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Abstract—Increasingly video-on-demand (VoD) applications
have been ported to cloud platforms. Leveraging the elastic
resource provisioning of the cloud, it is believed that VoD ap-
plications should attain high performance cost-effectively. In this
paper we propose an approach that aims to solve the fundamental
resource reservation and scheduling problem of configuring the
cloud utility to meet SLAs for VoD applications at a modest
cost. First, we devise a constraint-based model that describes the
relationship among channel placement, user groups’ bandwidth
allocation, operating costs and QoS constraints. Second, we
present a distributed heuristic algorithm, called DREAM, that
solves the model and produces a budget solution that reserves
and allocates cloud bandwidth, and determines the channel layout
among datacenters. Simulations driven by data traces collected
from a commercial VoD system demonstrate that DREAM
provides much better access locality and data availability than
and comparable streaming quality to state-of-the-art solutions at
lower cloud operating costs.

I. INTRODUCTION

During the past decade, video on demand (VOD) has
become one of the most popular services on the Internet
[3][4]. A successful Internet VoD system usually contains
tens of thousands of videos and attracts millions of users
who concurrently watch popular videos online at peak times.
In general, commercial VoD deployments use either CDNs
(Content Delivery Networks) or P2P (Peer-to-Peer) networks
[16]. While the former achieve high availability, the latter have
lower deployment cost and are more scalable [8].

With the prevalence of the cloud computing and storage
platforms, many VoD applications have been ported to cloud
infrastructures completely or partially [1][2][6][7]. The cloud
platform is based on a “pay-as-you-go” model that enables
users from anywhere at any time to access a shared pool of
configurable bandwidth and storage resources, which can be
on-demand provisioned and released with minimal manage-
ment effort. The on-demand resource supply in the cloud aims
to meet the dynamic bandwidth and storage demands of the
VoD applications in real time [6].

Despite of the remarkable advantages offered by cloud
platforms, new techniques are needed to fully exploit poten-
tials promised by these advantages so as to better port VoD
applications to cloud platforms. By analyzing VoD applications
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and their characteristics, we believe that streaming quality,
access locality and data availability must be fulfilled by these
new techniques to move VoD applications to the cloud in the
most cost-effective ways. The main reasons are as follows.
From a user’s perspective, the global users must be able to
download data from their respective local regions at a rate
no lower than the video playback rate in order to watch the
desired video streams online smoothly after a short video
start-up lag. As a result, it is necessary to ensure streaming
quality and access locality for VoD applications. From a video
provider’s viewpoint, the data availability is of paramount
importance, because any loss of video data may risk violating
the service level agreement (SLA) and thus result in certain
forms of penalty (e.g., of economical and/or regulatory nature).
Furthermore, access locality enables cloud providers to reduce
the cross-boundary traffic. On the other hand, these new
techniques must provide cost effectiveness because the cloud
resource comes at a cost that VoD service providers would
certainly want to minimize.

It is generally believed that if VoD applications are de-
ployed in a cloud environment, they should attain high perfor-
mance, in terms of streaming quality, video availability and
access locality, more economically. To achieve this goal, a
number of recent studies in the literature have proposed various
optimizations and scheduling schemes that can be broadly
divided into two categories. One category is based on cloud
servers [6][8] and the others is based on video channels [5]
since a VoD application usually contains many videos that are
referred to as video channels. To accommodate the dynamic
demands of VoD users, the former focuses on how to adap-
tively adjust resource and position of cloud servers while the
latter concentrates on adaptively managing the video channels
and the streams from them. Although both have been shown to
be effective to some extend and under certain conditions, they
both have clear disadvantages that are elaborated next. For
cloud-server based solutions, first, to adaptively meet users’
demands and changes in resource availability in real time, a
scheduling algorithm [5][8] must be executed repeatedly at
a relatively short time interval (e.g., ten minutes). However,
there may not be sufficient time for cloud servers to adjust due
to the necessary time it takes to start a new virtual machine
(VM), to copy data, and to run the optimization algorithm.
Second, the lack of consideration by the cloud-server based
scheduling schemes to strategically place replica videos in
datacenters (DCs) significantly weakens their ability to provide
data availability.978-1-4799-3360-0/14/$31.00 c© 2014 IEEE
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While the video-channel based techniques can generally
manage the use of video channels among DCs in a more
flexible manner than managing at the cloud-server level in the
cloud platform, we believe that what is apparently lacking in
the existing video-channel based techniques is a thorough and
holistic consideration in their decision-making of the relation-
ship between the operating cost of, maintaining QoS of VoD in
the cloud platform and the resource assignment. Without such
a thorough consideration and understanding of the relationship
these optimization techniques often fail to provide the desired
QoS mentioned above in a cost-effective way. For example,
the latest study in this area, by Niu et al. [5] and one that is
closest to ours in this paper, proposed a predictive resource
auto-scaling system based on video channels that dynamically
places videos and books the minimum bandwidth resources
from multiple data centers to match the users’ next short-
term bandwidth demand with high probability. After carefully
analyzing this system [5] and the pricing schemes of existing
cloud platform [9][10], we found that the three optimization
algorithms used by the proposed auto-scaling system to place
videos into DCs and assign bandwidth to them incur relatively
high cost in terms of data transfer and storage. In addition,
because of possible failures at DCs [17] and user globaliza-
tion [8], data availability and access locality are becoming
increasingly important. However, these proposed optimization
algorithms do not provide any mechanism to maintain video
availability and access locality.

To address this challenge, in this paper, we propose a
holistic approach that aims to solve the fundamental resource
reservation and scheduling problem of configuring the cloud
utility to meet SLAs for VoD applications at a modest cost.
The main ideas behind and thus contributions of our proposed
approach are twofold. First, we devise a constraint-based
optimization model that describes the relationship among
channel placement, user groups’ bandwidth allocation, total
operating costs and QoS constraints, and prove that solving
this model is NP-hard. Second, aiming to satisfy the SLA-
specified QoS requirements of VoD streaming quality, video
availability, access locality in a cost-efficient way, we present
a distributed heuristic resource scheduling algorithm based
on video channels, called DREAM, which produces a budget
solution that reserves and allocates cloud bandwidth, and
determines the channel layout among DCs. This algorithm is
then extended to incorporate locality awareness by adjusting a
coefficient.

We evaluate the effectiveness of a prototype implementa-
tion of DREAM using real-world VoD service traces collected
from Youku [12] (a large commercial VoD site and China’s
equivalent of YouTube), as well as real-world data transfer and
storage pricing policies [9]. Compared to the existing state-
of-the-art solution proposed by Niu et al. [5], the prototype
evaluation results demonstrate that DREAM saves 9%-50% op-
erating cost of the cloud while offering higher data availability
and access locality than and comparable streaming quality to
state-of-the-art solutions.

II. THE GOVERNING MODEL FOR RESOURCE
SCHEDULING

In this section, we formally define the mathematical model
governing resource scheduling in the context of this paper,

TABLE I: NOTATIONS AND THEIR MEANINGS

Notations Meaning

M Total number of datacenters in the system
N Total number of user groups
W Total number of channels to be replicated
Di The ith datacenter(DC)
confi Confidence level of DC Di

Si Storage capacity of DC Di

Bi Bandwidth capacity of DC Di

Uj The jth user group
cij Communication distance between DC Di and user group Uj

Vk The kth channel
vk Size of the channel Vk

V t
k The threshold of channel Vk’s availability

ki Storage cost factor of DC Di that describes the cost of storing a unit
data per unit of time

rik Communication distance from Di to its nearest neighboring DC that
has Vk’s replica

Qjk The expected bandwidth of Uj when it downloads channel Vk

Xijk The bandwidth assigned by DC Di to user group Uj for downloading
channel Vk

Yik If channel Vk is replicated at Di, Yik = 1, otherwise Yik = 0
avail(Vk) The availability of the channel Vk

δt The interval between two runs of the optimization algorithm
Cij cij ∗ δt, it expresses the price of bandwidth
Ki ki ∗ δt, it expresses the cost of storing a unit data during δt
Cδt The operational cost of an application in δt

which describes the relationship among video placement, QoS
constraints, bandwidth assignment and cloud operating costs
for VoD applications in the cloud.

A. System Architecture and Notation Definition

The most frequently used notations are listed in Table I.
Without loss of generality, we assume the cloud platform to
be composed of M datacenters (DCs). Let Di, Si and Bi be
the name, the total storage capacity and bandwidth capacity,
respectively, of DC i where i = 1, . . . ,M . These DCs are
geographically distributed among different regions, and they
can communicate with one another through a network (e.g.
WAN).

To expose and exploit access locality, we differentiate users
into groups based on their network status. A user group is
composed of the users from within a given geographical region
or of a certain network status (e.g., an area with a certain
level of physical proximity, local area network, or Autonomous
System (AS)). There are N user groups, U1, . . . , UN , watching
channels from the cloud platform. Users can access the cloud
platform through the Internet. Each route between data center
Di, i = 1, . . . ,M and user group Uj , j = 1, . . . , N has
a positive floating-point value function cij , specifying the
communication distance for transferring data units between
Di and Uj . The communication distance, determined by the
locations of the DC and, sometimes, the user group, can be
represented in terms of the data transfer price between two
regions as in [9][10], or cost of leasing the network links.
Traditionally, a cloud provider leases or owns dedicated lines
connecting its DCs [13], so in this paper we assume that the
inter-datacenter network of a cloud provider and the network
connecting the cloud platform and users are disjoint and thus
independent of each other. On the other hand, if the cloud
platform uses the same network to transmit data among its
DCs and between users and DCs, our method can also solve
the problem by simply considering a DC as a special user
group.
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We use time-series techniques [5] to predict every user
group’s future bandwidth demands for each channel. To cope
with the practical challenges of (1) new video channels’ lack of
sufficient demand history and (2) unpredictability of some new
and small channels with only a few online users, we aggregate
new channels and small channels into virtual new-channels and
virtual small-channels respectively as defined by Niu et al.
[5]. Because of the similarity among initial demand evolution
patterns of all channels, it is feasible to predict demands for
new videos based on the trace of earlier videos. And a virtual
new-channel including many new videos which is considered
a single entity has enough online users to predict its bandwidth
demand. Similarly, small video channels with few online users
are aggregated into virtual small-channels. Besides these two
types of virtual channels, the rest of channels are referred to
as mature channels. So a virtual channel may include many
videos and a mature channel includes only one video.

We assume that there are W channels, including all virtual
new-channels, virtual small-channels and mature channels.
Each channel Vk with a size of vk , k = 1, . . . ,W , will
be stored in the cloud, and our scheme will appropriately
distribute its replicas among DCs. We use ki∗vk as Vk’s storage
cost in Di during a unit time, in which ki is the storage cost
factor depending on the power consumption, equipment price
and so on. Generally the cost of replicating a channel from
one DC to another is proportional to the channel’s size. We
refer to this cost as migration cost and use rik ∗vk to calculate
it, where rik is the communication distance from Di to its
“nearest” neighboring DC that has channel Vk’s replica.

In this paper if the users obtain sufficient bandwidth,
we think that the streaming quality is provided desirably.
We denote by Qjk the amount of bandwidth that should be
reserved from all DCs during the next interval δt for user
group Uj watching channel Vk, and use a random variable
Ljk as the actual aggregate bandwidth load imposed on Vk

from Uj during δt. To maintain the streaming quality, the load
imposed on Vk from Uj should not be more than the reserved
bandwidth Qjk with high probability, i.e. Pr(Ljk > Qjk) ≤ ε,
where ε > 0 is a small constant, called the under-provision
probability. Niu et al. [5] have shown that each Ljk follows
a Gaussian distribution. Based on their conclusion and using
demand expectation and variance of Ljk as input, which are
predicted by using the time-series techniques, we derive Qjk,
j = 1, . . . , N and k = 1, . . . ,W . All these Qjks, which are
distributed to all DCs, define an N ∗ W demand matrix Q.
Now, we use X to denote the reserved bandwidth distribution
matrix as follows. Each element of the M ∗ (N ∗W ) matrix,
Xijk, for i = 1, . . . ,M, j = 1, . . . , N and k = 1, . . . ,W , is a
real number representing the bandwidth reserved in DC Di for
user group Uj downloading channel Vk during the next interval
δt. To maintain the streaming quality of the next interval,

we must ensure that
∑M

i=1 Xijk ≥ Qjk, j = 1, . . . , N and
k = 1, . . . ,W . Let Yik = 1 if Di holds a replica of channel
Vk during interval δt, and 0 otherwise. Yiks define an M ∗W
replication matrix Y for i = 1, . . . ,M and k = 1, . . . ,W ,
with Boolean elements.

B. Availability
The cloud platform aims to keep the data availability

above a minimum level. We adopt the following definition
of availability to express the probability of a video being

available:

Pr(Vk available) = (1−
M∏
i=1

Fi ∗ Yik) ≥ V p
k (1)

where Fi ∈ [0, 1] is the probability with which a video
replica is unavailable in data center Di. We assume that all
of videos have diverse availability requirements, so we set dif-
ferent availability thresholds to them. Channel Vk’s availability
threshold is denoted by V p

k . We further require that a given
virtual channel only include videos with the same availability
requirements. Thus, any channel’s availability threshold is
equal to that of its videos. Letting confi = −log(Fi) and
V t
k = −log(1 − V p

k ), we obtain an equivalent formula for
ensuring channel availability:

avail(Vk) = Pr(Vk available) =

M∑
i=1

confi ∗ Yik ≥ V t
k (2)

where conf ∈ [0,+∞] is referred to as the confidence level of
a DC that represents the probability of the DC not losing data
in it, which is estimated based on its hardware components
and fault-tolerant scheme. All V t

k s, k = 1, . . . ,W , form a W -
element availability demand vector V t.

C. Mathematical Model
One of our model’s goals is to minimize the total operating

cost, denoted as Cδt, which will be incurred by VoD applica-
tions during the next short-term δt. Since the communication
cost of the control messages has minor impact to the overall
performance of the system [14][18], we do not consider it in
our model. There are three main components affecting the total
operating cost, as described below:

Cδt =

W∑
k=1

M∑
i=1

N∑
j=1

cij ∗Xijk ∗ δt+
W∑
k=1

M∑
i=1:Yik=1

ki ∗ vk ∗ δt

+

W∑
k=1

M∑
i=1:Yik=1andY ′

ik=0

rik ∗ vk. (3)

The first component is the delivery cost that is introduced
by sending data form DCs to user groups. Xijk ∗ δt is the
expected amount of data delivered by DC Di to user group Uj

during the interval δt. The second component is the cost arising
from storing video providers’ data. The third component is the
replica migration cost due to the inter-DC movement of repli-
cas as a result of the optimization algorithm’s new decision on
replicas’ locations. Let Cij = cij ∗ δt and Ki = ki ∗ δt and
put them into Eq. 3, so that the equivalent objective function
is:

minCδt =

W∑
k=1

M∑
i=1

N∑
j=1

Cij ∗Xijk +

W∑
k=1

M∑
i=1:Yik=1

Ki ∗ vk

+

W∑
k=1

M∑
i=1:Yik=1andY ′

ik=0

rik ∗ vk, (4)

where Y ′
ik is equal to one when the channel Vk is already

replicated in DC Di by the last execution of the optimization
algorithm, otherwise it is equal to zero.

The proposed mathematical model discussed in this paper
can be succinctly described by its objective function as: Find
the assignments of real values in the X matrix and of Bolean
{0, 1} values in the Y matrix that are related to X , so that
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Cδt in Eq. 4 is minimized subject to the following constraints:

if
N∑
j=1

Xijk > 0thenYik = 1, i = 1, . . . ,M and k = 1, . . . ,W,

(5)
W∑
k=1

N∑
j=1

Xijk ≤ Bi, i = 1, . . . ,M, (6)

W∑
k=1

vk ∗ Yik ≤ Si, i = 1, . . . ,M, (7)

Xijk ≥ 0, i = 1, . . . ,M, j = 1, . . . , N and k = 1, . . . ,W,
(8)

Yik ∈ {0, 1}, i = 1, . . . ,M and k = 1, . . . ,W, (9)

M∑
i=1

Xijk ≥ Qjk, j = 1, . . . , N and k = 1, . . . ,W, (10)

M∑
i=1

confi ∗ Yik ≥ V t
k , k = 1, . . . ,W. (11)

In Constraint 5, the inequality
∑N

j=1 Xijk > 0 implies
that some user groups need to access a specific channel Vk

from DC Di, so that the replica of Vk must be placed at
Di, i.e., Yik has to be 1. Constraints 6 and 7, which are
the capacity constraints, states that the amount of bandwidth
and storage reserved from data center Di cannot exceed its
capacity. Constraint 8 stipulates that the amount of the reserved
bandwidth is a positive value. Constraint 9 stipulates that a
replica of channel Vk is either placed or not placed in DC Di.
To guarantee the streaming quality and channel availability, we
introduce Constraints 10 and 11.

D. Analysis and Transformation of the Model
Theorem 1. The minimization problem described by Eq. 4 and
Constraints 5-11 is NP-hard.

Proof: Let’s first make the following three assumptions:
(1) there are no accesses from users to channels so that all
Xijks are zero; (2) communication distance between any two
DCs is equal to zero so that migration cost can be ignored;
and (3) a single replica can provide sufficient availability for
each channel. Based on these assumptions, all the terms of
Eq. 4, except for the second term, and Constraints 5, 6, 8 and
10 can be removed. So the original problem is reduced to the
following simplified minimization sub-problem:

minCδt =

W∑
k=1

M∑
i=1:Yik=1

Ki ∗ vk, (12)

subject to Constraints 7, 9 and
M∑
i=1

Yik ≥ 1, k = 1, . . . ,W. (13)

Obviously, this sub-problem is a minimization version of
the generalized assignment problem, which Chekuri et al. [11]
refers to as Min GAP and is NP-hard. Since the NP-hardness of
a sub-problem implies that property for the general problem,
we can conclude that the minimization problem from our
model is NP-hard.

To remove Constraints 10 and 11, we introduce two penalty
functions. If any demand for downloading bandwidth or avail-
ability cannot be met, the objective function value of Eq. 4
will be increased by a big number depended on the quantity
of the missing bandwidth or availability. Therefore, to solve
the minimality model, the optimization algorithm has to try
its best to avoid the events of bandwidth or availability being
unmet. With regard to Constraint 10, the penalty function term

is p1jk = P1 ∗ (Qjk −
∑M

i=1 Xijk), when Qjk >
∑M

i=1 Xijk,

otherwise p1jk = 0. And with regard to Constraint 11, the

penalty function term is p2k = P2∗(V t
k−

∑M
i=1 confi∗Yik)∗vk,

when V t
k >

∑M
i=1 confi ∗ Yik, otherwise p2k = 0. As penalty

factors, both P1 and P2 are real numbers. So we get a new
equivalent model with Constraints 5-9 and a new objective
function, which is:

minCδt =
W∑
k=1

M∑
i=1

N∑
j=1

Cij ∗Xijk +
W∑
k=1

M∑
i=1:Yik=1

Ki ∗ vk

+

W∑
k=1

M∑
i=1:Yik=1andY ′

ik=0

rik ∗ vk +

W∑
k=1

N∑
j=1

p1jk +

W∑
k=1

p2k.

(14)
The above minimization problem can be translated into

an equivalent maximization problem in which we maximize
the overall virtual gain of resource assignment obtained by
replicating the channels and allocating bandwidth. From Eq.
14 we can see that meeting some bandwidth or availability
demands will introduce a decreased value in penalty and an
increased value in operating cost. In general, we make the
former is bigger than the latter by setting the two penalty
factors and then define the virtual gain of resources assign-
ment as difference value between them. Thus, the equivalent
maximization problem is:

max

W∑
k=1

(q2k−
M∑

i=1:Yik=1

Ki∗vk−
M∑

i=1:Yik=1andY ′
ik=0

rik ∗vk)

+

W∑
k=1

N∑
j=1

(q1jk −
M∑
i=1

Cij ∗Xijk), (15)

subject to Constraints 5-9, where q2k = P2 ∗
∑M

i=1 confi ∗Yik ∗
vk when V t

k >
∑M

i=1 confi ∗Yik, otherwise q2k = P2 ∗V t
k ∗vk,

and q1jk = P1∗
∑M

i=1 Xijk when Qjk >
∑M

i=1 Xijk, otherwise

q1jk = P1 ∗Qjk.

The first term of Eq. 15 represents the additional gain
obtained by ensuring the Vk’s availability, while the second
term represents the virtual gain obtained by maintaining stream
quality for user group Uj watching channel Vk. Corresponding
to the case that all demands are met, the most virtual gain of
resource assignment is given by the difference between the
value of penalty over all channels if no resources are assigned

(
∑W

k=1

∑N
j=1 P1 ∗Qjk+

∑W
k=1 P2 ∗V t

k ∗vk) and the operating
cost obtained by resources assignment given by the objective
function in Eq. 4.

III. DISTRIBUTED RESOURCE SCHEDULING
ALGORITHM

A. Preliminaries
In this section, we propose a distributed heuristic resource

scheduling algorithm based on video channels, called DREAM,
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which solves the optimization model described by Eq. 15 and
Constraints 5-9. The algorithm determines the placement of
channel replicas and bandwidth reservation based on the ratio
between the resource-assignment gain and the cost described
by Eq. 15 and Eq. 4 respectively. The algorithm has as input
three parameters, Q, Vt and Y ′

i . The first parameter Q is
the N ∗W matrix of N user groups’ bandwidth demands for
W channels, which are derived by prediction and probability
calculation. The second parameter Vt is the W -element vector
(V t

1 , V
t
2 , . . . , V

t
W ) of which each entry is the threshold of

a channel’s availability. The third parameter Y ′
i is the W -

element vector of which each entry Y ′
ik, k = 1, . . . ,W , is equal

to one when the channel Vk is already replicated in datacenter
(DC) Di by the last execution of DREAM, otherwise it is zero.

To help describe the DREAM algorithm we define three
additional parameters, the variable matrix of resource assign-
ment cost (rc), the assignment gain (rg) matrix and the cost-
effectiveness (ce) matrix. The elements of these matrices are
defined as follows. The resource (storage space and bandwidth)
allocation cost for a tuple consisting of DC Di, user group Uj

and channel Vk is defined as follows:

rci0k = (Ki ∗ vk + rik ∗ vk ∗ (1− Y ′
ik)) ∗ (1− Yik), (16)

rcijk = Cij ∗ xijk + rci0k, (17)

where xijk = min(dQjk, eBi), dQjk records Uj’s remaining
bandwidth demand for Vk and eBi records the quantity of DC
Di’s remaining bandwidth. Clearly, rci0k represents the cost
of placing a channel Vk’s replica in DC Di, including storage
cost and migration cost. In Eq. 16 the term rik ∗vk ∗ (1−Y ′

ik)
is simply the migration cost that will be zero if Vk’s replica
was already placed in Di by the last execution of the algorithm
(Y ′

ik = 1). rcijk represents the sum of the cost the application
will experience if data center Di provides xijk bandwidth to
user group Uj for downloading the channel Vk. The first term
of Eq. 17 Cij ∗ xijk is the delivery cost.

Corresponding to the resource assignment costs, the re-
source assignment gains are defined as follows:

rgi0k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(P2 ∗ yik ∗ vk − rci0k)(1− Yik)

if
∑M

i=1 confi ∗ Yik < V t
k

−rci0k
if
∑M

i=1 confi ∗ Yik ≥ V t
k ,

(18)
if

∑M
i=1 confi ∗ Yik < V t

k , yik = min((V t
k −

∑M
l=1 confl ∗

Ylk), confi), otherwise 0,

rgijk = (P1 − Cij) ∗ xijk + rgi0k. (19)

As can be seen from the definition of rgi0k, it represents the
increase in overall gain the VoD application would experience

if data center Di replicates channel Vk. The term
∑M

i=1 confi∗
Yik ≥ V t

k in Eq. 18 means that channel Vk has sufficient
number of replicas in different DCs to ensure its availability
so that no additional replicas are needed, hence rgi0k will not
be greater than zero. Of course, we will set P2 ∗ yik greater
than the sum of Ki and rik to make rgi0k a positive number
when higher availability is required for the channel Vk. rgijk
represents the sum of gain in the application when bandwidth
xijk is allocated to users. The first term (P1 − Cij) ∗ xijk in
Eq. 19 indicates the gain of allocating bandwidth. Similar to
P2, we make P1 greater than Cij .

Now we define the elements of the cost-effectiveness
matrix of allocating resources, ceijk, as follows:

ceijk = rgijk/rcijk. (20)

The cost-effectiveness element ceijk is used to determine
each “global” decision of replicating channel and/or assigning
bandwidth. In making these decisions, DREAM considers the
effect of allocating the resources on the overall application
gain and cost. According to Eq. 17, Eq. 19 and Eq. 20,
some elements of cost-effectiveness matrix ce are recalculated
after every resource assignment by DREAM and they will be
non-positive if the demands are met or there are no more
resources that can be assigned in corresponding DCs. DREAM
always assigns resources that attain the global maximum cost-
effectiveness value cemax, until all elements in ce are non-
positive.

B. The Proposed Algorithm

The proposed distributed heuristic algorithm for resource
scheduling is given in DREAM as shown in Algorithm 1. The
algorithm is executed by each DC within the cloud platform.
It starts with an initialization phase (lines 2-15) in which the
DCs initialize their local variables. In line 2, the algorithm
initializes row i of the allocation matrices X , Y and ce to
zero, indicating that no replicas are placed and no bandwidth
are reserved and assigned in DC Di. And in line 3, it also
initializes the available of storage space eSi to Si and the
available of bandwidth capacity eBi to Bi. Si and Bi are the
storage and bandwidth capacity of DC Di. Matrices dQ and
dV t record all remaining bandwidth and availability demands.
According to the second term of Eq. 16, in line 4 the function
Compute mc computes the cost of migrating a channel to a DC
(mcik). From line 5 to line 13, our main purpose is to compute
each ceijk in DCs, for i = 1, . . . ,M , j = 1, . . . , N and k =
1, . . . ,W . We compute the W -vector rci0 and rgi0 in a given
DC Di with function Compute gc according to Eq. 16 and Eq.
18. According to Eq. 17 and Eq. 19, the (N ∗W ) matrices
rci and rgi in Di are initialized (lines 9-10) and DREAM sets
each gain with the maximum value that corresponds to the case
in which DCs try their best to meet the QoS demands. Finally,
dividing the element one by one in rgi by the element at the
same position in rci, we get the cost-effectiveness matrix cei,
for i = 1, . . . ,M .

The second phase of the algorithm is iterative, consisting
of the while loop in lines 20-41. Before entering the loop,
the global maximum cost-effectiveness value, cemax, is com-
puted through a collective communication operation called all-
reduce-max (send msg, recv msg) [15] (line 17). The param-
eters are the send buffer and the receive buffer, respectively.
Both are ordered lists of six variables (cemax, i, j, k, xijk, f),
where cemax is the maximum cost-effectiveness value, i, j
and k are the indices of the corresponding DC, user group
and channel that give rise to this maximum cost-effectiveness
value. To participate in this operation each DC Di determines
its local highest cost-effectiveness value cemax, the quantity of
bandwidth xijk to be allocated to user group Uj from channel
Vk and the flag f (lines 14 and 15). The parameter f is a
flag that will be set to one if it is necessary to replicate Vk

to achieve this cemax in Di, otherwise will be set to zero.
Of course, when cemax is greater than zero, the replica of Vk

must be placed at this point, so f = 1.
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Algorithm 1 DREAM (Q, V t, Y ′
i )

1: {Datacenter Di, i = 1, . . . ,M :}{Initialization}.
2: Xi ←− 0; Yi ←− 0; cei ←− 0; f ←− 0
3: eSi ←− Si; eBi ←− Bi; dQ ←− Q; dV t ←− V t

4: mci ←− Compute mc(Y ′
i )

5: for k := 1 to W do
6: if eSi ≥ vk then
7: (rgi0k, rci0k) ←−Compute gc(dV t

k , k,mcik)
8: for j := 1 to N do
9: xijk ←− min(dQjk, eBi); rgijk ←− (P1 − Cij) ∗ xijk +

rgi0k
10: rcijk ←− Cij ∗ xijk + rci0k; ceijk ←− rgijk/rcijk
11: end for
12: end if
13: end for
14: cemax ←− maxjkceijk; (j, k) ←− arg maxjkceijk
15: if cemax > 0 then f ←− 1 end if
16: send msg ←− (cemax, i, j, k, xijk, f)
17: all-reduce-max(send msg, recv msg)
18: (cemax, i′, j, k, xi′jk, f) ←− recv msg
19: {i′ is the datacenter that has cemax}
20: while cemax > 0 do
21: if i′ = i then
22: {this server has the maximum cost-effective}
23: if f = 1 then
24: Yik ←− 1; dV t

k ←− max(0, dV t
k − confi); eSi ←− eSi −

vk
25: end if
26: if xijk �= 0 then
27: Xijk ←− xijk; dQjk ←− dQjk−xijk; eBi ←− eBi−xijk

28: end if
29: else
30: {another data center has the maximum cost-effective}
31: if f = 1 then dV t

k ←− max(0, dV t
k − confi′ ) end if

32: if xi′jk �= 0 then dQjk ←− dQjk − xi′jk end if
33: end if
34: {prepare the next iteration}
35: (cei,xi) ←− update(dQ,dV t,mci)
36: cemax ←− maxjkceijk; (j, k) ←− arg maxjkceijk
37: if Yik = 0 then f ←− 1 else f ←− 0 end if
38: send msg ←− (cemax, i, j, k, xijk, f)
39: all-reduce-max(send msg, recv msg)
40: (cemax, i′, j, k, xi′jk, f) ←− recv msg
41: end while

During each iteration period, if DC Di attains the maxi-
mum global cost-effectiveness value, it performs replica place-
ment and bandwidth allocation if needed (lines 21-29). If Di

does not attain the maximum global cost-effectiveness value,
it only updates some local values to keep track of the changes
resulted from allocation of bandwidth and storage space at
other DCs (lines 30-33). Then, each DC participates in another
all-reduce-max operation that determines the next candidate
maximum cost-effectiveness value cemax, the quantity of
bandwidth xijk and the flag f . Each DC Di updates its cost-
effectiveness matrix cei and xi with the function update that
is very similar to the codes from line 4 to line 13.

Because of possible prediction errors, the entries in de-
mand matrix Q are not always bigger than or equal to the
user groups’ practical demands. So, although the constraints∑M

i=1 Xijk ≥ Qjk, j = 1, . . . , N and k = 1, . . . ,W , are
satisfied, the reserved bandwidth may not meet the actual
streaming quality with a probability. Therefore, after finishing
DREAM, we let Xijk ←− (1 − e) ∗ Xijk for i = 1, . . . ,M ,
j = 1, . . . , N and k = 1, . . . ,W , and configure a bandwidth

pool sized e
∑N

j=1

∑W
k=1 Xijk in each DC, where e is a small

value (e.g. 5%) and referred to as bandwidth pooling factor.

A DC’s pooled bandwidth can be provided to any user group
for downloading any channel that is replicated in this DC. If
a user group exhausts its exclusive reserved bandwidth for a
specific channel, its requests will be routed to the replica with
sufficient pooled bandwidth and the smallest communication
distance to it.

C. Complexity

To calculate the running time of DREAM, we first deter-
mine the number of iterations of the main loop. We differ-
entiate the iterations based on what they do. A bandwidth
allocating iteration is one that only allocates bandwidth to
a user group. The bandwidth allocating iteration means that
no channel’s replica is placed in this iteration. Similarly, a
replica placement iteration is one that only places a channel’s
replica in a DC and does not allocate any bandwidth. We refer
to an iteration that not only places replica but also allocates
bandwidth to a user group from this replica as a hybrid
iteration. It is clear from the algorithm description (lines 21-
33) that each iteration falls into one of these three categories.
Moreover, lines 5-13 show that DREAM does not compute
the cost-effectiveness value of placing a replica alone, hence
a replica placement iteration will not be carried out unless all
xijks of a pair of a DC and a channel are equal to zero.

Based on the analysis above, it is not difficult to infer that
a channel may introduce at most N − 1 bandwidth allocating
iterations. Thus, for all channels the maximum number of
bandwidth allocating iterations is W ∗ (N − 1). If sufficient
storage space is provided, in the worst case, a channel has
to be replicated at all the DCs, which means that the total
number of hybrid and replica placement iterations are at
most W ∗ M . The worst running time of each iteration is
W ∗ N + log(W ∗ N). Thus the running time of the main
loop is W ∗ (M + N − 1) ∗ (W ∗ N + log(W ∗ N)). The
initialization phase consists of a (W ∗ N)-iteration loop and
a build-heap operation of cost (W ∗N). Therefore, the worst
case running time of DREAM is O((M + N) ∗W 2 ∗N),
where M is the total number of DCs, N is the total number of
user groups, and W is the total number of channels. According
to the literature [15], it is easy to prove that the communication
complexity of DREAM is O(W ∗ (M + N − 1) ∗ logM).

In fact our experiments in Section IV show that each run
of the DREAM or DREAM-L (Section III-D) algorithm only
takes 2-4 seconds, so there is sufficient time in each 10-minute
internal to determine the resource assignment scheme for the
next internal.

D. Integrating Locality-Awareness

To effectively reduce the delays between users and DCs and
cross-boundary traffic (e.g., cross-ISP traffic), we incorporate
DREAM with locality-awareness, i.e. DREAM-L, to maximize
the amount of bandwidth allocated to users from their local
cloud DCs. To this end, we use an abstract notion “region” to
represent the locality of a user group. In this paper, locality is
defined as:

Locality =
N∑
j=1

aBj/min(cBj , rBj), (21)

where aBj is the bandwidth obtained by user group Uj from
the DCs located in its own region. cBj is the sum of all DCs’
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available bandwidth in this region. rBj is the total bandwidth
obtained by user group Uj .

Our objective now is to improve locality. To achieve
this objective, some modifications need to be applied to the
DREAM algorithm. First, we define virtual communication
distance for transferring data units between DC Di and user
group Uj by a positive floating-point value function vcij as:

vcij =

{
cij if Di and Uj are in the same region

cij + P3 if Di and Uj are in different regions,
(22)

where i = 1, . . . ,M, j = 1, . . . , N and P3 referred to as
locality penalty factors is a positive real number. Second,
let V Cij = vcij ∗ δt and replace Cij with it in DREAM.
From the definition of Eq. 19, we can see that DREAM
tends to reserve bandwidth to users from DCs with smaller
communication distance. We refer to the DREAM integrating
locality-awareness as DREAM-L.

IV. PERFORMANCE EVALUATION

We conduct extensive simulations to evaluate the perfor-
mance of our approach. The simulations are driven by real
traces collected from the Youku site [12], which covers a 14-
day duration. We first briefly introduce the collected traces,
which is followed by the evaluating methodology as well as
evaluation results and their analysis.

A. Traces and Parameters

YouKu is one of the largest online video and television
platforms in China, reaching a total of 400 million unique
viewers every month. We randomly chose 2270 videos and
gathered their statistic information using two online crawlers
every 10 minutes from the Youku site. The statistics of interest
include video’s duration, the total number of online video
replays (i.e., the number of times the online video “play
button” is pushed, excluding the “play” button pushed after a
“pause” button to resume replay) by users and the distribution
of the number of online video replays among all Chinese
regions. The first crawler collected information of 1715 videos
that have already been launched for a few days. The second
crawler collected traces of accumulated videos launched in
subsequent days at a rate of 38-40 videos per day. In our
experiment the users are grouped based on their regions and
there are 34 user groups (regions) totally.

The playback rate of a video is typically 500kbps, but
since there are a lot of users who do not watch the entire
length of the video, we follow the common practice of other
researchers by assuming that each play consumes 250kbps
bandwidth throughout its entire duration. We infer the size of a
video by using its duration. For example, a video of 60 minutes
contains (500kbps ∗ 60 ∗ 60)/8/1024/1024 = 0.215GB. We
compute the incremental number of videos’ online replays in
every 10 minutes by the difference in the total cumulative
numbers of replays between two consecutive observed periods.
Using the incremental numbers of replays, videos’ durations
and regional distribution of total number of replays, we can
form a time-series of user groups’ bandwidth demands for
all video channels. And then we implement time-series and
demand prediction techniques [5] to forecast the expectation
and variance of bandwidth demands for every 10-minute

Fig. 1: 10-minute forecast conditional expectation of users bandwidth demands
from Beijing in China for the video channel 142202354.

interval δt. Fig. 1 shows the forecast for users’ bandwidth
demands of a popular video channel from Beijing in China.

Because the cloud provider generally places servers or DCs
near the users, in our experiments, 128 DCs are assumed
to be uniformly distributed in 34 regions. We conduct three
experiments with each DC’s available bandwidth capacity
assumed to be 1.8Gbps, 10Gbps and 25Gbps respectively.
The assumed cloud bandwidth capacity in the first experiment
(i.e., 1.8Gbps per DC) is closer to the actual total bandwidth
demands of the users. Each DC’s bandwidth capacity in the
second (i.e., 10Gbps) and the third (i.e., 25Gbps) experiments
are assumed based on the current 10Gpong and next generation
25Gpong communication components in the cloud. We assume
that all DCs have the same confidence level and each video
needs 2 or 3 replicas to maintain its availability. We assume the
three penalty factors to be P1 = 20, P2 = 1, and P3 = 1/6.

Pr(Ljk > Qjk) ≤ ε and e
∑N

j=1

∑W
k=1 Xijk are set to

ε = 40% and e = 5%, for i = 1, . . . ,M , j = 1, . . . , N
and k = 1, . . . ,W , where M , N and W are the numbers of
DCs, user groups and channels respectively. We set the storage
cost factor and communication distance with storage and data
transfer pricing similar to those in Amazon’s simple storage
service (S3) of July 2013.

B. Methodology

We compare our DREAM and DREAM-L (DREAM
with locality-awareness) with the Per-DC Lim and Optimal
Load Direction [5], which are considered the state-of-the-art
channel-based solutions and referred to as Niu-1 and Niu-2 in
this paper respectively. As pointed out by Niu et al. [5], the
Niu-2 algorithm stores a large number of video replicas, which
incurs significant additional cloud-charged storage fees to the
VoD provider. Therefore, they overcame this shortcoming by
limiting the number (k) of channels stored in each DC in the
Niu-1 algorithm. We set k = 5, when there are 128 DCs
available.

We use the following ten metrics in our simulation, three
for measuring quality of service, three for system configu-
ration, and four for measuring costs. The three QoS metrics
are Service availability, the arithmetic mean of all channels’
availability during a 10-minute interval, Service access lo-
cality, the arithmetic mean of all user groups’ locality, and
Streaming quality, the ratio of bandwidth required by users to
their actual bandwidth demand. The three system measures are
Replication degree, the average number of replicas per video
channel, Over-provisioning ratio, the ratio of total reserved
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TABLE II: PERFORMANCE OF THE 4 ALGORITHMS WITH DIFFERENT DATACENTER BANDWIDTH CAPACITIES DURING 10 DAYS

(a) Each datacenter has 1.8Gbps bandwidth.

Algorithm QoS Measures(averaged over all intervals) System Measures(averaged over all intervals) Cost Measures(sum over all intervals)
Avail Stq Local Rep Opr Crt Dc($) Sc($) Mc($) Oc($)(normalized to Niu-1)

DREAM 100% 99.94% 2.97% 2.62 102.80% 101.01% 353619 6.76 412.14 354038 (60.39%)
DREAM-L 100% 99.94% 96.89% 27.94 102.86% 10.65% 458940 76.61 1374.08 460391 (78.53%)

Niu-1 35.14% 99.96% 2.94% 2.12 105.36% 100% 557467 5.81 28851.54 586260 (100%)
Niu-2 100% 99.97% 3.00% 33.11 103.35% 100.21% 554160 88.58 7526.45 561775 (95.82%)

(b) Each datacenter has 10Gbps bandwidth.

Algorithm QoS Measures(averaged over all intervals) System Measures(averaged over all intervals) Cost Measures(sum over all intervals)
Avail Stq Local Rep Opr Crt Dc($) Sc($) Mc($) Oc($)(normalized to Niu-1)

DREAM 100% 99.94% 2.95% 2.59 102.85% 101.89% 256434 6.53 142.81 256583 (49.67%)
DREAM-L 100% 99.94% 96.45% 28.75 102.86% 0.35% 394166 77.81 285.21 394529(76.38%)

Niu-1 13.23% 99.96% 2.83% 2.00 105.32% 100% 491709 5.20 26346.73 516549(100%)
Niu-2 86.12% 99.97% 2.94% 6.39 103.35% 101.22% 489353 17.27 1365.28 490736 (95.00%)

(c) Each datacenter has 25Gbps bandwidth.

Algorithm QoS Measures(averaged over all intervals) System Measures(averaged over all intervals) Cost Measures(sum over all intervals)
Avail Stq Local Rep Opr Crt Dc($) Sc($) Mc($) Oc($)(normalized to Niu-1)

DREAM 100% 99.94% 3.17% 2.57 102.86% 101.59% 244644 6.31 34.80 244685 (50.31%)
DREAM-L 100% 99.94% 96.47% 28.75 102.86% 0.34% 383253 77.87 190.08 383521 (78.86%)

Niu-1 13.88% 99.96% 2.81% 2.13 105.25% 100% 461161 5.55 28272.34 486354 (100%)
Niu-2 64.53% 99.97% 2.94% 2.86 103.35% 100.66% 421173 8.03 485.60 421667 (86.70%)

Avail: Service availability; Stq: Streaming quality; Local: Service access locality; Rep: Replication degree; Opr: Over-provisioning ratio; Crt: Normalized cross-region traffics; Dc:
Delivery costs; Sc: Storage costs; Mc: Migration costs; Oc=Dc+Sc+Mc: Operating costs(Normalized operating costs). Cross-region traffic and operating cost measure are normalized
to those of the Niu-1 algorithm.

bandwidth to users’ actual bandwidth demand, and Cross-
region traffic, the amount of traffic that crosses different
regions. The four cost metrics, Delivery cost, Storage cost,
Migration cost and Operating cost, have been defined formally
in Section II. Informally, Delivery cost is the communication
cost of delivering data from the cloud to users and Migration
cost is the communication cost of moving data among DCs;
Storage cost is the overhead of storing data in the cloud. In
this paper, Operating cost is the sum of Delivery cost, Storage
cost and Migration cost. Note that all costs, in US dollars, are
derived based on the similar pricing scale of Amazons S3 as
of July 2013.

C. Performance Observed at VoD Service Providers

We implement the following four resource scheduling
algorithms for performance comparison, DREAM, DREAM-
L, Niu-1 and Niu-2. Table II shows the three QoS measures,
three system measures, and four cost measures of different
algorithms during a 10-day period. Our DREAM and DREAM-
L have lower operating costs, respectively achieving 49.67%-
60.39% and 76.38%-78.86% of the cost of the Niu-1 algorithm,
and 52.29%-63.02% and 80.40%-90.95 of the cost of the Niu-
2 algorithm. In other words, our algorithms can save 9.05%-
50.33% total cloud operating costs of Niu-1 and Niu-2.

Because Niu-1 and Niu-2 do not consider the optimization
of the delivery cost, they incur higher delivery costs than
DREAM and DREAM-L. Our algorithms obtain 52%-91% of
their delivery costs. Following the most common practices of
pricing in the cloud platform, in our experiments the commu-
nication price is assumed to be independent of user’s location.
However, since DCs in different regions in the cloud platform
are known to charge differently for the same bandwidth ca-
pacity, some users may be assigned more expensive bandwidth
from closer DCs. The locality awareness of DREAM-L means
that sometimes users may end up obtaining more expensive
bandwidth from local DCs, which explains why the delivery

cost of DREAM-L is higher than that of DREAM. Meanwhile,
to provide access locality, DREAM-L must move and store
more channel replicas to the regions where users’ requests
are originated, so DREAM-L has higher storage and migration
costs than DREAM. Comparing DREAM-L with DREAM, the
access locality provided by the former incurs 30%-57% more
operating cost than the latter. It may be argued that, for better
access locality, in some situations it is necessary to pay for
this additional cost. In general, such a performance-vs.-cost
tradeoff can often be made at the SLA negotiation time. When
compared with Niu-1 and Niu-2, however, DREAM-L offers
consistent and impressive operating-cost advantages, as shown
in Table II.

The Niu-1 algorithm limits the number of channels stored
in each DC, so it has lower storage cost, achieving 6.57%-
69.11% of that of the Niu-2 algorithm. But this limitation on
the number of channels per DC severely weakens the service
availability of Niu-1, as shown in Table II.

Both Niu-2 and Niu-1 reset the layout of channels in every
interval, while our approaches try to reduce the operating
cost including channel migration cost. So, our algorithms’
migration costs are only small fractions of those of Niu-1 and
Niu-2. In addition, because many replicas of channels have
already been stored in the DCs, Niu-2 is able to avoid some
migration operations of Niu-1. On the other hand, when the
DCs have larger bandwidth capacities, Niu-2, by reserving
bandwidth from and placing replicas in a very small subset
of DCs, is able reduce storage cost and migration cost further.
In addition, as shown in Table II, our two algorithms book
the minimum necessary bandwidth and achieve comparable
streaming quality to Niu-1 and Niu-2.

In our experiments, we found that the storage costs of
the four algorithms are so small that they can be practically
neglected. This means that the network communication cost
including delivery and migration cost is the dominant ele-
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ment of VoD applications operating cost in the current cloud
platform, accounting for at least 99% operating costs of the
four approaches. Therefore, we can conclude that the network
bandwidth is still an expensive resource and it is of paramount
importance to develop bandwidth optimization strategies for
VoD applications.

D. QoS of VoD Service

As shown in Table II, because of integrating availability
constraint (Constraint 11) in our model, our algorithms can
meet all channels’ availability demands completely. Since
DREAM-L must replicate channels into many regions to allow
users to access data from local DCs, it has a high repli-
cation degree. In Table II, of all the algorithms that meet
all availability demands, DREAM has the lowest storage cost
and replication degree (replicas per channel). Niu-1 and Niu-
2 do not provide any strategy for maintaining availability.
But when the DCs have smaller bandwidth capacities, Niu-
2 must place replicas into many more DCs in order to reserve
and obtain sufficient bandwidth from them. Therefore, it can
meet all availability demands under this condition. But with
the expansion of DCs’ bandwidth capacities, the number of
replicas is reduced by Niu-2, hence the service availability
drops to a lower level as shown in Table II(b) and Table II(c).
In all cases, Niu-1 provides the lowest availability. As shown
in Table II, all four algorithms provide comparable streaming
quality, and have similar over-provisioning ratio.

Now we investigate the access locality. As shown in Table
II, DREAM-L significantly improves the access locality by
integrating locality awareness. This means that DREAM-L
utilizes the vast majority of the local bandwidth resources to
serve the users so as to reduce the startup latency and cross-
region traffic. The Cross-region traffic metric not only shows
the locality awareness of an algorithm but also is a general
performance indicator as lower cross-region traffic means that
users are closer to their servers. Table II shows the cross-
region traffic generated by different algorithms, normalized to
that of the Niu-1 algorithm. As the DREAM, Niu-1 and Niu-
2 algorithms do not have locality awareness, it is thus not
surprising to see their cross-region traffic much higher than
that of the DREAM-L algorithm.

V. CONCLUSION

In this paper, we propose a holistic approach to addressing
the fundamental resource reservation and scheduling challenge
of how to configure the cloud utility to meet SLAs for VoD
applications at a modest cost. We first devise an optimization
model that describes the relationship among channel place-
ment, bandwidth allocation, cloud costs and QoS constraints
including streaming quality and data availability. Using this
model, the researchers and developers can deeply view how
the VoD works in cloud platform from the cost elements,
resources assignment and QoS demands points. And then we
propose distributed heuristic algorithms DREAMand DREAM-
L that integrate DREAM with locality-awareness to solve the
model. Leveraging demand prediction and executed at a 10-
minute frequency, the algorithms dynamically determine the
video layout and reserve cloud bandwidth from multiple DCs
to meet SLA and satisfy the QoS in a cost-effective way. From
extensive simulations driven by the demand traces of a large

scale real-world VoD system, we observe that, compared to the
existing state-of-the-art algorithms, our algorithms are able to
provide perfect data availability and high access locality, and
achieve comparable streaming quality at only 50%-90% of the
cloud cost of the existing state-of-the-art algorithms.
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