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Abstract—Recent studies have shown that moderate to high
data redundancy clearly exists in primary storage systems
in the Cloud. Our experimental studies reveal that data
redundancy exhibits a much higher level of intensity on
the I/O path than that on disks due to the relatively high
temporal access locality associated with small I/O requests
to redundant data. On the other hand, we also observe that
directly applying data deduplication to primary storage systems
in the Cloud will likely cause space contention in memory and
data fragmentation on disks. Based on these observations, we
propose a Performance-Oriented I/O Deduplication approach,
called POD, rather than a capacity-oriented I/O deduplication
approach, represented by iDedup, to improve the I/O per-
formance of primary storage systems in the Cloud without
sacrificing capacity savings of the latter. The salient feature of
POD is its focus on not only the capacity-sensitive large writes
and files, as in iDedup, but also the performance-sensitive while
capacity-insensitive small writes and files. The experiments
conducted on our lightweight prototype implementation of
POD show that POD significantly outperforms iDedup in the
I/O performance measure by up to 87.9% with an average of
58.8%. Moreover, our evaluation results also show that POD
achieves comparable or better capacity savings than iDedup.

Keywords-I/O Deduplication; Data Redundancy; Primary
Storage; I/O Performance; Storage Capacity

I. INTRODUCTION

Data deduplication has been demonstrated to be an effec-

tive technique in Cloud backup and archiving applications

to reduce the backup window, improve the storage-space

efficiency and network bandwidth utilization [25], [36].

Recent studies reveal that moderate to high data redundancy

clearly exists in VM (Virtual Machine) [5], [10], [22],

enterprise [7], [13], [21], [28] and HPC [12], [20] storage

systems. These studies have shown that by applying the data

deduplication technology to large-scale data sets, an average

space saving of 30%, with up to 90% in VM and 70% in

HPC storage systems, can be achieved [5], [20], [28]. For

example, the time for the live VM migration in the Cloud can

be significantly reduced by adopting the data deduplication

technology [35].

The existing data deduplication schemes for primary

storage, such as iDedup [28] and post-processing dedu-

plication [7], are capacity-oriented in that they focus on

storage capacity savings and only select the large requests

to deduplicate and bypass all the small requests (e.g., 4KB,

8KB or less). The rationale is that the small write requests

only account for a tiny fraction of the storage capacity

requirement, making deduplication on them unprofitable

and potentially counterproductive considering the substantial

performance overhead involved in deduplication. Thus, the

goal of iDedup is to save the storage capacity with minimal

sacrifice on the performance of primary storage systems.

However, previous workload studies have revealed that small

files dominate in primary storage systems (more than 50%)

and are at the root of the system performance bottleneck [3],

[16], [20], [21], [27], [30], [34]. Furthermore, due to the

buffer effect, primary storage workloads exhibit obvious I/O

burstiness [3], [16], [26]. From a performance perspective,

the existing data deduplication schemes fail to consider these

workload characteristics in primary storage systems, missing

the opportunity to address one of the most important issues

in primary storage, that of performance.

With the explosive growth in data volume, the I/O bottle-

neck has become an increasingly daunting challenge for big

data analytics [29], [37] in terms of both performance and

capacity. Recent IDC studies indicate that in past five years

the volume of data has increased by almost 9 times to 7ZB

per year and a more than 44-fold growth to 35ZB is expected

in the next ten years [31]. Managing the data deluge on

storage to support (near) real-time data analytics becomes an

increasingly critical challenge for Big Data analytics in the

Cloud, especially for VM platforms where the sheer number

and dominance of small files overwhelm the I/O data path

in the Cloud [8], [22], [30].

Moreover, our workload analysis, detailed in Section II-A,

shows that data redundancy on the critical I/O path is

much more pronounced than on the storage devices, largely

due to the high temporal locality of small I/O requests.

This suggests that, if such redundant I/Os can be removed

from the critical I/O path, the performance bottleneck of a

primary storage system may be significantly alleviated, if not

removed. Thus, we argue that, for primary storage systems
in the Cloud, it may be at least as important, if not more so,
to deduplicate the redundant I/Os on the critical I/O path
for the sake of performance as to deduplicating redundant
data on storage devices for the sake of capacity savings.
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(c) Mail

Figure 1. Distribution of I/O redundancy among requests of different sizes on the 15th day of the traces.

On the other hand, our experimental studies suggest that

directly applying data deduplication to primary storage sys-

tems will likely cause space contention in the main memory

and data fragmentation on disks. This is in part because data

deduplication introduces significant index-memory overhead

to the existing system and in part because a file or block is

split into multiple small data chunks that are often located in

non-sequential locations on disks after deduplication. This

fragmentation of data can cause a subsequent read request

to invoke many, often random, disk I/O operations, leading

to performance degradation. Our preliminary evaluations on

the VM disk images reveal that the restore (read) times

with deduplication are much higher than those without

deduplication, by an average of 2.9× and up to 4.2× [18].

These two problems will be particularly acute with the

deployment of the data deduplication technology into the

primary storage systems for big data analytics in the Cloud.

To address the important performance issue of primary

storage in the Cloud, and the above deduplication-induced

problems, we propose a Performance-Oriented data Dedupli-

cation scheme, called POD, rather than a capacity-oriented

one (e.g., iDedup), to improve the I/O performance of

primary storage systems in the Cloud by considering the

workload characteristics. The key distinction between POD

and its capacity-oriented counterparts lies in the former’s

focus on not only the capacity-sensitive large writes and

files, as in the latter, but also the performance-sensitive while

capacity-insensitive small writes and files that the latter

deliberately ignore. POD takes a two-pronged approach to

improving the performance of primary storage systems and

minimizing performance overhead of deduplication, namely,

a request-based selective deduplication technique, called

Select-Dedupe, to alleviate the data fragmentation and an

adaptive memory management scheme, called iCache, to

ease the memory contention between the bursty read traffic

and the bursty write traffic. The prototype of the POD

scheme is implemented as an embedded module at the block-

device level and a subfile deduplication approach is used.

The extensive trace-driven experiments conducted on our

lightweight prototype implementation of POD show that

POD significantly outperforms iDedup in the I/O perfor-

mance measure of primary storage systems without sacri-

ficing the space savings of the latter.

The rest of this paper is organized as follows. Background

and Motivation are presented in Section II. We describe the

POD architecture and design in Section III. The performance

evaluation is presented in Section IV. We review the related

work in Section V and conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we present some important observations

drawn from previous and our workload analysis of primary

storage, and the cache partition strategy associated with data

deduplication to motivate the POD study.

A. Workload characteristics: domination of small files and
I/Os in primary storage

Knowing the workload characteristics is important for

the design of storage systems, which explains the many

recent studies conducted by researchers to analyze primary

workloads [1], [3], [8], [16], [20], [21], [26]. These studies

reveal that more than 50% of files are smaller than 4KB [1],

[21] and 30% to 62% of I/O requests seen at the block level

are 4KB [26]. In primary storage data sets, small files are the

most common and up to 62% files are smaller than 4KB [20].

These results indicate that small I/O requests dominate the

primary storage workloads, which is quite different from

backup and archiving applications. Moreover, these studies

also found that small files have high deduplication rates

by a ratio of over 20%, up to 80% for the primary data

sets [20]. Our own analysis on primary workloads also finds

that small write redundancy (i.e., 4KB or 8KB) dominates,

as illustrated in Figure 1 that shows the distribution of the

I/O redundancy among requests of different sizes on the 15th

day of the three FIU traces. We can see that small writes

dominate the total requests and have the highest redundancy.

These observations and new findings suggest that the

existing deduplication schemes are not suitable for the

need of primary storage systems in the Cloud. Capacity-

oriented deduplication systems, such as iDedup [28], do

not deduplicate the small write requests because their dedu-

plication contributes little to the overall capacity savings.

However, from the perspective of performance, small I/O

requests are extremely important because they are the root
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Figure 2. I/O redundancy vs. capacity redundancy for the three applica-
tions.

cause of the performance bottleneck. Moreover, large I/O

requests are mostly partially redundant. Deduplicating these

partially redundant large I/O requests will cause the data

fragmentation problem [14], [18], [28]. Previous studies

on deduplication-based backup and archiving systems do

not pay much attention to the data fragmentation problem

because read requests are rare in backup and archiving

environments. The data fragmentation problem can result

in significantly increased read response time, a particularly

detrimental side effect for primary storage where reads are

common events.

Moreover, we also found that I/O redundancy is noticeably

higher than capacity redundancy. I/O redundancy in this

context means that data blocks accessed by different write

requests on the critical I/O path contain the same content. It

is therefore different from capacity redundancy in that the

latter is identified from the static data stored on the storage

devices when data blocks with different LBAs (logical block

addresses) contain the same content [7], [20], [21]. For

the redundant write data, only the write data addressed to

different locations (LBAs) are considered capacity redun-

dancy and thus may contribute to capacity savings. Figure 2

shows the percentages of write data that are addressed to the

same locations and to the different locations with the same

content. While the latter indicates the capacity redundancy

targeted by capacity-oriented deduplication schemes, it is

the combination of the former and the latter that signifies

the I/O redundancy. It is clear that I/O redundancy is

noticeably higher than capacity redundancy, by an average of

21.9% among the four traces, due to the additional repeated

accesses to the same locations on the storage devices by

user requests as a result of their temporal locality. This

new finding implies that on-line deduplication is likely much

more effective in reducing I/O traffic than post-processing

deduplication [7] for primary storage workloads.

B. Index cache vs. read cache

Intuitively, applying the data deduplication technique to

primary storage systems will introduce the necessary mem-

ory overhead required for the hash index. For example, when

deduplicating 1TB data with an average chunk size of 4KB,

the space required by the hash index table is about 8GB.

Typical servers cannot keep such a huge hash index table in
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Figure 3. Read and write performances as a function of the percentage
of the memory space allocated to the index cache in a deduplication-based
storage system, where the memory space is assumed to be divided between
the index cache and the read cache.

memory that is also used to cache the popular data blocks to

exploit the access locality. Consequently, most of the hash

index entries must be stored on disks, where the in-disk

index-lookup operations can become a severe performance

bottleneck in deduplication-based storage systems [33], [36].

Figure 3 shows the read and write performances in

average response time as a function of the percentage

of the memory space allocated to the index cache in a

deduplication-based storage system driven by the original

mail trace, where the memory space is assumed to be divided

between the index cache and the read cache. The experiment

setup is described in Section IV. We can see that with

a larger index cache, the write performance is improved

because most hash index entries are stored in memory, thus

reducing the number of in-disk index-lookup operations on

the write path. However, when the memory space for the

read cache is reduced, the read performance is degraded due

to the increased read miss ratio. Similarly, with a smaller

index cache, the write performance is degraded and read

performance is improved. Thus, a larger index cache is

beneficial to the write performance and a larger read cache

is beneficial to the read performance.

On the other hand, previous workload studies revealed

that the I/O burstiness is a common characteristic in primary

storage systems, suggesting that read-intensive periods are

interleaved with write-intensive periods [2], [26]. Given

that the index cache is important in improving the write

performance and read cache is critical for the read perfor-

mance, the I/O burstiness characteristic will likely render

ineffective the fixed cache partition between the read cache

and the index cache. Thus, we believe that a dynamic and

adaptive cache partition strategy based on the workload

characteristics is imperative.

These important observations described above, combined

with the urgent need to address the small-write problem of

HDD-based primary storage systems, motivate us to propose

POD. POD is designed to retain the desirable advantages of

the write-traffic-reducing ability of data deduplication while

effectively addressing the deduplication-induced problems.

Table I briefly compares POD with the state-of-the-art
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deduplication approaches. In summary, POD improves the

I/O performance of primary storage systems by focusing

more on the performance-sensitive but capacity-insensitive

small writes and files while retaining the capacity savings

of capacity-sensitive large writes and files. Moreover, it

manages the storage cache intelligently and dynamically

according to the workload to improve the overall system

performance.

Table I
COMPARISON BETWEEN POD AND THE STATE-OF-THE-ART SCHEMES.

Features I/O
Dedup [13]

iDedup [28] Post-
processing
Dedup [7]

POD

Capacity Saving � � �
Performance
Enhancement

� �

Small writes
Elimination

�

Large writes
Elimination

� � �

Cache Partition-
ing Strategy

Static Static Static Dynamic /
Adaptive

III. THE DESIGN OF POD

In this section, we first present an architecture overview

of POD, followed by detailed descriptions of two main POD

components, Select-Dedupe and iCache.

A. POD architecture overview

Figure 4 shows a system architecture overview of our

proposed POD in the context of the system I/O in the

Cloud. As shown in Figure 4, POD resides in the storage

node and interacts with the File Systems via the standard

read/write interface. Thus, POD can be easily incorporated

into any HDD-based primary storage systems to accelerate

their system performance. Moreover, POD is independent of

the upper file systems, which makes POD more flexible and

portable than whole-file deduplication [21] and iDedup [28].

It can be deployed in a variety of environments, such as

virtual machine images that are mostly identical but differ

in a few data blocks [10].
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Figure 4. System architecture of POD.

POD has two main components: Select-Dedupe and

iCache. The request-based Select-Dedupe includes two indi-

vidual modules: Data Deduplicator and Request Redirector.

The Data Deduplicator module is responsible for splitting

the incoming write data into data chunks, calculating the

hash value of each data chunk, and identifying whether

a data chunk is redundant and popular. Based on this

information, the Request Redirector module decides whether

the write request should be deduplicated, and maintains data

consistency to prevent the referenced data from being over-

written and updated. The iCache module also includes two

individual modules: Access Monitor and Swap Module. The

Access Monitor module is responsible for monitoring the

intensity and hit rate of the incoming read and write requests.

Based on this information, the Swap module dynamically

adjusts the cache space partition between the index cache

and read cache. Moreover, it swaps in/out the cached data

from/to the back-end storage. iCache helps request-based

Select-Dedupe deduplicate as many redundant data blocks as

possible and improves the read performance by expanding

the read cache size in face of read bursts.

B. Select-Dedupe

The request-based Select-Dedupe works on the write path

to effectively reduce the write traffic if the write requests

are redundant, and updates the Map table accordantly. In

Select-Dedupe, write requests with redundant data are clas-

sified into three categories, as shown in Figure 5: (1) the

fully redundant write requests whose write data are already

sequentially stored on disks, (2) the partially redundant write

requests whose write data are a mixture of redundant data

chunks and new unique data chunks, where the number of re-

dundant data chunks in each request is less than a predefined

threshold (for example, 3 in our current design), and (3) the

partially redundant write requests of which the number of

redundant data chunks per request exceeds the threshold.

Select-Dedupe deduplicates the write requests belonging

to category (1) and category (3), and ignores any write

requests belonging to category (2). For the write requests

in category (2), deduplicating the redundant data chunks

only reduces the size of the write data, which only slightly

improves the write performance because the write requests

must still be performed on disks. And most importantly, the

performance of the subsequent read requests to these data

will be significantly degraded due to the read amplification

problem, a conclusion confirmed by our performance eval-

uations in Section IV. However, for category (3) of write

requests, the redundant data blocks are large and sequentially

stored on disks, which helps mitigate the seek penalty in

the subsequent read requests. Moreover, deduplicating these

large and continuous redundant data chunks also contributes

to the storage space saving, as validated in Section IV.

Figure 6 illustrates the process flow of a write request

in Select-Dedupe. There are two key data structures sup-
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Figure 5. Categorization of write requests in the Select-Dedupe.

porting Select-Dedupe in deduplicating and redirecting the

I/O requests, and identifying the popular hash index entries,

namely, Map table and Index table, as shown in Figure 6.

The Map table keeps all the information of the deduplicated

write requests whose write data are already stored on disks.

The Index table maintains the fingerprints of the hot data

chunks already stored on disks. The mapping relationship

between the items in Map table and the items in Index table

is m-to-1. This means that an LBA (Local Block Address)

can only be linked to a unique and distinctive physical data

block but multiple LBAs may be linked to the same physical

data block.

In order to reduce the memory space and processing

overhead required to store and query the huge hash index

table, POD only stores the hot hash index entries in memory.

The Index table in our POD design is organized in an LRU

form and maintains the frequency of write requests by using

the Count variable (initialized to “0”), as shown in Figure 6.

When a write request hits the Index table, the count value of

the corresponding hash index entry is incremented, capturing

the temporal locality and frequency of write requests. The

Count variable is also used to prevent the referenced data

blocks from being modified or deleted. To prevent data loss

in case of a power failure, the Map table data structure is

stored in non-volatile RAM.

When a write request arrives, Select-Dedupe splits the

write data into chunks that are each fingerprinted with

their hash values by a hash engine (a dedicated embedded

processor or the host processor). Each fingerprint is queried

in the Index table. If a match is found, meaning that the

data chunk is redundant, the corresponding Count value is

incremented. Otherwise, a new hash index entry is inserted

into the Index table. After calculating the fingerprints of

the data, Select-Dedupe classifies the write request into

one of the three categories described above and depicted

in Figure 5. If the write request belongs to category (1)

or category (3), Select-Dedupe only updates the Map table

for the redundant data blocks, and the non-redundant data

blocks are written to the disk as usual. Otherwise, the data

is directly written to the disks without deduplicating the

redundant data. The data consistency is also checked to make

sure that the referenced data is not overwritten.
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Figure 6. The write process flow in Select-Dedupe.

C. iCache

The design of iCache is based on the rationale that the I/O

workload of primary storage changes frequently with mixed

read and write burstiness. As observed from the preliminary

results in Section II-B, we need to dynamically adjust the

storage-cache space partition between the index cache and

read cache adapting to the characteristics of user accesses

to obtain the best overall performance. To maximize the

performance of the storage cache in deduplication-based

primary storage systems, the type of data that provides

the largest performance benefit should be stored in storage

cache. Figure 7 shows the structure of iCache. The DRAM

size in the storage controller is fixed while the index cache

size and the read cache size can be dynamically resized. The

maximum size of an actual cache and its ghost cache is set

to be equal to the total size of the DRAM in the storage

controller. iCache maintains the ghost index and ghost read

caches that store only metadata whose actual data are stored

on the back-end storage devices. When a victim data item

is flushed from the index cache or the read data cache, its

metadata is inserted into the corresponding ghost cache and

the actual data is flushed to the back-end storage device.

Through these metadata of the ghost caches, the cost-benefit

of their actual caches can be estimated. Based on the cost-

benefit values, iCache swaps in the actual data of the ghost

cache with the larger cost-benefit value into the memory and

swap out the data of the other cache to the back-end storage

device.
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Figure 7. The iCache structure.
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The two functional components in iCache, the Access

Monitor and the Swap Module, work together to accom-

plish the iCache functions. The Access Monitor in iCache

determines which cache, index cache or read cache, should

be increased in size according to the current access pattern.

The access pattern is measured by counting the numbers

of the read and write requests that hit the corresponding

caches. The cost-benefit values are generated by read and

write hits in the actual caches and the ghost caches. For a

predefined interval, iCache calculates the cost-benefit values

of the ghost caches and adjusts the allocation ratio between

the actual index cache and read cache. When the storage-

cache space is repartitioned, the Swap Module in iCache

will swap in/out the particular data from/to the memory

and the back-end storage device. The swapped out index

data and read data are stored on a reserved space on the

back-end storage device. As described in Section II-A, the

data fragmentation problem degrades the read performance

in deduplication-based primary storage systems based on

HDDs. In primary storage systems, the read requests are

time- and performance-critical because they are synchro-

nized and can block the progress of applications. In POD, the

read performance is guaranteed in the following two ways.

First, on the write path, Select-Dedupe does not deduplicate

the write requests with scattered redundant data, as shown

in Figure 5. Thus, the operations of the subsequent read

requests to these data will be identical to those without data

deduplication. Second, in the storage cache, iCache improves

the read performance by dynamically increasing the read

cache size in face of read bursts to improve the read cache

hit ratio.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup

and methodology. Then we evaluate the performance of POD

through extensive trace-driven experiments.

A. Experimental setup and methodology

We have implemented a prototype of POD as a module

in the Linux operating system and use the trace-driven

experiments to evaluate its effectiveness and efficiency. In

this paper, we compare POD with the HDD-based storage

systems without data deduplication (short for Native) and

with traditional full data deduplication (short for Full-
Dedupe), and the capacity-oriented scheme iDedup [28]. All

the experiments were conducted on a storage node with an

Intel Xeon X3440 CPU and 4GB memory. In this system, a

SAMSUNG HE253GJ SATA HDD (250GB) is used to host

the operating system (Ubuntu Linux kernel 2.6.35), Linux

software RAID module (i.e., MD) and other software. Two

HighPoint RocketRAID 2640 SAS/SATA controllers are

used to connect eight SATA HDDs (WDC WD1600AAJS).

We used three traces, a virtual machine running two web-

servers (web-vm), a file server (homes) and an email server

Table II
THE CHARACTERISTICS OF THE THREE TRACES

Traces Write ratio I/Os Aver. Req. Size
Web-vm 69.8% 154,105 14.8 KB
Homes 80.5% 64,819 13.1 KB
Mail 78.5% 328,145 40.8 KB

(mail), covering a duration of three weeks. The three traces

were collected beneath the memory buffer cache so that

the caching/buffering effect of the storage stack is already

fully captured by the traces. Because the original request

data have been split into several small data chunks with

a fixed size (e.g., 4KB or 512B), the original requests are

reconstructed according to their timestamp, LBA and length.

In order to simulate the hash computing overhead of each

data chunk, we added a 32us fingerprint-computing delay

to each process of writing a 4KB data chunk, which is an

overestimation for the processors in modern controllers [9].

The cache for storing the hash index table was warmed up

by the first 14 days’ traces. We used the 15th day of the

three traces for our evaluations and the characteristics of the

three traces are summarized in Table II. Due to the different

footprints of the three traces, the total memory size is set

to be 100MB, 500MB, and 500MB for the web-vm, homes,

and mail traces, respectively [13].

We replayed the three traces at the block level and

evaluated the user response times [32]. The hash values

of the data chunks are also included with other attributes

of replayed requests. In the experiments, we also evaluate

statistics of average response times for the read and write

requests separately to understand the impact of different

schemes on read requests and write requests.

B. Select-Dedupe Performance

We first conducted experiments on a 4-disk RAID5 system

with a stripe unit size of 64KB. In this experiment, Full-

Dedupe, iDedup and Select-Dedupe all use the fixed cache

partition that allocates equal spaces to the index cache and

read cache. Figure 8 shows the response-time performance

of the different deduplication schemes normalized to that of

the Native system, driven by the three traces. Full-Dedupe

degrades the Native system performance for the homes trace,

indicating that directly applying data deduplication to pri-

mary storage systems may introduce extra performance over-

head. iDedup improves the performance of Native system

slightly, which indicates that capacity-oriented deduplication

schemes are not effective in improving system performance.

In contrast, Select-Dedupe improves the performance of the

Native system by 53.9%, 21.2%, and 88.6% for the web-vm,

homes, and mail traces, respectively. In order to understand

the reasons behind the performance improvement of Select-

Dedupe, we separate the write response times from the read

response times and plot them separately in Figure 9.
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Figure 8. The response-time performance of the different deduplication
schemes normalized to the Native system, driven by the three traces for a
4-disk RAID5.

Figure 9(a) shows that Select-Dedupe reduces the write

response times of the Native system by 47.2%, 20.2%,

and 91.6%, and those of the iDedup system by 40.2%,

18.8%, and 81.5%, for the web-vm, homes, and mail traces,

respectively. The significant write-performance advantage of

Select-Dedupe stems from the fact that a large number of

write requests are eliminated by Select-Dedupe, as shown

in Figure 11. For the mail trace, Select-Dedupe removes

70.7% of write requests from the Native system, thus directly

reducing the average write response time. On the other hand,

iDedup reduces write response times of the Native system

by 11.6%, 1.7%, and 54.5% for the web-vm, homes, and

mail traces, respectively, which are far less significant than

Select-Dedupe. This is because iDedup focuses on large I/O

requests and thus eliminates much fewer write requests than

Select-Dedupe, as indicated in Figure 11, resulting in much

smaller performance improvement. Although Full-Dedupe

reduces much more write requests than Select-Dedupe, as

shown in Figure 11, its write-performance improvement is

less than that of Select-Dedupe. In particular, for the homes

trace, Full-Dedupe actually increases the write response

time of the Native system by 10.1%. The reason is that

there are many partially redundant write requests in the

homes trace. Deduplicating the redundant data of these write

requests cannot reduce the write response time because

these write requests still must be performed on disks. More

importantly, deduplicating these write data will induce the

read amplification problem that directly degrades the read

performance (see Figure 9(b) and its explanation next),

thus indirectly affecting the write performance. Furthermore,

the on-disk index-lookup operations also degrade the write

performance.

Figure 9(b) indicates that Full-Dedupe underperforms the

Native system in read performance by 22.1% and 24.7% for

the web-vm and homes traces respectively, but outperforms

the Native system by 44.2% for the mail trace. The read

performance degradation is caused by the read amplification

problem for the web-vm and homes traces. Since the mail

trace has a significant percentage of fully redundant write

requests, the positive effect of reducing a large number

of write requests far overshadows the less serious read

amplification problem, thus improving the read performance.
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Figure 9. The average response times of write requests and read requests
of the different deduplication schemes normalized to those of the Native
system.

iDudup achieves comparable read performance to the Native

system by only deduplicating redundant large I/O requests

to reduce the HDD seek overhead. In contrast, Select-

Dedupe consistently outperforms the Native system in read

performance by 11.7%, 4.3% and 85.3% for the web-vm,

homes and mail traces, respectively. Select-Dedupe improves

the read performance indirectly by reducing the write traffic

and avoiding the read amplification problem as much as

possible. The significant number of reduced write requests

in Select-Dedupe greatly shortens the length of the disk

I/O queue and relieves its pressure, thus allowing the read

requests to be serviced more quickly.
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Figure 10. The normalized storage capacity used by the different
deduplication schemes.

We also plot the normalized storage capacity used by

the different schemes, as shown in Figure 10. Full-Dedupe

saves the largest amount of storage capacity among all

the deduplication-based schemes because it deduplicates all

redundant write data, which is not the case for iDedup and

Select-Dedupe. Select-Dedupe achieves comparable or better

capacity savings than the capacity-oriented deduplication

scheme iDedup, especially for the mail trace. This is be-

cause, while iDedup only deduplicates large I/O requests,

Select-Dedupe deduplicates both large and small write re-

quests. When the small write requests become a major part

of the total requests, the capacity saving is also increased

accordantly.

C. POD: Select-Dedupe with iCache

Figure 11 shows the percentage of write requests removed

from the Native system by Full-Dedupe, iDedup, Select-

Dedupe, and POD under the three traces in a 4-disk RAID5

system. Full-Dedupe removes more write requests than the
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Figure 11. The percentage of removed write requests by the different
deduplication schemes under the three traces in a 4-disk RAID5 system.

other three deduplication schemes. The reason is that Full-

Dedupe eliminates all redundant write data blocks and uses

the full hash index table. In particular, iDedup reduces the

fewest write requests because it only focuses on large-

write requests and ignores all small-write requests. However,

large-write requests account for only a small proportion

of the total write requests. In contrast, POD and Select-

Dedupe reduce much more write requests than iDedup. This

is because POD checks the small-write requests that account

for a majority of all write requests, as shown in Figure 1

and described in Section II-A. Moreover, these small-write

requests also exhibit high data redundancy. POD removes

slightly more write requests than Select-Dedupe because

POD enlarges the index cache size and shrinks the read

cache size during write intensive periods, thus detecting

more redundant write requests to deduplicate.

It is arguable that with a larger data set the iCache will

be much more effective. This is because for a larger data

set, the memory space required to store the index cache and

read cache will be larger, thus making cache allocation all

the more important for and sensitive to performance gains.

Our work is underway to collect larger data sets for more

indepth POD evaluations.

D. Overhead analysis

While data deduplication in POD promises to reduce the

write-traffic, it incurs resource overhead. Specifically, there

are two main sources of overhead that must be assessed

when incorporating POD into HDD-based primary storage

systems, that is, computational overhead and memory over-

head.

1) Computational overhead: Computing the fingerprints

of data chunks is time-consuming and directly affects the

write performance. The hashing speed depends on the ca-

pability of the processors. Using a more powerful processor

can effectively reduce the latency of fingerprint calculation.

However, this latency, typically in tens of microseconds at

most, is insignificant compared to the disk I/O response

times that are usually multiple milliseconds. Our extensive

experimental results and previous studies [9], [13] have

verified that the computing overhead is negligible when

compared to the write latency. Moreover, today’s multicore

processors and Graphic Processing Units (GPUs) make the

intelligent storage controllers more powerful, allowing them

to extend their capabilities to integrate new techniques, such

as data deduplication.

2) Memory overhead: Integrating POD into HDD-based

primary storage systems needs extra memory space to store

the content of the Map table. To prevent data loss in

case of a power failure, POD uses non-volatile memory to

store the Map table. The amount of non-volatile memory

required by the Map table is proportional to the number of

reduced write requests. Each entry in Map table consumes

20 bytes. In the experimental setup of our evaluations, the

maximum amounts of non-volatile memory overhead are

0.8MB, 0.3MB and 1.5MB for the web-vm, homes and mail

traces, respectively. Moreover, with the rapid increase in the

memory capacity and decrease in the cost of non-volatile

memory, this memory overhead is arguably reasonable and

acceptable to the users.

V. RELATED WORK

Data deduplication as a space-efficient technique has

received a great deal of attention from both industry and

academia. It has been demonstrated to be effective in

shortening the backup window and saving the network

bandwidth and storage space in backup and archiving ap-

plications. Most existing studies focus on how to improve

the deduplication efficiency by solving the index-lookup-

disk-bottleneck problem and how to find the redundant data

as much as possible [6], [8], [15], [25], [33], [36]. Recent

studies have shown that moderate to high data redundancy

also exists in primary storage systems [7], [13], [20], [21],

[28].

Among the recent studies that leverage the data dedupli-

cation technique to improve the I/O performance of HDD-

based primary storage systems, the I/O Deduplication [13]

scheme focuses on improving the read performance by

exploiting and creating multiple duplications on disks to

reduce the disk-seek delay, but does not optimize the write

requests [13]. That is, it uses the data deduplication tech-

nique to detect the redundant content on disks but does not

eliminate them on the I/O path. This allows the disk head to

service the read requests by prefetching the nearest blocks

from all the redundant data blocks on disk to reduce the seek

latency. The write requests are still issued to disks even if

their data has already been stored on disks.

Sequence-based deduplication [11] and iDedup [28] are

two capacity-oriented data deduplication schemes that target

at primary storage systems by exploiting spatial locality to

only selectively deduplicate the consecutive file data blocks.

They only select the large requests to deduplicate and ignore

all small requests (e.g., 4KB, 8KB or less) because the

latter only occupy a tiny fraction of the storage capacity.

However, previous studies and our workload analysis reveal

that the large I/O requests only account for a small portion

of all requests while the small I/O redundancy on the
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I/O path is significant (Figure 1). It implies that it is the

performance on the I/O path, rather than capacity efficiency

on the storage devices, that stands to potentially gain more

from deduplication for primary storage systems. Different

from the above schemes targeted at saving storage space,

the request-based Select-Dedupe in POD exploits the I/O

redundancy to intelligently and selectively deduplicate the

write requests, thus improving the small-write performance

of HDD-based primary storage systems while avoiding the

data fragmentation problem.

Moreover, none of the existing studies has considered the

problem of space allocation between the read cache and the

index cache. Most of them only use an index cache to keep

the hot index in memory [4], [9], [28], leaving the memory

contention problem unsolved [7]. The iCache in POD is

designed to address the memory contention and the read

amplification problem, although the idea of dynamic cache

allocation is not original. Patterson et al. [24] proposed a

dynamic cache partition between prefetched data and cached

data to maximum the cache efficiency. ARC [19] keeps

track of frequently used and recently used pages and a

recent eviction history for both of them. It uses ghost hits to

adapt to the recent change in the resource usage for better

performance. In SSD/HDD hybrid storage systems [17],

[23], Yongseok et al. proposed a dynamic scheme to divide

the flash memory cache to cache space and over-provisioned

space, thus providing better cache performance and GC

efficiency inside SSDs. The iCache is inspired by these

previous studies and designed to collaborate with Select-

Dedupe to further eliminate the redundant write requests and

address the read amplification problem in primary storage

systems. It is orthogonal to and can be incorporated with

the existing data deduplication schemes in primary storage

systems to further boost the system performance.

VI. CONCLUSION

In this paper, we propose POD, a performance-oriented

deduplication scheme, to improve the performance of pri-

mary storage systems in the Cloud by leveraging data

deduplication on the I/O path to remove redundant write

requests while also saving storage space. It takes a request-

based selective deduplication approach (Select-Dedupe) to

deduplicating the I/O redundancy on the critical I/O path in

such a way that it minimizes the data fragmentation problem.

In the meanwhile, an intelligent cache management (iCache)

is employed in POD to further improve read performance

and increase space saving, by adapting to I/O burstiness.

Our extensive trace-driven evaluations show that POD sig-

nificantly improves the performance and saves capacity of

primary storage systems in the Cloud.
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