1060-9857/15 $31.00 © 2015 IEEE
DOI 10.1109/SRDS.2015.18

2015 IEEE 34th Symposium on Reliable Distributed Systems

Z codes: General Systematic Erasure Codes with Optimal Repair Bandwidth and Storage for
Distributed Storage Systems

Qing Liu*, Dan Feng*, Hong Jiang, Yuchong Hu*, Tianfeng Jiao*
*Wuhan National Laboratory for Optoelectronics (WNLO),
*School of Computer, Huazhong University of Science and Technology (HUST), China
TUniversity of Nebraska-Lincoln, USA
Email: {qging, dfeng}@hust.edu.cn, jiang@cse.unl.edu, {yuchonghu, tfjiao} @hust.edu.cn

Abstract—Erasure codes are widely used in distributed storage
systems to prevent data loss. Traditional erasure codes suffer
from a typical repair-bandwidth problem in which the amount
of data required to reconstruct the lost data, referred to as
the repair bandwidth, is often far more than the theoretical
minimum. While many novel erasure codes have been proposed
in recent years to reduce the repair bandwidth, these codes either
require extra storage capacity and computation overhead or are
only applicable to some special cases.

To address the weaknesses of the existing solutions to the
repair-bandwidth problem, we propose Z Codes, a general family
of codes capable of achieving the theoretical lower bound of
repair bandwidth for a single data node failure. To the best
of our knowledge, the Z codes are the first general systematic
erasure codes that achieve optimal repair bandwidth under the
minimum storage. Our in-memory performance evaluations of
a 1-GB file indicate that Z codes have encoding and repairing
speeds that are approximately equal to those of the Reed-Solomon
(RS) codes, and their speed on the order of GB/s practically
removes computation as a performance bottleneck.

Index Terms—Erasure Codes; Repair Bandwidth; Distributed
Storage System; Failure Tolerance

[. INTRODUCTION

Erasure codes are widely used in distributed storage systems
to recover from data loss in the event of server breakdown.
These codes incorporate data redundancy in a space-efficient
manner to tolerate data loss by reconstructing the lost data and
are systematic in that the original data is kept unchanged after
encoding and can be accessed without decoding. Typical sys-
tematic codes include Reed-Solomon (RS) codes and Cauchy
Reed-Solomon (CRS) codes.

However, such traditional erasure codes face a known
repair-bandwidth problem [1] that becomes increasingly more
important in a distributed environment where bandwidth is
typically expensive in terms of both performance and power
consumption. That is, in a storage system of data size M with
k data nodes and m parity (i.e., redundant) nodes that are
interconnected by a network of limited bandwidth, each node
stores data of size % and the repair of one node’s failure
requires a disk-I/O or network bandwidth of size M, which is
k times the size of the lost data (%). In this paper, we define
repair bandwidth as the amount of the data accessed by the
disk I/O and transferred over the network.

The minimum storage for an (m,k) code is 4L, so k
nodes of data can retain the original data. However, Dimakis

et al. pointed out that the theoretical minimum storage and

212

Storage overhead

Z codes RS codes

Minimum |

storage "
L : » Repair bandwidth
Minimum repair ~ Optimal

bandwidth

repair

Fig. 1: Theoretical lower-bound trade-off curve of storage
overhead and repair bandwidth.

minimum repair bandwidth cannot be achieved at the same
time and there is a lower-bound trade-off curve between the
two [1], as plotted in Fig. 1. Although codes with the minimum
storage cannot achieve the minimum repair bandwidth, their
theoretical repair bandwidth lower bound, which is called
optimal repair bandwidth [2], can be calculated as:

(m+k—1)M/(mk) (1)
The repair bandwidth mentioned above refers particularly to a
single node failure, which is the most common case in practice.

Recently, many novel repair-bandwidth-efficient codes have
been proposed to reduce the repair bandwidth, but at the ex-
penses of (1) extra storage capacity, (2) additional computation
overhead or (3) being applicable only to some special cases.
The Simple Regenerating Codes (SRC) [3] and Local Recon-
struction Codes (LRC) [4] need additional storage resources to
store the extra parity information. The Functional Minimum
Storage Regenerating (FMSR) codes are not systematic and
only store parity information after encoding, thereby resulting
in a high computation cost [5]. The Rotate Reed-Solomon
(RRS) codes [6] also require additional computation for re-
pairing the failure of a single data node. Under the burden
of not having a general construction mechanism, the Zigzag
codes [7] are unsuitable for general storage systems. The
Product-matrix-MSR (PMSR) codes [2] are only applicable
when the code rate (the ratio of the data size and size of data
after encoding) is less than %, namely, m > k, which greatly
limits their applicability.

To address the above weaknesses in the existing codes, we
present in this paper a family of novel erasure codes, called
the Z codes. The Z codes not only can achieve the theoretical
optimal repair bandwidth under the minimum storage for a
single data node’s failure, but also have the following desirable
properties that make them suitable for distributed storage
systems. (1) The minimum storage property: the Z codes
consume exactly the same storage capacity as the RS and

IEEE
computer
® psouety

(a) RS code (b) RRS code
Fig. 2: An example of how the three codes, RS, RRS and Z, of m = 2 and k£ = 3 repair the lost data in node A (we omit the

combination coefficients of parity for the RRS code) and how their corresponding repair bandwidth consumptions decrease

with the increase in the number of blocks in each node.

CRS codes. (2) Low computation overhead: since the Z codes
are XOR codes, all coding operations can be performed by
fast bitwise XOR operations; (3) The systematic property: the
original data remain unchanged after encoding in the Z codes,
allowing accesses to data without decoding; (4) Generality:
the code rate of the Z codes can be arbitrarily high with a
flexible parameter set (i, k), meaning that the Z codes can
be constructed for arbitrary numbers of data nodes and parity
nodes. We call our codes the Z codes because they achieve
the ultimate desirable features analogous to the last letter ‘Z’
in the alphabet.

The Z codes can achieve the optimal repair bandwidth
based on the principle that dividing stored data of each node
into a greater number of blocks (denoted by r), more repair
bandwidth can be saved by selectively choose some blocks
from the remainder nodes during a repair. In Fig. 2, we
compare the repairs of a failed node A for three codes of
different rs: the (2,3)-RS code with r = 1, the (2,3)-RRS
code with » = 3 and the (2, 3)-Z code with » = 4. Repair
bandwidths of these three codes, normalized to the size of
the original data, are 1 (RS), 0.778 (RRS) and 0.667 (Z)
respectively.

Our main contributions are summarized as follows:

o We propose the Z codes, a family of erasure codes with the
optimal repair bandwidth under the minimum storage.

o« We comprehensively evaluate the performance of the Z
codes, in terms of the repair bandwidth consumption and
the coding performance.

The rest of the paper is organized as follows. Section II
introduces some basic background of all-purpose erasure codes
and some repair-bandwidth-efficient codes; We present the Z
codes in Section III, including code construction, encoding
and repairing; We analyse the repair bandwidth consumption
of Z codes in Section IV; Section V evaluates the coding
performance of the Z codes; We conclude the paper in Section
VI with remarks on the future work.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the necessary background on
the erasure-coded distributed storage systems to motivate and
facilitate the description of our Z codes.

A. Erasure Coding in Distributed Storage Systems

To simplify our discussion, we focus on a stripe over n
storage nodes as shown in Fig. 3. A stripe [8] is the minimum

A B C D A B C D E
@ atbotco| [artbotco E"! |an+bn+Co az+b2+Cz| |ao+bz+03 az+bo+01|
riid artbitel| |aatbitc EA'J lartbitai|astbstcs| |aitbstcaastbitco|
7
2 axtbrte: ‘ avt bt |ao+b0+00 |az+bﬂ,+01
; |a1+b1+t.‘1 /las+b1+00

(¢) Z code

a stripe over
AC AT TET[[ETT] storage noes
[I g T J

Zoom in
Doo Do | | Dz Cog Cio)
¢ : y 5 ; rblocks in
Do Disa Do o - each chunk
k data chunks m parity chunks

Fig. 3: A stripe of 5 chunks across 5 storage nodes, one chunk
in each node is a set of r blocks.

Jr columns Dog Coo } #blocks of
D(? ~ CO_ . chunk Cq
mr rows : : i * S = E
- Dk-l,o Cm-l,O
Dk-l r-1 Cm-l r-1

Generator matrix
Fig. 4: Encoding data blocks into parity blocks by calculating
the matrix product of the generator matrix and all data blocks.

unit for encoding, decoding and repairing, and it contains 7
chunks over n storage nodes, one chunk in each node. If the
code is systematic, n chunks can be partitioned into k£ data
chunks equally divided from the original data and m parity
chunks that store the parity information (n = k + m) of data
chunks. We let D,/C; denote the i-th data/parity chunk. Each
chunk is a set of r contiguously stored blocks of equal size.
When r = 1, a chunk contains only one block, which is the
case in the RS codes. When r > 1, a chunk is a set of r
blocks and D; ;/C; ; denotes the j-th data/parity block in the
t-th data/parity chunk, as the case in the CRS codes.

B. Encoding with the Generator Matrix

Each linear code is uniquely represented by a generator
matrix, which defines how data blocks in a stripe are encoded
into parity blocks [8]. Encoding is the process of calculating
the matrix product of the generator matrix and all data blocks,
as pictured in Fig. 4. Since there are kr data blocks and mr
parity blocks in a stripe, a generator matrix of the code has
mr rows and kr columns. Each row vector corresponds to a
parity block, which can be written as a combination of all data
blocks with entries in the row vector as coefficients. Entries of
the generator matrix are symbols over a Galois field GF(2¥),
so their values are between 0 and 2% — 1. When w = 1, the
code is an XOR code with each entry being either 0 or 1.

213

C. State-of-the-art Repair-bandwidth-efficient Codes

The Regenerating codes are a class of codes that can
theoretically achieve the theoretical lower bound trade-off
curve in Fig. 1, and they can be realized by random linear
codes [1]. For example, the FMSR codes [5] are a class
of the Regenerating codes and achieve the optimal repair
bandwidth under minimum storage for any single node failure.
However, two main drawbacks make them unsuitable for
distributed storage systems. First, the repairs of the FMSR
codes are functional, so the lost data are not really restored,
instead some alternative data are regenerated to maintain the
data redundancy, which makes repairs of the FMSR codes
undependable. Second, the FMSR codes are not systematic,
which means that the original data are altered after encoding
and a read request to the data will require a decoding operation
that involves extra data access and computation [5].

Besides the Regenerating codes, other repair-bandwidth-
efficient codes have been proposed recently, such as the LRC,
SRC and DRESS codes [9]. However, these codes trade
the valuable storage resources for limited repair bandwidth
reduction. The SRC store extra data in each storage node [3]
and the LRC [4] introduce local parity data that confines
the repair locally , resulting in additional storage resource
consumption. The DRESS codes are based on replication in
which at least two replicas are kept for each block, so that
the code rate is always less than % as the case in the PMSR
codes [2].

Two factors guarantee the optimal repair bandwidth of the Z
codes. First, all n — 1 remaining nodes participate in a repair;
Second, each of the n — 1 remaining nodes only needs to
selectively access and transfer blocks at a rate of % Therefore,
the amount of data required in each node is % and the repair
bandwidth is (n — 1)2% exactly the same as the optimal
repair bandwidth in Equation (1). In Table I, we compare the
storage overhead and the repair bandwidth for representative
repair-bandwidth-efficient codes with m = 2 and k£ = 10.
It indicates that the Z codes have the least storage overhead,
the same as the RS codes and FMSR codes, and the least
repair bandwidth, the same as the FMSR codes. Moreover,
the Z codes are systematic codes and also applicable for any
parameter set (m, k) as long as k > 1 and m > 1.

TABLE I: Storage overhead for storing 1 TB data and repair
bandwidth for reconstructing 1 TB data for codes with m = 2
and k = 10. (r and f are configuration parameters)

Storage Repair Computation .
Codes Overlfead Bagdwidth Over}ljlead Systematic
3-Replicas 3 TB 1TB Very low Yes
RS 1.2 TB 1TB Medium Yes
SRC (f =5) | 1.44 TB 0.6 TB Medium Yes
LRC (r=5) | 1.3 TB 0.5 TB Medium Yes
RRS 1.2 TB 0.75 TB High Yes
FMSR 1.2 TB 0.45 TB Very High No
Z code 1.2 TB 0.45 TB Low Yes

III. Z CODES

We introduce the construction of the Z codes inductively
and present their encoding, repairing and decoding. To facil-
itate these detailed description of the Z codes, we list some
notations of erasure codes and their definitions in Table II.

TABLE II: Notations and their definitions

[Notations | Meaning |
k/m Number of data/parity chunks in a stripe
n Number of chunks in a stripe (n = m + k)
r Number of blocks in a chunk
f Index number of the faulty data chunk
D; The -th data chunk (0 <7 < k)
C, The i-th parity chunk (0 < i < m)
D; ; The j-th data block of data chunk D; (0 <5 <7)
Cij The j-th parity block of parity chunk C; (0 < j <)
P The generator matrix of an (m, k)-Z code
Q The generator matrix of an (m, k + 1)-Z code
P;; submatrix of P (0 <i<k,0<j<m)
P; The 4-th block row of P, P; = [P 0,...,P; k_1]
M Original data size (total size of all data chunks)

A. Code construction

1) Z Codes with k = 2: The generator matrix of an (m, 2)-Z
code is an m2-row and 2m-column bit matrix, which can be
partitioned into 2m m x m blocks as follows, where r = m:

Po,o Po1 Im Im

P o P Im I:rn
P=)) =1 .))

Pr—1,0 Pm—1,1d 1«2 Iy, 1(m—DF

mx2

I, is an m x m identity matrix, and I** (i < m) is an m x
m permutation matrix representing ¢ steps’ left cyclic shift
from I,,. We call It} cell matrix, since it is the fundamental
submatrix of P. The number of different cell matrices is m.
For example, when m = 3, all cell matrices are as follows.
Iy = [698] = {?86} 2= [85?]
001 010 100
2) Z Codes with an arbitrary k: We first present a inductive
construction method of a Z code that generates the generator
matrix of an (m, k+1)-Z code from the generator matrix of an
(m, k)-Z code. Let P and @ denote generator matrices of an
(m, k)-Z code and an (m, k+1)-Z code separately, a two-step
method of constructing @@ from P is as follows:

1) Replicate the last block column of P and tile it onto the
P along the horizontal dimension. The result is denoted as
an intermediate matrix 7.

Po o Py 1 Py -1
Py Py 1 Py 1
T =
Prn'—l.ﬂ - Pm,—’l,k—l P‘m.—.l,k—l mx (k+1)

2) Construct () from T as follows, where each submatrix Q; ;
is a tensor product of T} ; and a cell matrix.
Qo0 Qo,k—1 Qo,k

Q1,0 Q1,k—1 Q1,k
Q=) .)

Qm.—l,u - Qm—.l,k—l Qm.—1,k mx (k+1)

214

Row Data chunks[T] Parity
number u o chunks
0 -
! = o
3 * | =
p u D1 =
5
6 | C1
7 | D2
Generator matrix :

(a) Encoding with generator matrix. Note that shaded boxes
in the generator matrix represent 1s and others are Os and we
follow the same plotting convention in the rest of the paper.

Dy D, D, Co Cy

Data/Parity
' Blocks

Equation
constraints

(b) Tanner graph
Fig. 5: Generator matrix encoding of (2, 3)-Z code (a) and its
tanner graph expression (b).

and{Qi,j =Tij ®Im, i=0,-+ ,m—1,j=0,- k-1
Qi =T ®@L, i=0,-+ k-1

where @ denotes the tensor product, which is also called
Kronecker product [10]. Since we have already introduced
the generator matrix’s construction of an (m,2)-Z code, we
can construct the generator matrix for any (m,k)-Z code
inductively. For an (m, k)-Z codes, the number of blocks in a
chunk (r) is a function of m and &k, r = m*~!. The generator
matrix P actually has a general expression as Equation (3),
which can be deduced from the above inductive construction.

P =P jlmxi, Pij= 0% @ L)k

. . . 3
with0<i<m, 0<j<k

where ¢,j are the block row index number and the block
column index number respectively, and the power (I:F)®7 of
matrix I:" denotes the tensor product of j copies of IiF.
Each submatrix P; ; is a tensor product of k£ — 1 cell matrices
that are all permutation matrices, so F; ; is also a permutation
matrix. Thus, the numbers of 1s in each row and each column
of generator matrix P are k and m respectively.

B. Encoding

Encoding is the procedure of generating m parity chunks by
calculating the matrix product of the generator matrix P and
data blocks, which is exactly the same as the encoding of other
matrix-based codes [8], such as RS codes and CRS codes. We
illustrate an encoding example of the (2, 3)-Z code in Fig. 5a
and its tanner-graph expression in Fig. 5b. A Tanner graph is
a bipartite graph that is commonly used for representing the
LDPC codes [11]. There are two distinctive sets of vertices in
a tanner graph, namely, vertices representing data and parity
blocks and those representing equation constraints, which are
connected by edges. An equation constraint is connected to
some blocks by edges in the graph, whose summation (XOR)
is equal to 0. Each equation constraint in a tanner graph

corresponds to a row vector in the generator matrix of the
same code. For example, that an equation constraint connects
to nodes of Dy g, D1 2, D2 3 and C o represents the equation:

Doo® D128 Da3®Cro=0

where @ denotes XOR. This equation constraint corresponds
to the 4-th row vector of the generator matrix of the (2,3)-Z
code, and the product result of the row vector and all data
blocks is the parity block C1 .

C. Repairing

We focus on the case of a single data node’s failure !, which
in the paper refers in particular to the failure of a data node that
stores the data information, excluding the failure of a parity
node. We make this trade-off in the consideration of different
reconstruction priority of a parity chunk and a data chunk.
If a parity chunk is lost, data chunks of the same stripe are
still readable, which allows the reconstruction of the parity
chunk to be done at a later time or in the background. This
is generally not allowed for a lost data chunk, because once
a data chunk is lost, a read request to the lost data causes a
degraded read in which the lost data must be reconstructed as
quickly as possible to satisfy the read request.

With the help of the tanner graph of a Z code, we introduce
a four-step method to determine .- blocks of each chunk in
a node for repairing a faulty data chunk Dj as follows. (1)
Select any one block of Dy and any one of the equation
constraints the block is connected with, then remove other
equation constraints the block is also connected with; (2)
For each removed equation constraint, remove all blocks it
is connected with, except for the data blocks from Dy; (3)
For each removed block, remove all equation constraints it is
connected with; (4) Repeat (2) and (3) until no more blocks
and equation constraints can be removed. The remaining
blocks are the blocks required to repair the faulty node, with
the remaining equation constraints as equations to solve all
data blocks of Dj.

Taking the (2, 3)-Z code as an example, we plot the (2, 3)-
Z code’s optimal repairs for the failure of each data node
in Fig. 6. For a better view, we faded the colors of the
data/parity blocks and equation constraints that would not
be used for repairing. To repair the faulty data chunk Dy
(f = 0,1,2), each remaining chunk contributes 2 blocks,
so the repair bandwidth is 8 blocks. These 8 selected blocks
and 4 lost blocks (D, Dy 1, Dy and Dy 3) are associated
with 4 equation constraints, which are only associated with
these 8 selected blocks and 4 lost blocks. Thus, Dy can be
repaired, since each lost data block is reconstructed by solving
an equation constraint with the lost block as the only unknown
argument. Compared with the RS or CRS codes that require
all blocks from each of k& = 3 chunks, the (2, 3)-Z code saves
the repair bandwidth by an amount of 3 x 4 — 8 = 4 blocks.

Because of the length limit of the paper, we omit the
theoretical proof of the optimal repair bandwidth of the Z

"'We use the phrases “failure of a data node” and “failure of a data chunk”
interchangeably, since “failure of a data node” causes a subsequent repair by
rebuilding all chunks of the failed node.

215

Data/Parity blocks for
0/0 repairing lost blocks

@) Failed data blocks

[]Equation constraints

(a) repair data chunk Dg

(b) repair data chunk D4

(c) repair data chunk D>

Fig. 6: Tanner graphs representing repairs of Dy, Dy and Dy with the optimal repair bandwidth for the (2,3)-Z code.

1.1
14

Normalized Repair Bandwidth
o O o
o1,
NN N
EEE]
oo
Babh

2 3456 7 8 910111213
Kk

Fig. 7: Repair bandwidth under a single data node failure of
the Z codes as a function of m and k, normalized to that of
the RS codes, where m =2~ 4 and k =2 ~ 14.

codes for a single data node failure and the readers can prove
it in a inductive way.

IV. ANALYTICAL EVALUATIONS

We analyze the storage efficiency and repair bandwidth of
the Z codes in this section. An (m, k)-Z code consumes the
minimum storage capacity, equal to that of a RS code with
the same parameter set (m, k). That is, for each stripe over n

M

nodes, the Z codes store a data chunk of size 7 in each node.

Under the minimum storage usage, the Z codes achieve the
optimal repair bandwidth for a single data node failure, as
given in Equation (1). Fig. 7 plots the repair bandwidth under
a single data node failure of the Z codes as a function of k and
m, normalized to that of the RS codes, which is calculated
as the ratio of the amount of data required for repairing a
data chunk to the amount of the original data in a stripe M.
Compared to the RS codes, which must retrieve the whole
chunk from any %k remaining nodes with a repair bandwidth
of M, the amount of repair bandwidth saved by the Z codes
is

M 1M (m-1)k-1)
K k (n 1)m ko mk M.

For the same m value, the Z codes with a larger £ value
requires less repair bandwidth, while the Z codes with a larger
m value requires less repair bandwidth for the same k value.
In addition, the repair of a parity chunk by the Z codes costs
the same repair bandwidth as the RS codes, with no repair
bandwidth saved, since repairing a parity chunk is exactly the
same process of re-encoding the parity chunks with all data
chunks being involved.

In Fig. 8, We plot the normalized repair bandwidth of the
Z codes and two other repair-bandwidth-efficient codes, the
FMSR codes and RRS codes. The X-axis shows the storage
overhead, defined to be the ratio of parity size and the original
data size. With the growth of k, the proportion of the parity

RRS

_n
=
NNNS
3333333
o
ERC USRI AU
¢4 WP

Normalized Repair Bandwidth

.2
1 0.9 08 0.7 06 05 0.4 0.3 0.2 0.1
Storage Overhead

Fig. 8: Normalized repair bandwidth vs. storage overhead of
the RS codes, FMSR codes, RRS codes and Z codes. From
the left to the right, k increases from m to 16 and the storage
overhead also decreases.

size in a stripe decreases, and the storage overhead decreases
as well. When m = 2, the Z codes can achieve the same
normalized repair bandwidth as the FMSR codes with the
same storage overhead, while the Z codes can save more repair
bandwidth as the m value increases.

V. EXPERIMENTAL EVALUATIONS

We measure the coding performance of Z codes in a single
machine with 3.5GHz Intel Core 17-4770K CPU.

We empirically evaluate the in-memory encoding and re-
pairing speeds of several codes, which are measured by the
amount of data encoded or rebuilt per second based on the
following equation:

Size of data to encode(A/)
Time cost
Size of data to reconstruct(4£)

Encoding Speed =

Repairing Speed =
CPAITINg Spee Time cost

The baseline codes for the Z codes are the RS, CRS and
FMSR codes. The RS and CRS codes are two most commonly
used erasure codes with first-rank coding speed. Existing
repair-bandwidth-efficient codes are constructed over the RS
or CRS codes, so the performances of the former are usually
worse than those of the latter [5]. Our encoding/repairing
speed evaluation method is exactly the same as that of the
SD codes [12] and STAIR codes [13]. For the RS and FMSR
codes, their generator matrices are generated over the Galois
field GF(2®), so encoding and repairing are over the same
field. The fast Galois Field arithmetic library GF-complete
provided by Jim Plank et al. [14] is leveraged for fast Galois
field arithmetic.

The experiments cover the situations where m = 2,3, 4,
which are the most common cases of failure tolerance. For
each code, we test all combinations of (m,k)s with the
restrictions of r < 7000 to avoid excessively large generator

216

—_

Encoding Speed(GB/s)
O=MNWPArUIONO®WOO

| RS = FuiSR - |

%ﬂﬁ

POTSECACO 1y PPTSE QY LPv86 >
k(m=2) k(m=3) k(m=4)
Fig. 9: Encoding speed of the Z codes, CRS codes, RS codes
and FMSR codes for a 1-GB file.

IN

Z - CRS
RS -~ FMSR

w

-

Repairing Speed(GB/s)
N

0
9076\0)0&1017);-,90766‘)6’ LPvwvse S
k(m=2) k(m=3) k(m=4)

Fig. 10: Repairing speed of the Z codes, CRS codes, RS codes
and FMSR codes for a 1-GB file.

matrices. We encode/repair a region of data with size up to 1
GB so that the size of a block would not be too small. Each
test is run 50 times with the average speed as the final result.
Encoding speeds are plotted in Fig. 9 where encoding speeds
of these four codes have the following relationship:

Z codes > RS codes > CRS codes > FMSR codes

Actually, The RS codes and Z codes share the same encoding
complexity on account of the fact that each parity block is a
combination of k data blocks, which can be observed from
the construction of these two codes. Hence, Z codes gain the
fastest encoding speed benefiting from the fast bit-wise XOR.
Fig. 10 plots the speed of repairing a single data chunk of
1-GB. We only measure the speed of repairing a data chunk
for the RS, CRS and Z codes, since repairing a parity chunk is
exactly the same as the process of re-encoding it. For all codes,
their repairing speeds exhibit a decreasing trend as k increases,
since more data blocks are involved in reconstructing the
same size of data, incurring more computation. Although
repair bandwidth consumptions of Z codes and RS codes are
different, they perform the similar repairing performance. Z
codes offer a speed on the order of GB/s, which suggests that
computation would no longer be the performance bottleneck
when applying the Z codes in a practical storage system.

VI. CONCLUSIONS

We propose a family repair-bandwidth-efficient erasure
codes, called the Z codes for distributed storage systems.
The Z codes not only achieve the optimal repair bandwidth
for repairing a single data node’s failure, but also attain the
minimum storage property as the RS and CRS codes. The Z
codes have many other beneficial properties that make them
suitable for distributed storage systems. The Z codes have
comparable encoding and repairing performances with the

RS codes, and significantly outperform the CRS codes and
FMSR codes. Reducing the number of blocks in a chunk
(r) and finding new constructions to enable the Z codes to
tolerate more concurrent failures are the directions of our
future research on the Z codes.

ACKNOWLEDGEMENT

The authors would like to thank Jian Li for helping to
implement the Z codes in a practical storage system. This work
is supported in part by National Basic Research Program of
China (973 Program) (2011CB302301); National Natural Sci-
ence Foundation of China (61025008, 61232004, 61173043);
National High Technology Research and Development Pro-
gram of China (863 Program) (2013AA013203); National
Key Technology R&D Program of China (2011BAH04B02);
The Fundamental Research Funds for the Central Universities
(2013TS043); Natural Science Foundation of Hubei Province
(2015CFB192).

REFERENCES

[1]1 A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” Information
Theory, IEEE Transactions on, vol. 56, no. 9, pp. 4539-4551, 2010.

[2] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran,
“Having your cake and eating it too: Jointly optimal erasure codes for
i/o, storage, and network-bandwidth,” in Proc. of USENIX FAST, 2015,
pp. 81-94.

[3] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,
“Simple regenerating codes: Network coding for cloud storage,” in
INFOCOM, 2012 Proceedings IEEE. 1EEE, 2012, pp. 2801-2805.

[4] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in USENIX
ATC, 2012.

[5] H. C. Chen, Y. Hu, P. P. Lee, and Y. Tang, “Nccloud: a network-
coding-based storage system in a cloud-of-clouds,” Computers, IEEE
Transactions on, vol. 63, no. 1, pp. 31-44, 2014.

[6] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: Minimizing i/o for recovery and
degraded reads,” in Proc. of USENIX FAST, 2012.

[7] 1. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: Mds array codes with
optimal rebuilding,” Information Theory, IEEE Transactions on, vol. 59,
no. 3, pp. 1597-1616, 2013.

[8] J. S. Plank, “T1: erasure codes for storage applications,” in Proc. of
USENIX FAST, 2005, pp. 1-74.

[9] S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran, “Dress

codes for the storage cloud: Simple randomized constructions,” in Infor-

mation Theory Proceedings (ISIT), 2011 IEEE International Symposium

on. IEEE, 2011, pp. 2338-2342.

C. F. Van Loan, “The ubiquitous kronecker product,” Journal of com-

putational and applied mathematics, vol. 123, no. 1, pp. 85-100, 2000.

R. Tanner, “A recursive approach to low complexity codes,” Information

Theory, IEEE Transactions on, vol. 27, no. 5, pp. 533-547, Sep 1981.

[12] J. S. Plank, M. Blaum, and J. L. Hafner, “Sd codes: Erasure codes

designed for how storage systems really fail,” in Proc. of USENIX FAST,

2013.

M. Li and P. P. Lee, “Stair codes: a general family of erasure codes

for tolerating device and sector failures in practical storage systems.” in

FAST, 2014, pp. 147-162.

[14] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast galois

field arithmetic using intel simd instructions,” in FAST-2013: 11th Usenix
Conference on File and Storage Technologies, San Jose, 2013.

[10]

[11]

[13]

217

