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Abstract
The persistent storage options in smartphones employ
journaling or double-write to enforce atomicity, consis-
tency and durability, which introduces significant over-
head to system performance. Our in-depth examination
of the issue leads us to believe that much of the over-
head would be unnecessary if we rethink the volatility
of memory considering the battery-backed characteris-
tics of DRAM in modern-day smartphones. With this
rethinking, we propose quasi Non-Volatile Memory (qN-
VRAM), a new design that makes the DRAM in smart-
phones quasi non-volatile, to help remove the perfor-
mance overhead of enforcing persistency. We assess the
feasibility and effectiveness of our design by implement-
ing a persistent page cache in SQLite. Our evaluation on
a real Android smartphone shows that qNVRAM speeds
up the insert, update and delete transactions by up to
16.33×, 15.86× and 15.76× respectively.

1 Introduction
Over the past decade, mobile devices, such as smart-
phones and tablets, have become ubiquitous. The lat-
est smartphones are equipped with multi-core proces-
sors, large-capacity DRAM and flash storage. A recent
study [6] points out that the I/O performance dominates
the overall application performance in smartphones. In
consideration of data consistency and integrity, Android
applications rely on SQLite, the Shared Preference key-
value store or the file system API to save persistent data
in the local flash storage. In practice, all the three op-
tions employ journaling or file-level double-write, which
adds significant overhead to and thus substantially de-
grade system performance by increasing I/O traffic with
extra data written to flash storage. The SQLite database
employs rollback journal or write ahead log to track the
changes to the database table files. The Shared Prefer-
ence (stored as an xml file in the file system) and some
applications that store important data in files use file-
level double-write to avoid data loss when modifying
important files. The whole file, instead of the modified
parts, will be written to a temporary file that will sub-
sequently be renamed. Moreover, the underlying EXT4
file system uses metadata journaling to ensure data in-
tegrity. Another recent study shows that the performance
of the SQLite suffers from the anomaly of Journaling
of Journals (JOJ), which refers to the double-journaling

phenomenon in which the file system is journaling the
database journal activities [5].

Several different mechanisms have been proposed to
reduce the overhead of enforcing persistency in smart-
phones. One solution [5] is to tune the I/O stack, by, for
example, external journaling in the EXT4 file system and
write-ahead logging in SQLite. Another solution [7] is to
integrate the recovery information into the database file
itself so that the journal file is omitted. Arguably, the
best remedy would be to perform in-place update with
a non-volatile memory (NVM) [9, 11], such as Phase
Change Memory (PCM), and thus avoid almost all the
overhead of enforcing persistency. But adding NVM into
the smartphone will increase the size and cost. However,
to the best of our knowledge, the fact that the memory
in smartphones is battery backed, which makes it poten-
tially non-volatile for practical purposes, has been over-
looked.

Therefore, in this paper we propose qNVRAM, a quasi
Non-Volatile RAM design for smartphones. qNVRAM
takes advantage of the ”battery-backed” nature of the
smartphones to make the data in qNVRAM persistent
under almost all the failure conditions. We implement
persistent Page Cache (pPCache) in SQLite using qN-
VRAM to perform in-place updates to the database files.
We also employ LazyFlush to absorb the repeated writes
to table files to further improve the performance. Our
experimental results based on a Samsung Galaxy S4
smartphone show that the pPCache outperforms the write
ahead logging (WAL) mode in transactions of random
inserts, updates and deletes by 1.98×, 2.25× and 1.80×
respectively. More substantially, when LazyFlush is en-
abled, the speedup over WAL in the same three types of
transactions goes up to 16.33×, 15.86× and 14.13× re-
spectively.

2 Background and Motivation
2.1 Failure Mode in Android Smartphones
There are four different types of high-level manifesta-
tions of failures [4], or failure modes, in mobile devices,
namely, (1) application crash (an app stops to work unex-
pectedly), (2) application hang (an app is still active but
delivering a constant output, e.g., blocked in an infinite
loop or deadlocked), (3) self-reboot (the system forces a
reboot as a consequence of a severe problem, e.g., ker-



Table 1: Android application benchmarks.
Application Description
Angry Birds Open the app, play for the first three levels, close the app
Chrome Open the app, load 30 pre-defined web pages one by one, close the app.
Facebook Open the app, ”drag” the screen 5 times to load news feeds, post 3 status, send 3 messages, close the app.
Gmail Open the app, load 3 new emails, search emails for 3 different key words, compose and send 3 emails, close the app.
Google Maps Open the app, enter origin and destination address and get directions, zoom into the maps 5 times, close the app.
Twitter Open the app, ”drag” the screen 5 times to load news feeds, ”drag” the screen 5 times to load news feeds, post 5 new

tweets, close the app.
Youtube Open the app, play 5 videos, each for 1 minute, close the app

nel panic), and (4) system freeze (the system delivers a
constant output and does not respond to the user’s in-
put). A recent study [8] on the issues, reported between
Nov. 2007 and Oct. 2009 in the Android Open Source
Project (AOSP), points out that the Web Browser and
Multimedia applications are most error-prone, and the
kernel layer of the Android platform is sufficiently ro-
bust (only 4% of all the bugs are in kernel).

When an application failure (i.e., failure mode (1) or
(2)) happens, the memory used by the application will
be released by the OS; when the self-reboot (i.e., failure
mode (3)) happens, the data in memory is lost since the
OS will re-initialize the page table in the virtual memory
system after the reboot; when the system freezes (i.e.,
failure mode (4)), the user-initiated recovery will be per-
formed and the phone is forced power-off by hard reset
if it is still freezing [4], and hence all the data in DRAM
is lost. From the application’s point of view, the data in
memory will be lost under all of the four failures. There-
fore, the current persistent storage options in mobile de-
vices use multi-versioning to ensure update atomicity by
storing the original data and modified data in two dif-
ferent places (journal/temporary file and the real data) in
the non-volatile storage, which is presumably only flash
storage in the smartphones.

2.2 Overhead of Persistency Enforcement
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Figure 1: The overhead of persistency enforcement.
The amount of data (in MB) written to flash in each
benchmark test is shown on top of each bar.

The journaling and double-write schemes will intro-
duce significant overhead to the storage system due to ex-
tra data transfers that result in additional I/Os. To better
understand the reasons behind this, we carefully choose
and run 7 top-ranked popular Android apps as applica-
tion benchmarks, as described in Table 1, on a Samsung
Galaxy S4 smartphone. We modify the block I/O path

in the Linux kernel to collect information on block I/O
requests, including logical block number (LBN), request
size, inode number and the filename (if it is written to a
file). The SHA-1 hash is also calculated for every 4KB
chunk of a write request to identify the redundant data
blocks written by the double-write scheme. The amount
of extra data written to the flash storage resulting from
maintaining atomicity is shown in Figure 1. In all these
applications, 37% to 78% of the data written to the stor-
age is exclusively for the purpose of atomicity. More
than 75% of all data written by Twitter is going to the
file system and database journals, while 18% of all data
written by Chrome is unnecessary since it is not modified
in the file updates. It is clear that the overhead of persis-
tency enforcement is extremely high in smartphones.

0 1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

Database File Size(KB)

C
u

m
u

la
ti

v
e 

D
is

tr
ib

u
ti

o
n

 

 

Average Size     : 166 KB

Median Size      : 28 KB

Maximum Size  : 6648 KB

(a) Database Table Size

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

Normalized Time Stamp
S

Q
L

it
e 

P
a
g
e 

C
a
ch

e 
S

iz
e 

(K
B

)

 

 

AngryBirds

Chrome

Facebook

Gmail

Google Maps

Twitter

Youtube

(b) SQLite Page Cache Size
Figure 2: Characteristics of the SQLite databases in An-
droid smartphones: (a) The cumulative distribution of the
SQLite database file size in Android Smartphones; (b) The
memory consumption of the SQLite page cache in different
applications.

2.3 Rethinking Memory Volatility in
Smartphones

A fundamental assumption in most transactional sys-
tems that maintain the durability property, not limited to
database systems, is that the memory is volatile. Thus
they have to pay a very high cost to enforce data integrity
and consistency through either journaling or copy-on-
write [11]. Some modern systems incorporate non-
volatile memory, such as NVDIMM [1] and PCM, to
help eliminate the burden of persistency and boost the
performance [9, 11]. However, the adoption of the NVM
for mobile platforms is infeasible for reasons of cost and
size, which are two of the most important design met-
rics for smartphones. Nevertheless, the battery in smart-
phones, especially the non-removable battery, can po-
tentially make the DRAM non-volatile for practical pur-
poses as explained next.
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Despite of the possibility that some unknown bugs
may power off the smartphone unexpectedly, the prob-
ability of that happening is considered extremely small.
From our analysis of the AOSP issue reports (as of Feb.
2014), there are only 10 reports, i.e., 0.05% of all the
19670 issue reports related to defects in Android sys-
tems, indicate unexpected/random power-off, which in-
fer a very small (though non-zero) chance that unex-
pected power failure may occur. Another study [2] on
600,000 technical support calls handled by WDS shows
that 6% to 14% of these calls were assigned to hardware.
The study also points out that hardware faults (if within
a warranty period) usually result in the device being re-
turned and entered into a reverse logistics process for re-
pair or replacement. While physically pulling out the bat-
tery will lead to memory data loss, the fact that increas-
ingly more smartphones are installed with irremovable
batteries makes this a rare event. Therefore, in practice,
the devices are more likely to suffer some deadly hard-
ware faults, thus making recovery from data loss in these
cases essentially superfluous.

Therefore, without increasing the cost and size of
smartphones, we argue that it is possible to trade the data
persistency in very rare cases for the performance boost
in all cases. Some small changes to the current memory
system design can preserve data persistency against the
aforementioned four common failure modes, as follows.
When an application failure (mode (1) or (2)) happens,
the persistency is automatically achieved if the OS can
preserve the application data that is critical to the trans-
actions, such as the page cache in database, and provide
the data to the application when it restarts; When self-
reboot (mode (3)) happens, the data can be preserved and
retrieved over reboot if the data is stored in a piece of
physical memory at a fixed known location since DRAM
does not loss power during reboot; When system freezes
(mode (4)), it may result in hard reset in the worst case.
The hard reset requires pressing the power button for 10
seconds, which is long enough for both capturing the ac-
tion and flushing the important data to the flash storage,
just like the battery-backed DIMM.

3 quasi Non-Volatile Memory
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Figure 3: The design of qNVRAM.
Based on the above observations, we propose qN-

VRAM, a new design that makes data in DRAM non-
volatile against almost all of the failures in smartphones.
The architecture of qNVRAM is shown in Figure 3. qN-
VRAM consists of two major components: a library,
which provides a programming interface to the applica-
tions, and a device driver, which manages the physical
memory.

The library implements a simple memory allocator,
which provides an easy-to-use memory interface for ap-
plications to obtain and release a piece of qNVRAM
memory. The interface is shown in Table 2. The appli-
cation can allocate and free qNVRAM using qnvmalloc
and qnvmfree during normal execution, and retrieve the
memory content using qnvmretrieve upon failure re-
covery.

The kernel-space device driver reserves a small chunk
of physical memory (qNVRAM pool) when the kernel
sets up the memblocks. The physical memory will be
mapped into the user space when the application re-
quests/retrieves memory from the qNVRAM pool. The
driver is also responsible for flushing data from mem-
ory to the flash storage under certain circumstances. The
first scenario is when the user tries to perform hard re-
set. To capture this action, we modify the power button
interrupt handler so that it can notify the driver of the
pressing event. When the button is pressed for 5 sec-
onds, the driver will start flushing data to the flash stor-
age. Our flush-on-fail mechanism is similar to but dif-
ferent from the Whole System Persistence (WSP) [10]
approach. While upon failure the latter is triggered by a
dedicated power monitor to flush all data in CPU regis-
ters and caches to NVRAM, the former flushes data in
DRAM to flash without relying on dedicated hardware
for signaling. The other scenario is when the qNVRAM
pool is under memory pressure. When the allocator can-
not find enough space in the qNVRAM pool, it will trig-
ger the flush operation to swap out the memory asso-
ciated with the processes that have already been killed.
When the application restarts, it will be loaded into the
memory for recovery.

The size of the qNVRAM pool can be adjusted at com-
pile time. In our current implementation, the size of
the qNVRAM pool is set to 20 MB (only 1% of the 2
GB physical memory in the Samsung Galaxy S4 smart-
phone). The reason why we reserve such a small piece
of DRAM is twofold.

First of all, the persistent memory needed to enforce
atomicity (SQLite page cache and file update buffer) is
usually small. For example, unlike enterprise databases,
the database tables in smartphones are usually very
tiny [7], so are the page caches used by SQLite. To
get the characteristics of databases in smartphones, we
extract 453 well-populated database table files from 3
active Android smartphones and tablets. Figure 2(a)
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Table 2: qNVRAM application interface.
Function Description
void *qnvmalloc(int uid, int magic, int size); Allocate a piece of qNVRAM memory, return the pointer value to the memory

in application’s address space.
void qnvmfree(int uid, int magic); Free a piece of qNVRAM memory.
void *qnvmretrieve(int uid, int magic, int *size); Retrieve a piece of qNVRAM memory using the uid and the magic number,

return the pointer to the memory in application’s address space.

shows the cumulative distribution of the database file
size. More than 90% of the database files are less than
200 KB, and the median size is only 22 KB. We also re-
run the application benchmarks of Table 1 in an actively
used Google Nexus 7 tablet with a modified SQLite li-
brary to monitor the dynamic behavior of the page cache
memory usage in different applications. The overall page
cache size in each application (one application may open
multiple database files, thus creating multiple page cache
instances) is plotted in Figure 2(b). Note that the page
cache sizes of Facebook, Gmail and Twitter all start at a
non-zero value because they are already running in the
background as an Android service. Considering the fact
that most smartphones run one user-facing app at a time
and the background apps consume much less page cache,
20MB should be more than enough in practice.

Secondly, the qNVRAM pool needs to be flushed to
the flash storage before the smartphone is powered off by
hard reset. The sequential write bandwidth in Samsung
Galaxy S4 is 15.1 MB/s, which means that we can flush
the 20MB data in 1.3 seconds, well within the 5-second
window between capturing the hard button press event
and power-off.

4 Case Study: Persistent Page Cache in
SQLite

4.1 Persistent Page Cache and LazyFlush
A good use case for qNVRAM is the page cache in
SQLite. Making the page cache persistent will signifi-
cantly reduce the volume of reliablity-induced writes [3]
to the flash storage because database journaling is no
longer needed and the JOJ anomaly is also eliminated.
We have implemented a persistent page cache in SQLite
3.7.12 using the qNVRAM API. SQLite will allocate a
piece of memory from the qNVRAM pool that will be
used as the persistent page cache. When a write transac-
tion is committed, SQLite will perform in-place update
to the .db table file without logging the changes to jour-
nal files since the latest copy is already persistent. And
when the transaction aborts, the modified pages in the
page cache can be rolled back to the version in the .db

file. Note that the pPCache does not support transactions
that cannot fit in the page cache, which should not be a
big problem since the transactions and table files are very
small. To further exploit the locality of page accesses,
the page cache can temporarily defer flushing dirty pages
to table files, a process called LazyFlush, so that the re-
peated writes can be absorbed by the page cache. When

LazyFlush is enabled, an undo log in qNVRAM is imple-
mented to quickly revert to the old version of the page
content of a transaction when it aborts. The undo log
is dynamically allocated during a transaction, so that it
is transient and will not consume too much qNVRAM
memory. In our current implementation, we set a thresh-
old on the number of dirty pages in the page cache such
that when the number of dirty pages is larger than the
threshold it will flush all dirty pages to the files.

Recovery in the persistent page cache is fairly simple.
The SQLite will retrieve the page cache from the qN-
VRAM pool when the application restarts. Then it will
scan all the pages in the page cache and perform check-
pointing by flushing all the committed but unflushed
pages to the database table file.

4.2 Preliminary Evaluation
We evaluate and compare the performance of pPCache
and LazyFlush against the baseline WAL mode on the
Samsung Galaxy S4 Google Edition with a quad-core
CPU, 2GB DRAM and 16GB eMMC flash memory for-
matted with the EXT4 file system. The smartphone is
running Android 4.3 and Linux kernel 3.4. Our tests
first initialize the SQLite table with 2000 records, each
of which consists of an integer key and 100-character
value. Then we sequentially and randomly, respectively,
insert 1000 records, update 1000 records and delete 1000
records, of which each corresponds to a transaction (i.e.,
for a total of 6000 transactions). For each test case, we
run 10 times and report the average throughput (transac-
tions per second). The page cache size is configured to
be 400 KB (100 4096-byte pages), while the table size
is around 300KB. A smaller page cache will not affect
the result since our tests only perform write transactions,
and the database can always find a clean page to accom-
modate the new data.

Figure 5 illustrates the performance of pPCache
with and without LazyFlush. The pPCache without
LazyFlush speeds up the WAL mode in random insert,
random update, random delete, sequential insert,
sequential update and sequential delete by 1.98×,
2.25×, 1.80×, 2.04×, 2.17× and 2.64× respectively.
When LazyFlush is enabled with a small threshold of
5 pages, the random insert, update and delete

get 3.29×, 4.56×, 4.37× performance boost respec-
tively, while the sequential insert, update and delete
achieve 8.80×, 13.93× and 9.24× speedup respec-
tively. The performance of sequential operations dras-
tically benefits from the write locality to the database
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Figure 4: Block I/O pattern of the Persistent Page Cache and WAL. The threshold of LazyFlush is set to 5 pages.

files. In a database with several thousands of records,
which is very common in smartphones, one insert,
update or delete will only modify a small number
of pages (i.e., 3 per insert, 2 per update and 3 per
delete). And two consecutive operations in the sequen-
tial insert, update or delete are very likely to mod-
ify the same page since they are stored in the same leaf
nodes in the B+ tree. Moreover, every transaction will
modify the file change counter in the first page of the
database file. As we increase the threshold, the through-
put also increases. When the threshold is set to ∞, the
database becomes an in-memory database. In this sce-
nario, the speedup is 16.33×, 15.86× and 14.13× in ran-
dom insert, update and delete transactions respec-
tively, and 15.40×, 15.09× and 15.76× in sequential
insert, update and delete transactions respectively.

Figure 4 shows the block I/O access pattern of 100
insert transactions. In the WAL mode, a single insert
transaction will result in 16KB data written to the log
file and 20KB data written to the EXT4 journal. In the
pPCache mode, each insert transaction will only write
12KB data to the .db file. When the size of the database
file remains unchanged, the fdatasync will not trigger
file system journaling. As shown in Figure 4(b), there
are only two EXT4 journal commits in the 100 insert

transactions. In the LazyFlush mode, most of the re-
peated writes are absorbed by the persistent page cache
and thus much less data is written to the database file.
The WAL mode writes 1.72MB (1.05 MB EXT4 journal
blocks and 0.65 MB WAL log blocks and 0.02 MB table
file blocks) to the flash storage, while it is only 1.16 MB
(1.05 MB table file blocks and 0.11 MB EXT4 journal
blocks) for pPCache and 0.07 MB (0.03 MB EXT4 jour-
nal blocks and 0.04 MB table file blocks) for LazyFlush.
It clearly indicates that the persistent page cache can sig-
nificantly reduce the number of journal commits, as well
as the volume of I/Os destined to the database files when
LazyFlush is enabled.

5 Discussion and Future Work
qNVRAM provides a nearly persistent memory in smart-
phones, which can be used to speed up different applica-
tions. The applications that store important data in files
can allocate a piece of qNVRAM as write buffer for the
modified blocks; the file system can also employ qN-
VRAM as a writeback buffer for metadata updates. The
current design of the qNVRAM pool uses reserved phys-
ical memory with a fixed size. We plan to incorporate
the qNVRAM into the virtual memory system so that the
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Figure 5: The Performance of Persistent Page Cache
and LazyFlush.
size of qNVRAM pool can be dynamically changed and
hence increase the memory efficiency. We also plan to
further study the various failure characteristics of smart-
phones to better understand and overcome qNVRAM’s
limitations.
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