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Abstract
Delta compression, a promising data reduction approach
capable of finding the small differences (i.e., delta)
among very similar files and chunks, is widely used for
optimizing replicate synchronization, backup/archival
storage, cache compression, etc. However, delta com-
pression is costly because of its time-consuming word-
matching operations for delta calculation. Our in-
depth examination suggests that there exists strong word-
content locality for delta compression, which means that
contiguous duplicate words appear in approximately the
same order in their similar versions. This observation
motivates us to propose Edelta, a fast delta compression
approach based on a word-enlarging process that exploits
word-content locality. Specifically, Edelta will first ten-
tatively find a matched (duplicate) word, and then greed-
ily stretch the matched word boundary to find a likely
much longer (enlarged) duplicate word. Hence, Edelta
effectively reduces a potentially large number of the tra-
ditional time-consuming word-matching operations to a
single word-enlarging operation, which significantly ac-
celerates the delta compression process. Our evaluation
based on two case studies shows that Edelta achieves an
encoding speedup of 3X∼10X over the state-of-the-art
Ddelta, Xdelta, and Zdelta approaches without notice-
ably sacrificing the compression ratio.

1 Introduction
Delta compression is gaining increasing attention as a
promising technology that effectively eliminates redun-
dancy among the non-duplicate but very similar data
chunks and files in storage systems. Most recently, Dif-
ference Engine [2] combines delta compression, dedu-
plication, and LZ compression to reduce memory us-
age in VM environments, where delta compression de-
livers about 2X more memory savings than VMware
ESX server’s deduplication-only approach. Shilane et
al. [4] implement delta compression on top of dedu-
plication to further eliminate redundancy among simi-
lar data to accelerate the WAN replication of backup
datasets, which obtains an additional compression factor
of 2X-3X. Dropbox [1] implements delta compression to
reduce the bandwidth requirement of uploading the up-
dated files by calculating the small differences between
two revisions and sending only the delta updates.
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Although delta compression has been applied in
many areas for space saving, challenges facing high-
performance delta compression remain. One of the main
challenges is its time-consuming word-matching process
for delta calculation, which tries to first find the possible
duplicate words and then the delta between two similar
chunks or files. As suggested by the state-of-the-art ap-
proaches [5, 9], delta compression only offers speeds of
about 25 MB/s (Zdelta), 60 MB/s (Xdelta), 150 MB/s
(Ddelta), a worsening problem in face of the steadily in-
creasing storage bandwidth and speed, for example, an
IOPS of about 100,000 and sequential I/O speed of about
500MB/s offered by Samsung SSD 850 PRO100,000.

Our examination of delta compression suggests that
contiguous duplicate words appear in approximately the
same order among the similar chunks and files. We call
this phenomenon the word-content locality, which is sim-
ilar to the chunk data locality observed in many dedupli-
cation based storage systems [4]. This observation moti-
vates us to propose Edelta, a fast delta compression ap-
proach based on a work-enlarging process that exploits
the word-content locality to reduce the conventional
time-consuming word-matching operations. Specifi-
cally, if Edelta finds a matched word between two sim-
ilar chunks (or files) A and B, it directly uses a byte-
wise comparison in the remaining regions immediately
after the matched word in chunks A and B to find the
potentially much longer (i.e., enlarged) duplicate words.
This word-enlarging method helps avoid most of the tra-
ditional duplicate-checking operations, such as hashing,
indexing, etc., and thus significantly speeding up the
delta compression process.

The Edelta research makes the following three key
contributions: (1) The observation of the word-content
locality existing in delta compression of the similar
chunks and files, which suggests that the size of an ac-
tual duplicate segment is usually much larger than that
of a word conventionally used for duplicate checking in
delta compression. (2) A novel word-enlarging based
delta compression approach, Edelta, to accelerate the
duplicate-word checking process by directly enlarging
each matched word into a much longer one and thus
avoiding the word-matching operations in the enlarged
regions. (3) Experimental results on two case studies
demonstrating Edelta’s very high encoding speed that is
3X-10X faster than the state-of-the-art approaches with-
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Figure 1: Illustration of delta encoding.

out significantly sacrificing the compression ratio.

2 Background
Delta compression is a special dictionary compression
technique that targets files or chunks considered very
similar. It is widely used in the areas of replicate syn-
chronization, backup/archival storage, cache compres-
sion, etc., to save storage space or network bandwidth.

Figure 1 shows a detailed example of the Ddelta com-
pression [9] on two similar chunks, i.e., input (new)
chunk A and its similar (base) chunk B. Ddelta first di-
vides the two chunks into several words (e.g., with an av-
erage size of 32 Bytes) by content-defined chunking, and
then finds the duplicate words by hashing (fingerprint-
ing) and indexing. Specifically, Ddelta uses the words in
the base chunk B as “dictionary” and indexes the words
of chunk A in the “dictionary” for duplicate checking.

For the detected duplicate words, which are copied
from base chunk B, Ddelta will encode it into a “Copy”
message with the offset and size information. For the
new words, which are inserted from input chunk A,
Ddelta will directly store it as an “Insert” message. Note
that Ddelta will merge the contiguous duplicate or new
words into a bigger word for better decoding perfor-
mance. After that, Ddelta obtains the encoded delta
chunk ∆(A,B) that is much smaller than the original in-
put chunk A for storage space saving. With delta chunk
∆(A,B) and base chunk B, Ddelta can easily restore
chunk A according to the “Copy” and “Insert” messages.

Shilane et al. [4, 5] and Xia et al. [8, 9] conclude that
implementing delta compression on top of deduplication
to further eliminate redundancy among non-duplicate but
very similar data in backup systems can obtain an ad-
ditional compression factor of 2X-3X. Delta compres-
sion increases space savings but comes at the expense of
significant computation and indexing overheads, as re-
vealed by many recent studies [4, 5, 9]. There are two
types of candidates for delta compression, namely, the
already known similar data (e.g., updated files [3]) and
the resemblance-detected data (e.g., post-deduplication
data reduction [4, 9]). The delta-compression overhead
for the former type is mainly from delta encoding, while
that for the latter is from both resemblance detection and
delta encoding. Here resemblance detection refers to
the two-stage process of hashing and indexing for fea-
tures and super-features that measure similarity, which

Table 1: Average lengths (in Bytes) of the grouped
“Copy”/“Insert” messages after Ddelta compression.

Dataset LX SC GC EC GD GL PH PT
Copy 10K 5K 3k 18K 10K 6K 4K 15K
Insert 123 340 133 124 173 136 101 149

has been well explored in many studies [5, 8]. In this
paper, we focus on designing a very fast delta encoding
approach, i.e., accelerating the duplicate-checking pro-
cess of known delta-compression candidates.

3 Observation and Motivation
In this section, we examine the duplicate-word check-
ing process in the state-of-the-art Ddelta compression ap-
proach [9] with several updated tarred files, a common
case for delta compression. As shown in previous studies
[3, 9], the larger the size of the word used for duplicate-
checking is, the lower the delta compression ratio but the
faster the compressing speed are. Here we use the 64-
Byte word for studying delta calculation.

Table 1 shows the average lengths of the “Copy” and
“Insert” messages obtained by Ddelta compression for
eight updated tarred files. The updated files listed in the
first row are the neighboring versions selected from eight
known open-source projects, i.e., Linux, Scilab, GCC,
Emacs, GDB, Glib, PHP, and Python, respectively. Most
of these datasets are also used for evaluating the Ddelta
and Zdelta compression approaches [9, 7].

The results in Table 1 suggest that the average length
of “Insert” is about 128 Bytes while that of “Copy” is
about several and even tens of Kilobytes, which pro-
vides two important findings. Finding 1: Modification
(i.e., updating) always occurs at relatively small and far
apart regions. Finding 2: A significant portion of all
regions remain common (i.e., duplicate) after updating
files, meaning that many contiguous duplicate words ap-
pear in approximately the same order among the similar
chunks and files. We call this phenomenon word-content
locality, which is similar to the observed chunk-data lo-
cality in deduplication-based backup systems [4].

Figure 2 plots the CDFs of the “Copy” and “Insert”
lengths in Ddelta to help better understand their length
distribution. The results suggest that more than 50%
and 80% of “Copy” messages of the updated GCC and
Linux files are larger than 1KB, and about 99% of “In-
sert” messages of both GCC and Linux are smaller than
1KB, which are consistent with the above two Findings.

Meanwhile, we measure the breakdown of Ddelta
compression’s time overhead and find more than 96%
of the time overhead can be attributed to content-defined
chunking (about 45%), hashing (about 16%), and index-
ing (about 35%). These observations lead us to firmly
believe that the full exploitation of the above-observed
word-content locality can help avoid the time-consuming
chunking, hashing, and indexing operations by enlarging
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Figure 2: CDFs of the “Copy” and “Insert” lengths of
Ddelta compressing updated tarred files.

the duplicate word to one much longer than the conven-
tional word used for matching. The design and imple-
mentation of this word-enlarging based delta compres-
sion approach, called Edelta, will be detailed in the next
section and its effectiveness and efficiency will be further
demonstrated in Section 5.

It is worth noting that other studies such as network
traffic redundancy elimination [6] and Ddelta compres-
sion [9], also observe and exploit the fine grained redun-
dancy locality. But their approaches aim to detect more
redundancy while Edelta exploits word-content locality
to reduce the time overhead for redundancy detection.

4 Edelta Design and Implementation
Edelta is a general approach to delta compression. Cur-
rently we implement Edelta on top of our previous work
Ddelta [9]. The idea of Edelta is simple and easy to fol-
low as illustrated in Figure 3. More concretely, Edelta
works as follows. It (1) tentatively detects a duplicate
word between the input chunk A and its base chunk B
by Ddelta’s scheme, and then (2) uses a byte-wise com-
parison in the remaining regions of the two chunks im-
mediately neighboring the duplicate words to enlarge the
duplicate words until the comparison fails. Thus the en-
larged duplicate regions (i.e., the shaded areas in chunks
A and B) can be quickly regarded as “Copy” with-
out needing the conventional time-consuming duplicate-
checking operations involving chunking, hashing, index-
ing, etc., thereby significantly speeding up the delta com-
pression process. This process repeats when Edelta finds
another pair of duplicate words between the two chunks,
until the ends of the chunks are reached.

Note that we maximize the byte-wise comparing speed
by performing one 64-bit XOR operation for each pair
of 8-byte strings at a time as suggested in Ddelta [9],
which, at about several GB/s in our observation, is ex-
tremely fast and comparable to the main memory band-
width. Therefore, comparing with the hashing and index-
ing overheads for duplicate-word checking in Ddelta and
Xdelta, the time overhead for the in-memory byte-wise
comparison is negligible.

Depending on the trade-off between encoding speed
and compression ratio, there are two schemes for Edelta
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Figure 3: Accelerating delta compression via the word-
enlarging process.
to accelerate delta compression.

• Scheme I: Skipping the conventional duplicate-
checking operations only on the enlarged regions of
the input chunk A and still calculating the words
in the enlarged regions of the base chunk B to put
them into the “dictionary” for delta calculation.

• Scheme II: Skipping the duplicate-checking opera-
tions on the enlarged regions of both the input chunk
A and base chunk B, meaning that no chunking,
hashing, and indexing will be performed on these
regions and thus the delta calculation for duplicate-
word checking is minimized.

Compression ratio and speed are two key metrics for
assessing delta compression performance. For the com-
pression ratio, Scheme I should be nearly the same as the
traditional approach while Scheme II can be very differ-
ent since the dictionary is much smaller due to the word-
enlarging scheme on the base chunk B, which may result
in failure to detect some duplicate words. For the com-
pression speed, Scheme II has the highest speed since
it maximally reduces the duplicate-checking operations
while Scheme I only reduces these operations on the in-
put chunk A. In general, the two schemes tradeoff be-
tween the compression ratio and speed by varying word-
enlarging regions, which will be evaluated in Section 5.

5 Performance Evaluation
5.1 Experimental Setup
To evaluate Edelta, we implement an Edelta prototype on
the Ubuntu 12.04.2 operating system running on a quad-
core Intel i7 processor at 2.8GHz, with a 16GB RAM,
two 1TB 7200rpm hard disks, and a 120GB SSD of
Kingston SVP200S37A120G. Three state-of-the-art ap-
proaches, Ddelta [9], Xdelta [3], and Zdelta [7], are used
as the baselines for evaluating Edelta.

Two important metrics are used for this evaluation,
namely, Compression ratio (CR) measured in terms of
percentage of data reduced by a given delta compression
scheme and encoding speed recorded by the response
time of delta calculation in memory by a given evaluated
delta compression scheme.

5.2 Case Study I: Delta Compressing the
Updated Tarred Files

This subsection evaluates the Edelta performance on the
eight datasets of updated similar tarred files as introduced
in Section 3. And we implement both Edelta’s Scheme
I, which word-enlarges only the input data file/chunk
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Table 2: Compression ratio of the four delta compression
approaches on the eight datasets of updated tarred files.

Dataset Xdelta Ddelta Edelta-I Edelta-II
Linux 99.81% 97.35% 98.14% 98.72%
SciLab 97.08% 93.04% 94.71% 95.05%
GCC 99.69% 96.10% 96.76% 97.04%

Emacs 99.89% 98.51% 99.22% 99.32%
GDB 99.87% 96.14% 98.61% 98.91%
GLib 99.74% 96.85% 97.68% 98.08%
PHD 99.62% 95.41% 96.82% 97.75%

Python 99.85% 97.69% 98.82% 99.03%

and is denoted Edelta-I, and Scheme II, which word-
enlarges both the input and base files/chunks and is de-
noted Edelta-II, for evaluation (see Section 4). Note that
we configure both of the Ddelta, Edelta-I, and Edelta-II,
with an average word (string) size of 64B for Gear based
content-defined chunking [9].

Table 2 shows the compression ratio results among the
four approaches. Comparing with Xdelta, Edelta has a
slightly lower compression ratio. This is due to Edelta’s
use of Ddelta’s content-defined chunking schemes [9]
and thus has a smaller dictionary for duplicate-word
checking. But Edelta-II achieves a higher compression
ratio than Ddelta and Edelta-I, a counterintuitive out-
come. Our in-depth study finds that this is because
Edelta’s word-enlarging scheme helps find the right
duplicate-word candidates. For example, assuming two
similar files Fb and Fi with contents of “ABEFCDABHI”
(base) and “ABXYCDABHZ” (input) respectively, there
are two occurrences for the word “AB” in base file Fb.
Ddelta will match the two “AB” occurrences in input file
Fi with the first occurrence of “AB” in file Fb, which
we call a “dirty match”, thus missing the opportunity
to detect more possible redundant contents (e.g., the ‘H’
neighboring the second occurrence of “AB” in Fi ). On
the other hand, Edelta can avoid this dirty match by sim-
ply enlarging the word “CD” into a longer one “CD-
ABH”, leading to the detection of more duplicates.

Figure 3 shows that Edelta significantly outperforms
the Xdelta and Ddelta approaches in encoding speed
on the eight workloads. Note that Zdelta is not in-
cluded in this comparison because of its poor support
for delta compression of large files. First, Edelta-I
nearly doubles the delta encoding speed of Ddelta by
reducing the duplicate-checking operations on the in-
put files via word-enlarging. Second, Edelta-II acceler-
ates Edelta-I by a factor of 2X-6X by further reducing
the duplicate-word checking operations on the base files.
The speedup of Edelta-II over Edelta-I generally reflects
the distribution of the “Copy” length as studied in Ta-
ble 1. Note that, while the encoding speeds of Edelta-
I, Ddelta, and Xdelta remain relatively stable across all
eight datasets, Edelta-II’s encoding speed varies notice-
ably across these datasets. This is because, as discussed
earlier, Edelta-II’s performance is sensitive to how the
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Figure 4: Delta encoding speeds of the four approaches.

length of “Copy”/“Insert” is distributed and such distri-
bution tends to vary noticeably across different datasets
as revealed in Table 1 and Figure 2.

Generally, the results shown in Table 2 and Figure 4
demonstrate the effectiveness and efficiency of Edelta’s
word-enlarging idea, that is, enlarging the duplicate-
word into a longer one can significantly reduce the time
overhead for duplicate-word checking while maintaining
a comparable level of compression ratio.

5.3 Case Study II: Delta Compressing the
Resemblance-Detected Chunks

Three typical backup/archival datasets, Linux, CentOS,
and RDB, are used for evaluating delta compression in
this subsection. The Linux dataset is collected from 258
Linux versions with a total size of about 104 GB; Cen-
tOS is collected from the archive of VM images of 23
CentOS release versions with a total size of about 43 GB;
RDB is collected from 200 backups of the Redis database
with a total size of about 1080 GB. We first dedupli-
cate the three datasets with content-defined chunking as-
suming an average chunk size of 8KB and then imple-
ment delta compression (including resemblance detec-
tion, reading base chunks, delta encoding [5, 9]), GZIP
compression (short for GZ), or a combination of them
for post-deduplication data reduction. The deduplication
factors of the three datasets are 44.7, 2.0, and 22.4 re-
spectively. Note that in this case study, we configure
Edelta and Ddelta with 32B-word for chunking to bal-
ance the compression ratio and speed, and Edelta denotes
the Edelta-II Scheme.

Figure 5(a) shows the delta encoding speeds of for
delta compression approaches on the three deduplicated
datasets. As in Case Study I, Edelta achieves the highest
delta encoding speed among the four approaches. The
speedup of Edelta over Ddelta in this case study is not
as high as that shown in Case Study I. This is because
these datasets have much lower compression ratio since
they have already been deduplicated before delta com-
pression, which means that some word-content locality
exploited by Edelta may be missing or weakened in this
case. However, Edelta still offers a speed of 400+ MB/s
for delta encoding, which is about 2.5X-5X faster than
the Ddelta and Xdelta approaches.
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Figure 5: Post-deduplication data reduction performance on the Linux, CentOS, and RDB datasets.
Figure 5(b) shows the compression ratio among GZIP-

only, delta-compression-only approaches, and combina-
tions of GZIP compression and delta compression ap-
proaches. In this case study, Edelta has the lowest com-
pression ratio, because the dictionary for duplicate-word
checking is reduced by its word-enlarging process while
many duplicate words reside in the enlarged regions.
For the GZIP-combined Edelta compression approach,
it achieves similar compression ratio to the other three
GZIP-combined approaches. Thus it is reasonable to ar-
gue that the GZIP compression, when combined with
Edelta, can well compensate for the latter’s loss in the
compression ratio, if higher compression ratio is required
for the data reduction systems.

Figure 5(c) further examines the data reduction system
throughput under the nine solutions. Generally speaking,
Edelta achieves the highest throughput of compressing
the three deduplicated datasets with or without combin-
ing the GZIP compression. Although we compute fewer
features to reduce computation overhead for resemblance
detection and use SSD to store compressed data to reduce
I/O latency due to frequent reading of base chunks (for
delta encoding), the system throughput of Edelta is still
much lower than its delta encoding speed. These results
suggest that the system bottleneck has been shifted from
delta encoding to another part of the critical path, e.g.,
resemblance detection, which will be considered as our
future work in this project.

In this case study, Edelta still achieves superior per-
formance in both delta encoding and data reduction
throughput to the baseline schemes, but at a cost of
slightly lower compression ratio, which can be compen-
sated for by combining with the GZIP compression as
shown in Figure 5. On the other hand, Edelta can ef-
fectively improve the GZIP compression performance in
both compression ratio and throughput if there are suf-
ficient resembling delta compression candidates in the
datasets (e.g., the datasets Linux and RDB).

6 Conclusion and Future Work
In this paper, we present the motivation and design of
Edelta, a fast delta compression scheme based on the
observation of word-content locality during the delta
calculation. Edelta effectively leverages the idea of

word-enlarging to reduce the traditional time-consuming
duplicate-word checking operations, which significantly
speeds up the delta compression process.

In its present form, Edelta is an unoptimized proto-
type for just demonstrating the word-enlarging scheme.
In our future study, we plan to conduct more sensitivity
studies on Edelta with more workloads, improve its com-
pressibility, and increase data reduction system through-
put if resemblance detection and I/Os for reading base
chunks/files are required. On the other hand, we would
like to study Edelta in other application scenarios, such
as in-cache compression, WAN optimization, etc.
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