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Abstract—With the increasing utilization and popularity of
the cloud infrastructure, more and more data are moved to
the cloud storage systems. This makes the availability of cloud
storage services critically important, particularly given the fact
that outages of cloud storage services have indeed happened
from time to time. Thus, solely depending on a single cloud
storage provider for storage services can risk violating the
service-level agreement (SLA) due to the weakening of service
availability. This has led to the notion of Cloud-of-Clouds,
where data redundancy is introduced to distribute data among
multiple independent cloud storage providers, to address the
problem. The key in the effectiveness of the Cloud-of-Clouds
approaches lies in how the data redundancy is incorporated and
distributed among the clouds. However, the existing Cloud-of-
Clouds approaches utilize either replication or erasure codes
to redundantly distribute data across multiple clouds, thus
incurring either high space or high performance overheads. In
this paper, we propose a hybrid redundant data distribution ap-
proach, called HyRD, to improve the cloud storage availability
in Cloud-of-Clouds by exploiting the workload characteristics
and the diversity of cloud providers. In HyRD, large files are
distributed in multiple cost-efficient cloud storage providers
with erasure-coded data redundancy while small files and file
system metadata are replicated on multiple high-performance
cloud storage providers. The experiments conducted on our
lightweight prototype implementation of HyRD show that
HyRD improves the cost efficiency by 33.4% and 20.4%, and
reduces the access latency by 58.7% and 34.8% than the
DuraCloud and RACS schemes, respectively.

Keywords-Cloud-of-Clouds; Availability; Replication; Era-
sure Codes; Cost Efficiency

I. INTRODUCTION

With the increasing popularity and cost-effectiveness of

cloud storage, many companies and organizations have

moved or planned to move data out of their own data centers

into the cloud. Typical usage examples include storing

backup data and online digital media, such as the recent

announcement by the United States Library of Congress to

move its digitized content to the cloud [4] and Netflix’s

dependence on the Amazon S3 storage [5] for the storage of

its content. However, solely depending on a particular cloud

storage provider has a number of potentially serious prob-

lems. First, it can cause the so-called vendor lock-in problem

for the customers [1], [7], which results in prohibitively

high cost for clients to switch from one provider to another

as elaborated in Section II-A. Second, it can cause service

disruptions, which in turn will lead to SLA violation, due

to cloud outages, resulting in penalties, monetary or other

forms, for the service providers. Examples include a series

of high-profile cloud outages in the year of 2013 for cloud

providers, such as Amazon, Microsoft and Google [28], from

a 5-minute failure that costs half a million dollars to a

week-long disruption that costs an immeasurable amount of

brand damage. From January to March 2014, DropBox has

experienced two times of service outages [28]. Third, solely

depending on a particular cloud storage provider can also

result in possible increased service costs and data security

issues, such as the data leakage problem [29]. Thus using

multiple independent cloud providers, so called Cloud-of-

Clouds, is an effective way to provide better availability for

the cloud storage systems.

In a Cloud-of-Clouds, data redundancy is introduced to

judiciously distribute data among the clouds. Thus, the

redundant data distribution scheme is critically important for

storage availability, performance, cost and space efficiency.

Replication achieves the goals of availability and market

mobility, but at a very high storage and bandwidth cost

for large files. A more economical approach is to spread

the data across multiple providers by introducing erasure-

code redundancy to tolerate possible failures or outages,

such as RACS [1] and NCCloud [16]. However, these

schemes suffer from performance degradation due to the

small updates over the networked storage because of the

well-known write-amplification problem [12]. For example,

a small update in the RACS system will incur a total of 4

accesses, including traffic of 2 reads and 2 writes over the

network. Furthermore, a recent study conducted on Face-

book’s warehouse cluster [26], [27] reveals that more than

180TB of data is transferred through the top-of-rack switches

everyday for RS-coded data recovery. In other words, the

recovery operations consume a large amount of cross-rack

bandwidth, thereby rendering the bandwidth unavailable for

the foreground jobs. Thus, the data recovery process of the

erasure-coded schemes will also incur significant network

traffic due to the recovery I/Os in the cloud storage systems.
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When examining replication- and erasure-code-based

schemes in the context of cloud storage systems, I/O per-

formance and space efficiency are two important metrics.

Given the explosive growth in data volume with big data

analytics [31], [37], the I/O bottleneck has become an in-

creasingly daunting challenge in terms of both performance

and storage capacity. Besides the normal I/O performance,

two additional performance-critical operations emerge in a

Cloud-of-Clouds: the degraded read operation due to and

the recovery operation from a single cloud service outage.

Moreover, Recent IDC studies indicate that in the past five

years the volume of data has increased by almost 9 times

to 7ZB per year and a more than 44-fold growth to 35ZB

is expected in the next ten years [32]. Managing the data

deluge on storage to support (near) real-time data analytics

becomes an increasingly critical challenge for Big Data

analytics in the Cloud.

On the other hand, previous studies on the workload

characteristics have shown that files are of mixed sizes

with both small and large files [2], [30]. Moreover, file

metadata accesses are much more frequent than file ac-

cesses and account for more than half of all the user

operations [2], [30]. Thus, the performance of file metadata

accesses is critical to the overall system performance and

directly affects user experience. The recent studies, including

RACS [1], DuraCloud [10], DepSky [7], NCCloud [16],

and our own analysis detailed in Section II indicate that

replication-based schemes are performance-friendly to small

files and file metadata while erasure-code-based schemes

are performance-friendly and cost-efficient to large files.

This suggests that, a sensible data distribution scheme in

the Cloud-of-Clouds should dynamically utilize replication

and erasure codes based on different file characteristics. To

address the important storage availability issue in the Cloud-

of-Clouds, we propose a hybrid data distribution approach,

called HyRD, by considering the workload characteristics.

HyRD utilizes replication to store the small files and file

system metadata, and erasure codes to store the large files on

multiple cloud storage providers. By exploiting the workload

characteristics and the diversity of cloud providers, both the

advantages of erasure codes and replication are exploited

and their disadvantages are alleviated. The extensive trace-

driven experiments conducted on our lightweight prototype

implementation of HyRD show that HyRD significantly

outperforms RACS and DuraCloud in the I/O performance

measure of average response times. Moreover, our evalu-

ation and analysis results also show that HyRD achieves

comparable or better cost and space efficiency.

The rest of this paper is organized as follows. Background

and Motivation are presented in Section II. We describe the

HyRD architecture and design in Section III. The perfor-

mance evaluation is presented in Section IV. We review

the related work in Section V and conclude this paper in

Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we present some important observations

drawn from previous and our analysis of the vendor lock-

in problem of cloud storage, and the characteristics of the

replication- and erasure-code-based redundant data distribu-

tion in Cloud-of-Clouds to motivate the HyRD study.

A. The vendor lock-in problem

The services provided by the cloud storage are diverse [1],

[6]. The cloud storage providers offer different pricing with

different performance characteristics, with some including

extra features such as geographic data distribution, access

through mountable file systems, or specific APIs. Changes

in these features, or the emergence of new providers with

more powerful and attractive characteristics, might compel

some users to switch from one provider to another. However,

moving from one provider to another one may be very

expensive because the switching cost is proportional to

the amount of data that has been stored in the original

provider [1]. The more data has been stored in the original

provider, the higher the switching cost will be paid to the

bandwidth cost of data migration. This puts the users at a

disadvantage, that is, when the cloud storage provider that

has stored the user’s data raises prices or negotiates a new

contract less favorable to the user, the user has no choice

but to accept because of the high switching cost, hence the

so called vendor lock-in problem [1], [7].

Besides the possible increased prices or pressed unfavor-

able new contract, vendor lock-in can also lead to possible

data loss or unavailability for the users if their cloud storage

provider goes out of business or suffers a service out-

age. Despite of the strict Service-Level Agreements (SLAs)

between the cloud provider and the user, service failures

and outages do occur and are almost unavoidable. The

cloud outages in 2013, while infrequent, showed that the

service unavailability may last up to several hours and even

days [28]. A study conducted by ESG (Enterprise Strategy

Group) research has shown that about 58% of professionals

in SMBs (Small and Medium Businesses) can tolerate no

more than four hours of downtime before experiencing sig-

nificant adverse effect [14]. More seriously, EMC’s Disaster

Recovery Survey in 2013 [11] has observed that the average

cost per hour of downtime is much higher than ever before

and 54% users suffered from lost data or service downtime,

which further stresses the importance of the service/data

availability in cloud storage systems.

To address the vendor lock-in problem induced by single

individual cloud providers, a Cloud-of-Clouds solution is

proposed in the literature [1], [7], [10], [16]. It redundantly

distributes data across multiple providers by means of data

redundancy schemes, such as replication and erasure codes.

As a result, users can maintain their mobility while insuring

against outages of a single individual cloud provider.
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Table I
COMPARISON BETWEEN HYRD AND THE STATE-OF-THE-ART SCHEMES.

Schemes Redundancy Recovery Performance Cost
RACS [1] Erasure Codes Hard Low for small updates Low
DuraCloud [4], [10] Replication Easy Low for large accesses High
DepSky [7] Replication Easy Low for large accesses High
NCCloud [16] Network Codes Moderate Low for small updates Low
HyRD Replication and erasure code Easy High Low

B. Replication vs. erasure codes

Two common redundant data distribution methods used

in Cloud-of-Clouds to achieve high availability of data are

replication-based and erasure-code-based schemes. Although

replication has the potential to increase availability and

durability, it introduces two important challenges to sys-

tem architects. First, system architects must increase the

number of replicas to achieve high availability for large

systems. For example, at least three replicas are required

in Hadoop [15]. Second, the increased number of replicas

introduces the extra bandwidth and storage overhead to the

system, especially for large files. However, for the small

files, replication is still an efficient way to provide the best

performance with a small bandwidth and storage overhead.

This is because small files only account for a tiny fraction

of the bandwidth and storage capacity requirement, making

replication on them profitable and productive considering

the substantial performance benefits, both in the normal and

recovery states.

An erasure code provides redundancy with much less

space overhead than strict replication. Erasure codes divide

an object into m fragments and recode them into a larger n
fragments such that the original fragments can be recovered

from a subset of the n fragments. The fraction r = m/n is

called the code rate. A rate r code increases the storage cost

by a factor of 1/r. For example, the RAID5 code can be de-

scribed by an (m=4, n=5) erasure code. The key property of

erasure codes is that the original object can be reconstructed

from any m fragments. The main advantage of erasure

codes is the high space efficiency with good availability.

However, since any m correctly verified fragments must be

used to reconstruct a given lost fragment, it will introduce

two serious performance problems. One is the extra time

required to record the redundancy information, especially

for small files. Take RAID5 for example, a small-file update

will induce two read operations and two write operations.

The other is the large amount of network traffic required to

reconstruct data when a cloud provider suffers an outage or

fails. For the RAID5 example, the recovery of a lost small

file on the downed/failed storage provider will require read

traffic from all surviving cloud storage providers. On the

other hand, erasure codes offer a particular advantage for

large files in that their access latency is reduced by virtue

of the parallel accesses among multiple cloud providers.

Table I summarizes the state-of-the-art redundant data

distribution schemes. In general, replication provides better

performance while erasure codes provide better storage

efficiency. However, the former imposes extremely high

bandwidth and storage overhead, while the latter does not

provide the robustness and expected high access perfor-

mance in the Cloud-of-Clouds particularly for large files.

It therefore hints at the possibility of a certain combination

of the two that tries to retain their respective advantages

and while hiding their disadvantages to provide the most

appropriate redundant data distribution scheme in Cloud-of-

Clouds.

Knowing the workload characteristics is important for the

storage system design. The previous studies have shown

that more than 50% of files are smaller than 4KB [2] and

metadata accesses are the most frequent kind [30], [33].

They also found that files whose size ranges from 3 MB

to 9 MB accounts for more than 80% of the total storage

capacity. These results reveal that large files account for

a very large fraction (%80) of storage space occupation

while representing a very small percentage (%10 to %20)

of the total number of files in a storage system [2]. In

contrast, small files that are 4 KB or smaller account for

the most user accesses [2], [19]. Thus, small files and file

metadata that is very small in size should be stored with

a replication-based scheme and large files should be stored

with an erasure-code-based scheme for the performance and

cost efficiency considerations. These important observations,

combined with the urgent need to address the availability

problem of cloud storage systems, motivate us to propose

HyRD. In HyRD, large files are distributed in multiple

cost-efficient cloud storage providers with erasure-coded

data redundancy while small files and file system metadata

are replicated on multiple high-performance cloud storage

providers. By exploiting the workload characteristics and

the diversity of cloud providers, HyRD retains the desirable

advantages of both the replication-based and erasure-code-

based schemes while effectively addressing the vendor lock-

in problem in the Cloud-of-Clouds.

III. THE DESIGN OF HYRD

In this section, we first outline the main design objectives

of HyRD. Then we present its architecture overview, some

design considerations and prototype implementation.
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Figure 1. System architecture of HyRD.

A. The design of HyRD

The design of HyRD aims to achieve the following three

objectives.

• Improving the cloud storage availability - By redun-

dantly distributing user data in a Cloud-of-Clouds, it

solves the vendor lock-in problem. With data redun-

dancy schemes of replication and erasure codes, the

service unavailability problem caused by the outage of

single individual cloud storage providers is avoided.

• Reducing the user access latency - By using replication

for the small files and file system metadata, the perfor-

mance issue of update operations is avoided. Moreover,

by using erasure codes for the large files, the access

latency is reduced by exploiting the access parallelism

across multiple cloud storage providers.

• Improving the cost efficiency - Since HyRD uses erasure

codes to store the large files that occupy the most

storage capacity, the overall storage efficiency is im-

proved. Moreover, while small files and file system

metadata account for most user accesses, they occupy

disproportionally small capacity. Thus, replication on

them does not increase overall capacity cost noticeably.

B. HyRD architecture overview

Figure 1 shows a system architecture overview of our

proposed HyRD in the context of a Cloud-of-Clouds. Since

more cloud storage services are provided by commercial

cloud providers, the cloud providers are not allowed to

execute users’ code on the cloud storage side. As shown

in Figure 1, HyRD resides on the client side and interacts

with the cloud storage providers via their standard interfaces

without any modification. Thus, HyRD can be easily applied

to any cloud storage providers to use their cloud storage

services.

HyRD has three main functional modules: Workload

Monitor, Request Dispatcher, and Cost & Performance

Evaluator. The Workload Monitor module is responsible

for classifying the incoming write data into file metadata,

large files and small files. The qualification of a file being

large or small is workload independent but related to the

access latency. We have conducted performance evaluations

to select the best threshold to determine a file’s type in

Section IV. Based on the data type information (i.e., file

system metadata, small file, or large file), the Request Dis-
patcher module decides which redundancy scheme should

be used for the incoming data, and distributes the data

to the corresponding cloud storage providers. The Cost &
Performance Evaluator module is responsible for evaluating

the cloud storage services from the perspectives of cost and

performance. The cost characteristics of the cloud storage

providers are summarized in Table II in Section IV and the

performance characteristics are mainly described in terms of

the access latency. These evaluation results will enable the

Request Dispatcher module to select the appropriate cloud

storage providers.

C. Design considerations

The data layout of the hybrid replication and erasure-

codes distribution in a Cloud-of-Clouds introduces some

design issues. We highlight the main ensuing design issues

and our corresponding design choices.

Data distribution methods: The key idea of HyRD is to

exploit the workload characteristics to choose either replica-

tion or erasure codes to distribute data among multiple cloud

storage providers. At the present, HyRD only exploits the

data type and file size characteristics. Besides file accesses,

file system metadata blocks are critical to system perfor-

mance. Before accessing a file, its metadata blocks must be

loaded into the client memory. HyRD uses replication to

store the file system metadata and groups the metadata in a

directory together to exploit the access locality. For the file

accesses, the file size is a critical parameter for HyRD to dis-

tribute data among multiple cloud storage providers. Since

small files occupy a disproportionally small storage capacity

and their updates are expensive in an erasure-code-based

scheme, HyRD uses a replication-based scheme to store

them. For large files that occupy a disproportionally large
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Figure 2. Data distribution between the performance-oriented and cost-
oriented providers.

storage capacity and need parallel accesses to improve their

performance, HyRD uses an erasure-code-based scheme to

store them. However, how to distinguish a large file from

a small file is nontrivial as it sensitively depends on a file-

size threshold. We have conducted sensitivity experiments to

investigate the file-size threshold, as shown in Section IV.

Evaluation of cloud storage services: The services

offered by the cloud storage providers are diverse. Based on

the design objectives of HyRD, it is important to evaluate

the different cloud storage providers from the perspectives

of performance and cost. In the HyRD evaluator mod-

ule, the cloud storage providers are classified into two

categories: performance-oriented providers where the data

access latency is lower and cost-oriented providers where the

storage capacity price is lower. For example, Aliyun is less

expensive than Amazon S3 in storage price (per GB/month),

as shown in Table II. A particular cloud storage provider can

be in one category or both, as shown in Figure 2. Previous

studies have shown that file system metadata and small files

are accessed more frequently than large files [2]. Thus these

data should be stored in performance-oriented providers for

fast accesses. Because large files contribute to a dispropor-

tionally large storage capacity and thus the associated cost,

HyRD puts them in the cost-oriented providers. To optimize

performance of large files, some frequently accessed large

files are also placed in performance-oriented providers, as

shown in Figure 2.

Replication levels: The degree of data replication for file

system metadata and small files within HyRD determines

how resilient it is to cloud provider outages and failures,

obviously the higher replication degree the more desirable.

Unfortunately, higher degree of replication also comes with

higher cost both in terms of storage space and access

latency. Thus, there is a trade-off among resiliency, cost

and performance. For example, higher degree of replication

(i.e., more replicas) imply higher resiliency but also lower

performance for write/update operations for file system

metadata and small files. A recent survey of the cloud

service outages indicates that two concurrent cloud outages

are extremely rare [18]. This, combined with the known

fact that high degree of replication significantly degrades

system performance while also incurring high space cost,

makes it sensible to choose the replication level of 2 in our

current HyRD design. Nevertheless, it must be noted that

the degree of replication in HyRD is configurable to satisfy

the requirements of different users.

Recovery from service outage: An outage of cloud

storage service is different from a disk failure in a disk

array [36] in that the former results in a period of time

during which cloud storage service is unavailable. The

period may be hours and up to days. However, most outages

will return to the normal state eventually. Thus, recovery in

case of service outage in HyRD includes two phrases: (1)

reconstruction on-demand during the unavailable period and

(2) consistency update upon service’s return to the normal

state.

During the service unavailable period, all the write/update

operations are performed as usual. For the update operations,

the changes are logged; whereas, all the read operations

are performed with on-demand read reconstruction. For the

file system metadata and small files, the requested data is

directly fetched from the replicated providers. The large files

are reconstructed using the erasure-code redundancy. The

unrequested data on the unavailable provider is not recon-

structed and migrated to other storage providers. During the

service unavailable period, the data on the off-line cloud

storage provider may be invalid due to the write/update

operations. Upon the unavailable provider’s return to the

normal state, the recorded write/update logs will perform

the consistency updates on the returned provider to make

the data consistent. When the logs are completely processed,

the recovery process completes.

D. Prototype implementation

Our prototype is built as an independent module on the

client side. To interact with multiple cloud storage providers,

we have implemented a middleware of general cloud storage

API, short for GCS-API. The GCS-API middleware hides

the complexity of the cloud storage providers at the system

level. Moreover, with such middleware, it is easy to add new

cloud storage providers to the HyRD system.

Since each cloud storage service is modeled as a passive

storage functional entity that supports five functions: List

(lists the files of a container in the cloud), Get (reads a

file), Create (creates a container), Put (writes or modifies a

file in a container) and Remove (deletes a file). By passive

storage functional entity, we mean that no operations other

than what is needed to support the aforementioned five

functions are executed. We assume that access control is
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Table II
MONTHLY PRICE PLANS (IN US DOLLARS, $1 = �6.1) FOR AMAZON S3, WINDOWS AZURE STORAGE, ALIYUN OPEN STORAGE SERVICE AND

RACKSPACE CLOUD FILES, AS OF SEPTEMBER, 10TH 2014 IN THE CHINA REGION.

Operations & Vendors Amazon S3 [5] Windows Azure [35] Aliyun [3] RackSpace [25]
Storage (per GB/month) $0.033 $0.157 $0.029 $0.13
Data In (per GB) Free Free Free Free
Data Out to Internet (per GB) $0.201 Free $0.123 Free
Put, Copy, Post, and List (per 10K transactions) $0.047 Free $0.0016 Free
Get and others (per 10K transactions) $0.0037 Free $0.0016 Free

Category Cost-oriented Performance-oriented Both Cost-oriented

provided by the system in order to ensure that read requests

are only allowed to invoke the List and Get functions.

To easily use the various cloud storage services, HyRD

uses the REpresentational State Transfer APIs (short for

RESTful APIs) to perform the operations. RESTful APIs

are application program interfaces (APIs) that use HTTP

requests to perform the above five functions. RESTful APIs

explicitly take advantage of HTTP methodologies defined

by the RFC 2616 protocol. Besides the above five func-

tions, the Evaluation module in HyRD will directly interact

with the individual cloud storage providers to evaluate the

corresponding values.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup

and evaluation methodology. Then we evaluate the perfor-

mance of HyRD through extensive trace-driven experiments.

A. Experimental setup and evaluation methodology

Our tests are conducted in a desktop PC (client) with

an Intel i5-3470 3.2 GHz quad-core processor, with 4GB

of RAM and 1 Gigabit Ethernet connected to the China

Education and Research Network [9]. Currently, our evalua-

tions use the following four cloud storage providers in their

default configurations: Amazon S3 [5], Windows Azure [35],

Aliyun [3] and Rackspace [25]. Table II shows the monthly

price plans for four major providers as of September 10th

2014. For all the cloud providers, we use the prices from

the first chargeable usage tier in the China region (i.e.,

storage usage within 1TB/month in Amazon S3; the volume

of data transferred out ranges between 1GB/month and

10TB/month).

Because cost analysis is a long-term evaluation, similar

to RACS, we used a trace-driven simulation to understand

the costs associated with hosting large digital libraries in the

cloud. Our trace covers one year of activity on the Internet

Archive (IA) servers [17] from Feb. 2008 to Jan. 2009.

Figure 3 shows the amount of data written/read to/from

the Internet Archive servers and the number of read/write

requests issued to the Internet Archive servers during this

one-year period. As shown in Figure 3, the volume of data

transferred is dominated by reads that outweigh writes by

ratio of 2.1:1 and read requests outnumber write requests

by a ratio of 3.5:1. The trace represents HTTP and FTP
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(b) User read/write requests count

Figure 3. The amount of data written/read to/from and the number of
read/write requests issued to the Internet Archive servers as a function of
time during a one-year period.

interactions that read and write various documents and media

files (images, sounds, videos) stored at the Internet Archive

and served to users. We believe that this trace is a good

example of the type of workloads generated by online digital

library systems, both in terms of the file sizes and request

patterns.

To measure performance, we use the PostMark [13]

benchmark tool to generate the file accesses as it is not

practical to replay one year’s trace. PostMark is designed to

portray performance in desktop applications like electronic

mail, netnews and web-based commerce, etc. We use Post-

Mark to generate an initial pool of random text and image

files ranging in size from a lower bound of 1024 bytes to a

higher bound of 100M bytes. For erasure-coded redundancy,

we choose the RAID5 scheme in HyRD as a case study to

fairly compare with the RACS approach.

B. Cost simulation and analysis

In our cost simulation, it’s assumed that the cloud ser-

vices start with an empty storage without any data being

preloaded. We estimate the cloud cost of moving the IA

data to the cloud by using the up-to-date pricing schemes

of the leading public cloud storage providers. Besides the

bandwidth and storage costs, cloud providers also charge

metadata operations, such as Put, Post, Post (short for 3Ps),

List, Get and other operations based on per 10K transactions,

as shown in Table II.

Figure 4(a) shows the estimated monthly cost of servicing

the Internet Archive by using single-cloud storage providers

(i.e., Amazon S3, Windows Azure, Aliyun, and Rackspace),

the DuraCloud scheme that fully replicates all data between

two cloud storage providers, and the RACS scheme and

our HyRD scheme that both distribute data redundantly
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(b) Cumulative costs of different cloud storage providers

Figure 4. Estimated monthly and cumulative costs of hosting storage services on the cloud for different schemes.

among four cloud storage providers. While RACS uses the

RAID5 scheme to distribute all data, HyRD relies on a

hybrid replication and RAID5 scheme to dynamically and

adaptively distribute data based on their type and size.

From Figure 4(a), we can see that the monthly costs of all

the schemes, except for Amazon S3 and Aliyun, increase

nearly monotonously. The reason is that with each additional

month, the monthly cost not only includes storage cost and

read cost of the current month, but also includes the storage

cost of all previously written data. However, for the Amazon

S3 and Aliyun providers, while their storage costs are lower

than Windows Azure and RackSpace by more than 4 times,

their own read costs are much higher than their storage costs.

This means that for Amazon 3 and Aliyun their monthly

bills are dominated by the read costs that can fluctuate from

month to month. In other words, the monthly costs for the

Amazon S3 and Aliyun providers depend much more on the

read (data-out) operations than on write (data-in) operations.

Figure 4(b) shows the cumulative costs with different

storage providers. First, we can see that DuraCloud is the

most costly provider and Aliyun is the least costly provider.

The high cost of DuraCloud comes from the full replication

scheme that doubles the storage requirement and thus results

in a storage cost that is the sum of those of the two

involved individual providers. As expected, the cumulative

storage cost increases from month to month as more data

are accumulatively stored with time. Aliyun has the lowest

cloud cost since it charges very little for the stored data and

other operations, such as data out and metadata operations.

Second, we see that the three Cloud-of-Clouds schemes

(DuraCloud, RACS and HyRD) are more costly than the

individual cloud storage providers. The reasons are twofold:

(1) the Cloud-of-Clouds schemes add extra data redundancy

that incurs additional storage cost; and (2) the update and

write operations in the Cloud-of-Clouds will incur extra

bandwidth cost due to the increased read operations. Third,

the cloud cost of the HyRD scheme is 33.4% and 20.4%

lower than that of the DuraCloud and RACS schemes,

respectively. Compared with the DuraCloud scheme that

uses full replication, both RACS and HyRD require less

storage space overhead and thus achieve lower storage cost.

Relative to the RACS scheme, our HyRD scheme requires

less the storage cost by placing the many more large files

in the cost-oriented cloud storage providers, such as Aliyun

and RackSpac. Moreover, by reading data from the cost-

oriented cloud storage providers, HyRD’s cloud cost due to

the data out operations is also reduced.

C. Performance results

In order to understand the performance of HyRD in a

real deployment, we use the PostMark benchmark tool to run

several workloads accessing a Cloud-of-Clouds composed of

four popular single-cloud providers of Amazon S3, Windows

Azure, Aliyun and RackSpace. Since the Internet bandwidth

is not stable from time to time, we run each experiment

for three times and use the average latency results with the

deviation values. These experiments took place during about

three months between July 5, 2014 and October 7, 2014.

We first evaluate the performance of individual single-

cloud storage providers as a function of the request sizes of

4KB, 16KB, 64KB, 256KB, 1MB and 4MB, as shown in

Figure 5. From the results presented in the figure, we can

draw some interesting observations. First, Aliyun has the

lowest access latency among the four single-cloud storage

providers. This, combined with the fact that it has the lowest

cloud cost as demonstrated in Figures 5 and 6, makes

Aliyun a unique cloud storage provider in that it is both

performance-oriented and cost-oriented and thus explains its

categorization in last row of Table II. Second, there is a

huge variance among the performance and the cost of the

different cloud providers. It implies an important advantage

of the Cloud-of-Clouds: we can exploit the workload charac-

teristics and diversity of cloud storage providers to distribute

data among multiple cloud storage providers. Third, when

the file size increases from 1MB to 4MB, the access latency

seems to increase disproportionally, which implies that the

data transfer latency is disproportionally high at this level

of file size and thus presents a clear gap the latency trend.

Thus we set the file-size threshold at 1MB to distinguish

large files from small files.

639



,

$,

',

�,

�,

/,

-,

�91 $-91 -�91 '/-91 $�1 ��1

�
�	
��
%	
��
�
��
�
��
�
��
��

��	
�����
��������
���
�����
�	���	�

(a) Read latency.
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(b) Write latency.

Figure 5. Read/Write latency as a function of file size for single-cloud storage providers.
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Figure 6. Access latency results of benchmark-driven experiments on
real cloud deployment of the different schemes both in the normal state
and in the service outage period of any one of the single-cloud storage
providers. Note that the results are normalized to Amazon S3 and we set
the Window Azure service off-line to emulate it’s outage when evaluating
the three Cloud-of-Clouds schemes.

Figure 6 shows the benchmark results in terms of access

latency of the different schemes both in the normal state and

in the service outage period of any one of the single-cloud

storage providers. In the evaluations, we configure PostMark

to issue files of size ranging from 1KB to 100MB to simulate

a desktop PC client. We set the performance of a single-

cloud Amazon S3 storage provider as the baseline. In the

normal state, we see that HyRD performs the best among

all the schemes. Its access latency is 58.7% and 34.8%

lower than the DuraCloud and RACS schemes, respectively.

Both RACS and HyRD distribute large files across multi-

ple single-cloud storage providers, which enables them to

exploit the access parallelism to improve the performance.

However, for small files, the RACS scheme is less effective

than HyRD. It is further validated by the performance

results during the outage period when a single-cloud storage

provider is off-line. For RACS, accessing (reading) the

metadata or small files on the off-line provider will require

it to access all the other three single-cloud storage providers

to reconstruct the unavailable data. This will significantly

increase the read traffic and decrease the bandwidth uti-

lization. In contrast, the small-file/metadata access latency

of neither DuraCloud or HyRD is noticeably affected by

the service outage. The reason is that the metadata and

small files are simply fetched from the surviving single-

cloud storage provider that stores replicas of the unavailable

data in the DuraCloud and HyRD schemes. In fact, the

access latency of HyRD is 46.3% lower than that of RACS

during the service outage period. Moreover, upon a service

outage, the access latency of DuraCloud is better than that

in the normal state since no double writes or updates are

performed. This explains why the access latency of HyRD is

only 27.3% lower than that of DuraCloud during the service

outage period.

V. RELATED WORK

As cloud storage becomes popular and cost efficient,

more and more organizations and individual users will move

their data to the cloud. Besides performance and security,

availability of the cloud storage service is becoming increas-

ingly more important for users. The notion of Cloud-of-

Clouds is an effective approach to addressing the availability

issue caused by the service outages of single-cloud storage

providers.

There are several systems proposed for Cloud-of-Clouds.

RACS [1] uses erasure coding to mitigate the vendor lock-

in problem encountered by a user when switching cloud

vendors. It transparently stripes data across multiple cloud

storage providers with RAID-like techniques used by disks

and file systems. HAIL [8] provides integrity and availability

guarantees for stored data. It allows a set of servers to

prove to a client that a stored file is intact and retrievable

by the approaches adopted from the cryptographic and

distributed-systems communities. NCCloud [16] achieves

cost-effective repair for a permanent single-cloud provider

failure to improve availability of cloud storage services. It

is built on top of network-coding-based storage schemes

called regenerating codes with an emphasis on storage repair,

excluding the failed cloud in repair.

The above three systems are all based on erasure codes or

network codes. In contrast, DuraCloud [10] utilizes replica-

tion to copy user content onto several different cloud storage

providers to provide better availability. Moreover, it ensures
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that all copies of user content remain synchronized. How-

ever, users will pay more money for the additional storage

space and bandwidth required by DuraCloud. DEPSKY [7]

improves the availability and confidentiality of commercial

storage cloud services by building a Cloud-of-Clouds on top

of a set of storage clouds, combining Byzantine quorum

system protocols, cryptographic secret sharing, replication

and the diversity provided by the use of several cloud

providers. Different from these approaches, our proposed

HyRD scheme takes the workload characteristics and the

diversity of cloud storage providers, specially the file sizes,

into the design of the redundant data distribution strategy so

that the advantages of both the replication and erasure codes

are exploited while hiding their disadvantages. As a result,

both performance and storage efficiency are improved with

the availability guarantee.

Integrating replication and erasure codes into one system

is not a new idea. Our proposed HyRD takes inspirations

from previous studies in the data organizations for RAID

and file systems [20], [22], [23], [34]. For different RAID

levels [24], replication-based disk array (RAID1) and parity-

based disk arrays (RAID4/5) provide different performance

and storage efficiency. HP AutoRAID [34] provides a two-

level storage hierarchy inside a monolithic disk array con-

troller. In the upper level of this hierarchy, RAID1 provides

full redundancy and better performance. In the lower level,

RAID5 parity protection is used to achieve lower storage

cost. It automatically and transparently manages migration

of data blocks between these two levels as access patterns

change. Hot Mirroring [23] similarly combines RAID1 and

RAID5 layouts, keeping hot data in the RAID1 portion

and cold data in the RAID5 portion. It is a single-box

solution and uses metadata to control the placement of data

among disks comprising the disk array. In contrast to HP

AutoRAID and Hot Mirroring, HyRD exploits the workload

characteristics and the heterogeneity of cloud providers to

choose between the replication redundancy and the erasure-

coded redundancy to distribute data among multiple cloud

storage providers, thus improving the availability of cloud

storage services from the user’s perspective.

VI. CONCLUSION

Availability of cloud storage services is one of the main

factors that the users must consider seriously when deciding

whether or not to move their data to the cloud. Depending on

a single cloud storage provider has the inherent vendor lock-

in problem that can potentially cost the user dearly. This pa-

per proposed a hybrid redundant data distribution approach,

called HyRD, by exploiting the workload characteristics and

the diversity of cloud storage providers to improve the stor-

age availability in Cloud-of-Clouds. In HyRD, large files are

distributed in multiple cost-oriented cloud storage providers

with the erasure-coded data redundancy while small files and

file system metadata are replicated on multiple performance-

oriented cloud storage providers. By exploiting the workload

characteristics and the heterogeneity of cloud providers, both

the advantages of erasure codes and replication are exploited

while their disadvantages are alleviated. The experiments

conducted on our lightweight prototype implementation of

HyRD show that HyRD significantly outperforms existing

Cloud-of-Clouds schemes, such as RACS and DuraCloud,

in terms of the I/O performance and cost-effectiveness.

HyRD is an ongoing research project and we are currently

exploring several directions for future research. First, we will

apply data deduplication in the HyRD module to eliminate

the redundant data and reduce the total data transferred over

the network, thus further improving the performance and

cost efficiency [21]. However, data deduplication requires

powerful computing resources and extra memory space

while HyRD is located in the client side. Applying data

deduplication in HyRD is not easy and needs careful design

considerations. Second, we will extend the HyRD design to

consider the specific features of the diverse cloud storage

services, thus further improving the flexibility of HyRD and

the efficiency of cloud storage services.
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