

Scalable File-Indexing. We start by feeding a sequence

of concurrent file updates to both Propeller and MySQL on

two different scaled datasets, one with 50-million files and

the other with 100-million files. In this experiment, we create

1 through 16 processes to issue 10,000 update requests to

Propeller and MySQL, respectively, and measure the execution

times. It simulates the scenario that an application accesses

a small fraction of the data compared to the whole system

(i.e., 50/100-million files). In the Propeller experiment, each

process issues IOs within one individual partition. In the

MySQL experiment, each thread issues IOs to the same files

accessed in the Propeller experiment. We have observed that

the experimental results are consistent with different group

sizes, thus we only present the results for the 1000-file-per-

group experiment. As shown in Figure 8, the file-indexing

performance of Propeller is 30 ∼ 60 times better than that

of MySQL. Note that, in both data sets, the file-indexing

performance of Propeller is similar, because all file-indexing

IOs occur within a single group, so that the file update

overhead is only determined by the size of the group. While in

the MySQL case, it degrades significantly (2×) from the 50-

million-file dataset to the 100-million-file dataset, because the

overhead is determined by the scale of the dataset. Thus, this

experimental result indicates that the Propeller file-indexing

performance is scalable. Furthermore, Propeller’s performance

degradation, as the number of threads increases, is due to

the fact that the user-level Propeller threads issue parallel I/O

requests to different files on the underlying Ext4 file system,

resulting in mostly small and random IOs that are known to
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Application # of
Vertices
(Files)

# of Edges Total Weight
of the Graph

Partitioning
Time

Avg. # of Vertices
of Resulting Parti-
tions

Weight of Cut

Linux 62331 5937685 6958560 35.37s 30087/32244 92672 (1.33%)
Thrift 775 8698 55454 0.042s 359/369 316 (0.58%)

Git 1018 2925 4162 0.018s 494/524 1225 (29.4%)

TABLE II
EVALUATION OF THE FILE ACCESS-CAUSALITY PARTITIONING ALGORITHM (METIS [28]). THE METIS ALGORITHM IS CAPABLE OF

APPROXIMATELY DIVIDING THE ACCESS-CAUSALITY GRAPH INTO EQUAL-SCALE SUB-GRAPHS WHILE KEEPING THE CUT (I.E., INTER-PARTITION

ACCESSES) MINIMAL. THE PERCENTAGE OF CUT IS THE SUM OF WEIGHTS OF THE EDGES CROSSING THE CUT DIVIDED BY TOTAL WEIGHT OF ALL EDGES.

perform very poorly on HDD-based storage system and form

a performance bottleneck.

Files (Million) Propeller #1 Propeller #2 MySQL #1 MySQL #2
10 0.099745 0.548982 5.60257 5.68406
20 0.758968 1.56552 12.7334 13.6765
30 1.05982 2.31851 18.9487 19.9276
40 1.19347 3.03695 25.1554 26.6886
50 1.6375 3.99506 32.4856 34.157

TABLE III
GLOBAL FILE SEARCH (SECONDS): QUERY #1: SIZE > 1 GB &

MTIME < 1DAY ; QUERY #2: KEYWORD “FIREFOX” & MTIME < 1
WEEK.

We compare the file-search performance of Propeller and

MySQL on the synthetically scaled-up namespaces. The

namespaces are kept static in order to eliminate the impact of

continuous file-index updates. We define two queries (listed

in the caption of Table III) to evaluate the global-search

performance of the two systems. The results, shown in Table

III, indicate that these two queries in Propeller are on average

9.0 and 26.3 times faster than those in MySQL, respectively.

C. Scalable Search Performance on Propeller Cluster

As described in Section IV, only the file-search requests

involve multiple index nodes. Therefore, we evaluate the

scalability of file-search API on the 9-node Propeller cluster.

In this experiment, the number of Index Nodes scales from 1

to 8. After a fresh booting up, the same file-search requests

are performed by Propeller on two different scales of datasets

(50-million and 100-million files) in a close-loop manner. The

latency of each request is measured. Each group node uses

16 threads to perform parallel searches on different groups

located in the node. Within every cluster configuration, we

issue the same file-search requests for 11 times. The “cold

query” results are the measured search-latency values for the

first queries of the 11-query sequences when the system is

cold with no data cached, and the “warm query” results are

the measured query-latency values averaged over the last 10
requests of the 11-query sequences.

The results shown in Table IV clearly indicate that the

latency of file-search requests is significantly reduced linearly

and even super-linearly as the Propeller cluster scales up,

suggesting a high file-search scalability of Propeller in a

distributed environment, especially when the cluster has more

than 4 nodes. In the warm tests, the latencies improve super-

linearly from 1→ 4 index nodes in the 100-million-file dataset
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Fig. 9. Propeller Cluster Search Performance (log) on 50-million and
100-million files: “finding the files larger than 16MB”

Test Latency (seconds)
Number of Index Nodes 1 2 4 6 8

100m (cold) 1497.2 809.6 347.2 194.8 174.9
50m (cold) 698.4 420.3 107.0 77.7 55.8

100m (warm) 1.61 0.30 0.056 0.037 0.030
50m (warm) 0.180 0.044 0.029 0.023 0.016

TABLE IV
PROPELLER CLUSTER FILE-SEARCH LATENCY (SECONDS) ON

50-MILLION AND 100-MILLION FILES: “finding the files larger than 16MB”

and 1 → 2 index nodes in the 50-million-file dataset. This

is because that, with one or two nodes, the combined size

of the file indices is larger than the size of the memory on

each node, which causes frequent page faults when the file-

search operations are performed. By distributing the groups

among more nodes, each node’s share of file indices is

reduced proportionally to allow it to load the entire indices

into its memory, avoiding page faults and resulting in much

better performance. In summary, the reason for this great

scalability of Propeller is that by distributing a large number of

independent and small-scaled ACGs to different Index Nodes

(see Section III), all Index Nodes are able to process the

ACGs they house locally and in parallel, enabling Propeller to

achieve very low file-search latency on very large datasets.

D. Mixed Workloads

As described in Section IV, Propeller aggressively caches

the indexing requests to effectively hide the indexing latency

from the regular file IOs. However, this technique increases

the latency of the search requests, because it must commit all

modifications into the file indices before performing a file-
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Test Dataset 1 Dataset 2
Real(s) User(s) System(s) Recall Real(s) User(s) System(s) Recall

Brute-Force (cold) 51.878 0.469 5.676 100% 110.372 1.974 20.178 100%
Spotlight (cold) 2.755 0.022 0.043 60.6% 3.605 0.020 0.102 13.86%
Propeller (cold) 2.818 0.081 0.191 100% 4.167 0.243 0.560 100%

Brute-Force (warm) 5.185 0.259 3.414 100% 90.561 1.990 21.383 100%
Spotlight (warm) 0.021 0.011 0.007 60.6% 0.068 0.012 0.007 13.86%
Propeller (warm) 0.0015 0.0018 0.0014 100% 0.0031 0.0045 0.0023 100%

TABLE V
PERFORMANCE COMPARISON BETWEEN PROPELLER AND SPOTLIGHT (“find files larger than 16MB”). ALL THE EXPERIMENTS ARE MEASURED BY

REAL TIME, USER TIME AND SYSTEM TIME. DATASET 1 HAS 138K FILES AND DATASET 2 HAS 487K FILES.
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Fig. 11. Query Accuracy and Latency on a Dynamic Namespace (Dataset 1). SL: Spotlight and PP: Propeller. After importing an Ubuntu snapshot
(89K files) into Dataset 1, we spawn a background I/O process to copy files into the dataset at various speeds. Then we continuously issue the query (“find
files larger than 16MB”) for 10 minutes to both Spotlight and Propeller and measure the query latency and accuracy.
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search request in order to guarantee the consistency of results.

Thus, it is desirable to mix I/O operations with file-search

requests in the I/O workloads to obtain a deeper understanding

of the Propeller performance. To explicitly show the impact of

file-search requests, we feed a synthetic workload consisting

of 10,000 updates combined with file-attribute-search requests,

to one group (1,000 files) on a 50-million-file dataset on both

Propeller and MySQL, where there is one file-search request

for every 1,024 updates. And the background re-indexing is

triggered after every 500 updates to simulate the “timeout”

effect in the lazy-indexing technique. As shown in Figure 10,

the average latency of file re-indexing operations in Propeller

(15.6μs) is 250× lower than that in MySQL (3, 980.9μs).

This result proves that, with access-causality grouping, the

performance penalty of synchronous-commit modifications

before each file-search is very small in the Propeller solution

due to the significantly reduced scale of an index, while

in the MySQL solution, the update operations occur in the

global namespace, which results in an extremely high latency.

Furthermore, the file-index cache not only hides most of the

re-indexing latency from the normal I/O operations but also

reduces the number of modifications to be merged for the file-

search requests due to the “background” merges triggered by

the “timeout” mechanism). In summary, Propeller guarantees

the consistency of file-search results with very little latency.

E. Performance Comparison against Spotlight

Due to our lack of access to the Google Enterprise Search

application [21], we use Spotlight [11], which is considered the

most sophisticated desktop search engine and thus represents

the state of the art in desktop search engines. We evaluate

the efficiency and accuracy of Propeller by comparing the

single-node Propeller prototype with Spotlight on a Mac Mini

machine. The Spotlight index is completely rebuilt before each

run of the Spotlight test, and the file system caches and disk

caches are cleared before all experiments in this subsection.

Due to the fact that the Propeller prototype lacks the rich set

of file plug-ins to extract metadata from various file types

that Spotlight has, we issue the same range query of the

inode attributes to both Spotlight and Propeller. Additionally,

we also perform a brute-forced search as the base-line of

all experiments. We feed two datasets to Propeller to build

the namespace: Dataset 1 (138K files), the freshly installed

image of Mac OSX 10.8.2 on Mac Mini, and Dataset 2

(487K files), derived from Dataset 1 by combining it with
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the file system snapshot of one author’s Mac laptop. We

compare Propeller against Spotlight in two aspects: Static
Namespace, which represents the efficiency of file query,

and Dynamic Namespace, which examines the impact of the

crawling process.

Static Namepace Test. We repeatedly perform the same

query 60 times with an interval of 1 second. The cold query
results are measured for the first query, and the warm query
results are the average values from the remaining 59 queries.

The results illustrated in Table V show that Propeller is

2% ∼ 15% slower than Spotlight for cold queries in the cold-

cache test, but it is 14 ∼ 21.94 times faster than Spotlight for

warm queries in the warm-cache test. We argue that the warm-

cache performance is more important than the cold-cache

one, as the file-search results will most likely be accessed

frequently and repeatedly by the parallel executed analytics

applications on different client nodes.

Dynamic Namespace Test. In this test, we first import a

Linux virtual machine (Ubuntu) snapshot into the dataset.

Then we immediately spawn a background I/O process and

start a foreground process to continuously search files, as

described in Figure 11. Figure 11(a) shows that the search

accuracy metric, recall (see Section II), of Spotlight reaches

the maximum value of (82.0%) at different speeds, which

is determined by the background I/O intensity. Figure 11(b)

shows that the average query latency of Propeller (3.1ms) is

9 times faster than Spotlight (28.5ms). Due to space limit,

we only present the results for Dataset 1, since the results

for Dataset 2 are similar. The results clearly demonstrate

that Propeller is superior to Spotlight in dynamic namespace

performance on both query latency and accuracy, which are of

significant importance when the file-search API is integrated

into big-data applications.

It is also noteworthy that the inode attribute index in the Pro-

peller prototyping process is implemented in a serialized KD-

tree. It means that, for each index group, Propeller has to load

the entire KD-tree in RAM, which accounts for the most of its

latency, as indicated by timereal − (timeuser + timesystem)
in the cold-cache tests. With a specialized design of the on-

disk structure of KD-tree, which is left to our future work, it

is possible to substantially reduce the IOs so that the query

latency of Propeller can be dramatically improved further.

In summary, the advantages of access-causality grouping in

Propeller enable it to provide real-time file search service,

which is infeasible to state-of-the-art file-search engines.

F. Raw I/O Performance

We evaluate Propeller’s raw I/O performance to assess the

inline file-indexing overhead. We run the PostMark bench-

mark [29] on several file systems that are categorized into two

types: native (Ext4/Btrfs) and FUSE-based (NTFS/ZFS/Pro-

peller) file systems on a single Linux machine. Additionally,

we implement a pass-through FUSE file system (PTFS) that

passes through I/O requests to the underlying Ext4 file system

in order to measure the overhead introduced by FUSE. The

PostMark benchmark creates 50000 files under 200 subdirec-

tories within each file system. The results, shown in Table VI,

indicate that Propeller is about 2.37× slower than the FUSE

pass-through implementation. The reason is because Propeller

does inline indexing for the corresponding file.

FS Files Created
per second

Read/Write Throughput Real/User/Sys
Time (s)

Ext4 16747 391KB/84MB 5.44/0.22/1.92
Btrfs 5582 130KB/28.1MB 7.85/0.37/7.44

PTFS 6289 146.76KB/31.51MB 8.02/1.63/5.74

NTFS-3g 2392 55.9KB/12MB 12.5/4.80/5.09
ZFS-fuse 2093 58.71KB/12.61MB 20.4/8.95/6.14
Propeller 2644 61.79KB/12.61MB 68.1/11.5/12.1

TABLE VI
POSTMARK BENCHMARK RESULTS. WE COMPARE PROPELLER

AGAINST NATIVE FILE SYSTEMS (EXT4/BTRFS) AND TWO FUSE-BASED

FILE SYSTEMS (NTFS-3G, ZFS-FUSE). WE ALSO COMPARE IT AGAINST

PTFS, A PASS-THROUGH FUSE FILE SYSTEM, TO EVALUATE THE

OVERHEAD INTRODUCED BY FUSE. PROPELLER HAS A COMPARABLE

RAW I/O PERFORMANCE TO OTHER FUSE-BASED FILE SYSTEMS SUCH AS

NTFS-3G AND ZFS-FUSE.

In summary, the FUSE-based Propeller prototype, with its

advanced file-search functionality and high query-accuracy

guarantee, has overheads that are comparable to other FUSE-

based advanced file systems (e.g., NTFS-3g and ZFS-fuse) that

also offer more functionalities (e.g., volume management and

end-to-end integrity) than Ext4. Additionally, in a cluster en-

vironment, the file-indexing overhead shifts to the distributed

index nodes, which is substantially amortized by the relatively

high network overhead.

VI. CONCLUSION AND FUTURE WORK

This paper presents Propeller, a distributed real-time file-

search service. By applying a novel file-clustering mechanism,

called Access-Causality partitioning, and several other opti-

mization techniques, Propeller offers an inline file-indexing

capability with reasonable raw I/O performance. The evalua-

tions show that Propeller outperforms a centralized solution

(MySQL) by 2∼3 orders of magnitude in the file-indexing

and file-search performance, and has much higher accuracy

and substantially lower query latency than the state-of-the-art

desktop search engine (Spotlight). The cluster implementation

of Propeller also demonstrates its almost linear file-search

latency scalability.
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