
Z codes: General Systematic Erasure Codes with Optimal Repair Bandwidth and Storage for

Distributed Storage Systems

Qing Liu∗, Dan Feng∗, Hong Jiang†, Yuchong Hu∗, Tianfeng Jiao∗

∗Wuhan National Laboratory for Optoelectronics (WNLO),
∗School of Computer, Huazhong University of Science and Technology (HUST), China

†University of Nebraska-Lincoln, USA

Email: {qing, dfeng}@hust.edu.cn, jiang@cse.unl.edu, {yuchonghu, tfjiao}@hust.edu.cn

Abstract—Erasure codes are widely used in distributed storage
systems to prevent data loss. Traditional erasure codes suffer
from a typical repair-bandwidth problem in which the amount
of data required to reconstruct the lost data, referred to as
the repair bandwidth, is often far more than the theoretical
minimum. While many novel erasure codes have been proposed
in recent years to reduce the repair bandwidth, these codes either
require extra storage capacity and computation overhead or are
only applicable to some special cases.

To address the weaknesses of the existing solutions to the
repair-bandwidth problem, we propose Z Codes, a general family
of codes capable of achieving the theoretical lower bound of
repair bandwidth for a single data node failure. To the best
of our knowledge, the Z codes are the first general systematic
erasure codes that achieve optimal repair bandwidth under the
minimum storage. Our in-memory performance evaluations of
a 1-GB file indicate that Z codes have encoding and repairing
speeds that are approximately equal to those of the Reed-Solomon
(RS) codes, and their speed on the order of GB/s practically
removes computation as a performance bottleneck.

Index Terms—Erasure Codes; Repair Bandwidth; Distributed
Storage System; Failure Tolerance

I. INTRODUCTION

Erasure codes are widely used in distributed storage systems

to recover from data loss in the event of server breakdown.

These codes incorporate data redundancy in a space-efficient

manner to tolerate data loss by reconstructing the lost data and

are systematic in that the original data is kept unchanged after

encoding and can be accessed without decoding. Typical sys-

tematic codes include Reed-Solomon (RS) codes and Cauchy

Reed-Solomon (CRS) codes.

However, such traditional erasure codes face a known

repair-bandwidth problem [1] that becomes increasingly more

important in a distributed environment where bandwidth is

typically expensive in terms of both performance and power

consumption. That is, in a storage system of data size M with

k data nodes and m parity (i.e., redundant) nodes that are

interconnected by a network of limited bandwidth, each node

stores data of size M
k

and the repair of one node’s failure

requires a disk-I/O or network bandwidth of size M , which is

k times the size of the lost data (M
k

). In this paper, we define

repair bandwidth as the amount of the data accessed by the

disk I/O and transferred over the network.

The minimum storage for an (m, k) code is M
k

, so k
nodes of data can retain the original data. However, Dimakis

et al. pointed out that the theoretical minimum storage and

Storage overhead

Repair bandwidth

Z codes RS codes
Minimum

storage

Minimum repair

bandwidth

Optimal

repair

Fig. 1: Theoretical lower-bound trade-off curve of storage

overhead and repair bandwidth.

minimum repair bandwidth cannot be achieved at the same

time and there is a lower-bound trade-off curve between the

two [1], as plotted in Fig. 1. Although codes with the minimum

storage cannot achieve the minimum repair bandwidth, their

theoretical repair bandwidth lower bound, which is called

optimal repair bandwidth [2], can be calculated as:

(m+ k − 1)M/(mk) (1)

The repair bandwidth mentioned above refers particularly to a

single node failure, which is the most common case in practice.

Recently, many novel repair-bandwidth-efficient codes have

been proposed to reduce the repair bandwidth, but at the ex-

penses of (1) extra storage capacity, (2) additional computation

overhead or (3) being applicable only to some special cases.

The Simple Regenerating Codes (SRC) [3] and Local Recon-

struction Codes (LRC) [4] need additional storage resources to

store the extra parity information. The Functional Minimum

Storage Regenerating (FMSR) codes are not systematic and

only store parity information after encoding, thereby resulting

in a high computation cost [5]. The Rotate Reed-Solomon

(RRS) codes [6] also require additional computation for re-

pairing the failure of a single data node. Under the burden

of not having a general construction mechanism, the Zigzag

codes [7] are unsuitable for general storage systems. The

Product-matrix-MSR (PMSR) codes [2] are only applicable

when the code rate (the ratio of the data size and size of data

after encoding) is less than 1
2 , namely, m > k, which greatly

limits their applicability.

To address the above weaknesses in the existing codes, we

present in this paper a family of novel erasure codes, called

the Z codes. The Z codes not only can achieve the theoretical

optimal repair bandwidth under the minimum storage for a

single data node’s failure, but also have the following desirable

properties that make them suitable for distributed storage

systems. (1) The minimum storage property: the Z codes

consume exactly the same storage capacity as the RS and

2015 IEEE 34th Symposium on Reliable Distributed Systems

1060-9857/15 $31.00 © 2015 IEEE

DOI 10.1109/SRDS.2015.18

212

213

3

C. State-of-the-art Repair-bandwidth-efficient Codes

The Regenerating codes are a class of codes that can

theoretically achieve the theoretical lower bound trade-off

curve in Fig. 1, and they can be realized by random linear

codes [1]. For example, the FMSR codes [5] are a class

of the Regenerating codes and achieve the optimal repair

bandwidth under minimum storage for any single node failure.

However, two main drawbacks make them unsuitable for

distributed storage systems. First, the repairs of the FMSR

codes are functional, so the lost data are not really restored,

instead some alternative data are regenerated to maintain the

data redundancy, which makes repairs of the FMSR codes

undependable. Second, the FMSR codes are not systematic,

which means that the original data are altered after encoding

and a read request to the data will require a decoding operation

that involves extra data access and computation [5].

Besides the Regenerating codes, other repair-bandwidth-

efficient codes have been proposed recently, such as the LRC,

SRC and DRESS codes [9]. However, these codes trade

the valuable storage resources for limited repair bandwidth

reduction. The SRC store extra data in each storage node [3]

and the LRC [4] introduce local parity data that confines

the repair locally , resulting in additional storage resource

consumption. The DRESS codes are based on replication in

which at least two replicas are kept for each block, so that

the code rate is always less than 1
2 as the case in the PMSR

codes [2].

Two factors guarantee the optimal repair bandwidth of the Z

codes. First, all n− 1 remaining nodes participate in a repair;

Second, each of the n − 1 remaining nodes only needs to

selectively access and transfer blocks at a rate of 1
m

. Therefore,

the amount of data required in each node is M
mk

and the repair

bandwidth is (n − 1) M
mk

, exactly the same as the optimal

repair bandwidth in Equation (1). In Table I, we compare the

storage overhead and the repair bandwidth for representative

repair-bandwidth-efficient codes with m = 2 and k = 10.

It indicates that the Z codes have the least storage overhead,

the same as the RS codes and FMSR codes, and the least

repair bandwidth, the same as the FMSR codes. Moreover,

the Z codes are systematic codes and also applicable for any

parameter set (m, k) as long as k > 1 and m > 1.

TABLE I: Storage overhead for storing 1 TB data and repair

bandwidth for reconstructing 1 TB data for codes with m = 2
and k = 10. (r and f are configuration parameters)

Codes
Storage Repair Computation

Systematic
Overhead Bandwidth Overhead

3-Replicas 3 TB 1 TB Very low Yes

RS 1.2 TB 1 TB Medium Yes

SRC (f = 5) 1.44 TB 0.6 TB Medium Yes

LRC (r = 5) 1.3 TB 0.5 TB Medium Yes

RRS 1.2 TB 0.75 TB High Yes

FMSR 1.2 TB 0.45 TB Very High No

Z code 1.2 TB 0.45 TB Low Yes

III. Z CODES

We introduce the construction of the Z codes inductively

and present their encoding, repairing and decoding. To facil-

itate these detailed description of the Z codes, we list some

notations of erasure codes and their definitions in Table II.

TABLE II: Notations and their definitions

Notations Meaning

k/m Number of data/parity chunks in a stripe

n Number of chunks in a stripe (n = m+ k)

r Number of blocks in a chunk

f Index number of the faulty data chunk

Di The i-th data chunk (0 ≤ i < k)

Ci The i-th parity chunk (0 ≤ i < m)

Di,j The j-th data block of data chunk Di (0 ≤ j < r)

Ci,j The j-th parity block of parity chunk Ci (0 ≤ j < r)

P The generator matrix of an (m, k)-Z code

Q The generator matrix of an (m, k + 1)-Z code

Pi,j submatrix of P (0 ≤ i < k, 0 ≤ j < m)

Pi The i-th block row of P , Pi = [Pi,0, . . . , Pi,k−1]
M Original data size (total size of all data chunks)

A. Code construction

1) Z Codes with k = 2: The generator matrix of an (m, 2)-Z
code is an m2-row and 2m-column bit matrix, which can be

partitioned into 2m m×m blocks as follows, where r = m:

P =





P0,0 P0,1

P1,0 P1,1

...
...

Pm−1,0 Pm−1,1





m×2

=







Im Im
Im I+

m

...
...

Im I(m−1)+
m







m×2

(2)

Im is an m ×m identity matrix, and Ii+m (i < m) is an m ×
m permutation matrix representing i steps’ left cyclic shift

from Im. We call Ii+m cell matrix, since it is the fundamental

submatrix of P . The number of different cell matrices is m.

For example, when m = 3, all cell matrices are as follows.

I3 =
[

1 0 0
0 1 0
0 0 1

]

I1+3 =
[

0 0 1
1 0 0
0 1 0

]

I2+3 =
[

0 1 0
0 0 1
1 0 0

]

2) Z Codes with an arbitrary k: We first present a inductive

construction method of a Z code that generates the generator

matrix of an (m, k+1)-Z code from the generator matrix of an

(m, k)-Z code. Let P and Q denote generator matrices of an

(m, k)-Z code and an (m, k+1)-Z code separately, a two-step

method of constructing Q from P is as follows:

1) Replicate the last block column of P and tile it onto the

P along the horizontal dimension. The result is denoted as

an intermediate matrix T .

T =







P0,0 ··· P0,k−1 P0,k−1

P1,0 ··· P1,k−1 P1,k−1

...
...

...
...

Pm−1,0 ··· Pm−1,k−1 Pm−1,k−1







m×(k+1)

2) Construct Q from T as follows, where each submatrix Qi,j

is a tensor product of Ti,j and a cell matrix.

Q =







Q0,0 ··· Q0,k−1 Q0,k

Q1,0 ··· Q1,k−1 Q1,k

...
...

...
...

Qm−1,0 ··· Qm−1,k−1 Qm−1,k







m×(k+1)

214

215

216

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

2 3 4 5 6 7 8 9 10111213

E
n

c
o

d
in

g
 S

p
e

e
d

(G
B

/s
)

k (m = 2)

2 3 4 5 6 7 8 9

k (m = 3)

2 3 4 5 6 7

k (m = 4)

Z
RS

CRS
FMSR

Fig. 9: Encoding speed of the Z codes, CRS codes, RS codes

and FMSR codes for a 1-GB file.

 0

 1

 2

 3

 4

2 3 4 5 6 7 8 9 10 11 12

R
e

p
a

ir
in

g
 S

p
e

e
d

(G
B

/s
)

k (m = 2)

2 3 4 5 6 7 8

k (m = 3)

2 3 4 5 6 7

k (m = 4)

Z
RS

CRS
FMSR

Fig. 10: Repairing speed of the Z codes, CRS codes, RS codes

and FMSR codes for a 1-GB file.

matrices. We encode/repair a region of data with size up to 1
GB so that the size of a block would not be too small. Each

test is run 50 times with the average speed as the final result.

Encoding speeds are plotted in Fig. 9 where encoding speeds

of these four codes have the following relationship:

Z codes > RS codes > CRS codes > FMSR codes

Actually, The RS codes and Z codes share the same encoding

complexity on account of the fact that each parity block is a

combination of k data blocks, which can be observed from

the construction of these two codes. Hence, Z codes gain the

fastest encoding speed benefiting from the fast bit-wise XOR.

Fig. 10 plots the speed of repairing a single data chunk of

1-GB. We only measure the speed of repairing a data chunk

for the RS, CRS and Z codes, since repairing a parity chunk is

exactly the same as the process of re-encoding it. For all codes,

their repairing speeds exhibit a decreasing trend as k increases,

since more data blocks are involved in reconstructing the

same size of data, incurring more computation. Although

repair bandwidth consumptions of Z codes and RS codes are

different, they perform the similar repairing performance. Z

codes offer a speed on the order of GB/s, which suggests that

computation would no longer be the performance bottleneck

when applying the Z codes in a practical storage system.

VI. CONCLUSIONS

We propose a family repair-bandwidth-efficient erasure

codes, called the Z codes for distributed storage systems.

The Z codes not only achieve the optimal repair bandwidth

for repairing a single data node’s failure, but also attain the

minimum storage property as the RS and CRS codes. The Z

codes have many other beneficial properties that make them

suitable for distributed storage systems. The Z codes have

comparable encoding and repairing performances with the

RS codes, and significantly outperform the CRS codes and

FMSR codes. Reducing the number of blocks in a chunk

(r) and finding new constructions to enable the Z codes to

tolerate more concurrent failures are the directions of our

future research on the Z codes.

ACKNOWLEDGEMENT

The authors would like to thank Jian Li for helping to

implement the Z codes in a practical storage system. This work

is supported in part by National Basic Research Program of

China (973 Program) (2011CB302301); National Natural Sci-

ence Foundation of China (61025008, 61232004, 61173043);

National High Technology Research and Development Pro-

gram of China (863 Program) (2013AA013203); National

Key Technology R&D Program of China (2011BAH04B02);

The Fundamental Research Funds for the Central Universities

(2013TS043); Natural Science Foundation of Hubei Province

(2015CFB192).

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” Information

Theory, IEEE Transactions on, vol. 56, no. 9, pp. 4539–4551, 2010.
[2] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran,

“Having your cake and eating it too: Jointly optimal erasure codes for
i/o, storage, and network-bandwidth,” in Proc. of USENIX FAST, 2015,
pp. 81–94.

[3] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,
“Simple regenerating codes: Network coding for cloud storage,” in
INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 2801–2805.

[4] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in USENIX

ATC, 2012.
[5] H. C. Chen, Y. Hu, P. P. Lee, and Y. Tang, “Nccloud: a network-

coding-based storage system in a cloud-of-clouds,” Computers, IEEE

Transactions on, vol. 63, no. 1, pp. 31–44, 2014.
[6] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking

erasure codes for cloud file systems: Minimizing i/o for recovery and
degraded reads,” in Proc. of USENIX FAST, 2012.

[7] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: Mds array codes with
optimal rebuilding,” Information Theory, IEEE Transactions on, vol. 59,
no. 3, pp. 1597–1616, 2013.

[8] J. S. Plank, “T1: erasure codes for storage applications,” in Proc. of

USENIX FAST, 2005, pp. 1–74.
[9] S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran, “Dress

codes for the storage cloud: Simple randomized constructions,” in Infor-

mation Theory Proceedings (ISIT), 2011 IEEE International Symposium

on. IEEE, 2011, pp. 2338–2342.
[10] C. F. Van Loan, “The ubiquitous kronecker product,” Journal of com-

putational and applied mathematics, vol. 123, no. 1, pp. 85–100, 2000.
[11] R. Tanner, “A recursive approach to low complexity codes,” Information

Theory, IEEE Transactions on, vol. 27, no. 5, pp. 533–547, Sep 1981.
[12] J. S. Plank, M. Blaum, and J. L. Hafner, “Sd codes: Erasure codes

designed for how storage systems really fail,” in Proc. of USENIX FAST,
2013.

[13] M. Li and P. P. Lee, “Stair codes: a general family of erasure codes
for tolerating device and sector failures in practical storage systems.” in
FAST, 2014, pp. 147–162.

[14] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast galois
field arithmetic using intel simd instructions,” in FAST-2013: 11th Usenix

Conference on File and Storage Technologies, San Jose, 2013.

217

