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Abstract
It is desirable but challenging to simultaneously support la-
tency SLO at a pre-defined percentile, i.e., the Xth per-
centile latency SLO, and throughput SLO for consolidated
VM storage. Ensuring the Xth percentile latency contributes
to accurately differentiating service levels in the metric of
the application-level latency SLO compliance, especially for
the application built on multiple VMs. However, the Xth

percentile latency SLO and throughput SLO enforcement are
the opposite sides of the same coin due to the conflicting re-
quirements for the level of IO concurrency. To address this
challenge, this paper proposes PSLO, a framework support-
ing the Xth percentile latency and throughput SLOs under
consolidated VM environment by precisely coordinating the
level of IO concurrency and arrival rate for each VM issue
queue. It is noted that PSLO can take full advantage of the
available IO capacity allowed by SLO constraints to improve
throughput or reduce latency with the best effort. We design
and implement a PSLO prototype in the real VM consolida-
tion environment created by Xen. Our extensive trace-driven
prototype evaluation shows that our system is able to opti-
mize the Xth percentile latency and throughput for consoli-
dated VMs under SLO constraints.

1. Introduction
Cloud service (e.g., Amazon EC2 [1]) has been widely
adopted as public utilities for users who pay for comput-
ing and storage capacity by renting virtual machines (VMs)
on an as-needed basis. Many organizations or enterprises de-
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ploy enterprise-class applications in tens, hundreds or even
thousands of VMs. Thus, the required latency SLO (service
level objective) compliance ratio of a user application de-
ployed on multiple VMs depends on the latency at a specific
percentile, i.e., the Xth percentile latency, for these VMs.

For example, consider a user application built with 100
disjoint components that are each deployed in a different
VM and a request of this application must collect responses
from these 100 components in parallel. To guarantee a 90%
request latency SLO compliance for this user application,
we must ensure that the 99.9th percentile latency SLO be
met for all these 100 VMs (i.e., 99.9%100 > 90%). Clearly,
the higher the percentile of the latency SLO is guaranteed for
each VM, the higher the latency SLO compliance can be ob-
tained for the application deployed on a specific number of
VMs. Thus, increasing attention has been drawn to the 99th,
99.9th or even 99.99th percentile latency requirement in re-
cent years [6, 15, 19, 31, 32], which can potentially support
a high request latency SLO compliance for the application
deployed in a large-scale VM cluster.

However, there is a conflict between the Xth percentile
latency SLO and throughput SLO enforcements for VMs
under shared storage. The attainment of the former usual-
ly and necessarily trades substantial IO concurrency for re-
duced IO waiting time while the latter requires an adequate-
ly high level of IO concurrency to meet the throughput SLO.
This means that seeking a latency SLO in a higher percentile
than required often leads to throughput SLO violation, and
vice versa. Thus, it is desirable to enforce the Xth percentile
latency or throughput SLO for each individual VM in a pre-
cise fashion. That is, the latency (throughput) SLO should
be guaranteed for the user application, conditioned on a pre-
specified throughput (latency) SLO compliance.

Unfortunately, it is a great challenge to enforce the Xth

percentile latency for consolidated VMs in a precise fashion.
First, the Xth percentile latency is susceptible to many fac-
tors including contention for shared resources (e.g., network
bandwidth and storage, etc.) [29, 34], queuing [22, 26] and
highly variable workload IO behavior [34]. These factors can



exacerbate the variability of the VM issue queue 1 length
and thus lead to an unpredictable IO waiting time. Second,
the Xth percentile latency is a type of complicated statis-
tical metric for multiple consolidated VMs that may each
define latency SLOs at different percentiles, resulting in the
difficulties of measurement and forecast. And lastly but most
importantly, there is a lack of an effective control mechanism
to precisely coordinate the Xth percentile latency.

Another key issue is how to enforce the fairness of
throughput allocation among consolidated VMs under the
Xth percentile latency SLO constraints. Different VMs of-
ten have different latency SLO violations even with the same
SLO target, largely due to their distinctive IO characteristics
(i.e., request size, IO rate, the degree of sequentiality, read
& write ratio, etc.). For example, a VM VMA running a se-
quential workload can very likely have more opportunities to
increase the level of IO concurrency to enhance its through-
put than a VM VMB running a random workload if VMA

and VMB have the same Xth percentile latency SLO, since
sequential IOs usually have lower latency than random IOs.
This difference must not be neglected particularly if VMA

encroaches on the reserved resources that should have been
allocated to VMB , which will very likely result in VMB’s
throughput SLO violation.

Existing approaches mainly focus on the reduction of the
tail latency at a specific percentile (e.g., 99.9th) by making
use of duplicate requests [6, 27, 31], adaptive replica selec-
tion [26] or the combination of rate limiting and priority-
based resource allocation [34]. However, these solutions do
not address the issue of simultaneous SLO enforcement of
the Xth percentile latency and throughput, and the afore-
mentioned issue of unfair throughput sharing under the Xth

percentile latency SLO constraints. As a result, they do not
meet the storage QoS requirements for both the throughput
target and latency SLO compliance for the application work-
load that depends on the parallel IO processing of multiple
VMs under shared storage infrastructure.

In this paper, we propose PSLO, a framework that aims
to optimize storage performance for consolidated VMs un-
der the two-dimensional SLO constraints of the Xth per-
centile latency and throughput SLO targets for each VM.
These SLO targets are determined by the application-level
SLOs, i.e., latency SLO compliance and throughput SLO.
The optimized storage performance for consolidated VMs
leads to an improved performance of the applications de-
ployed on these VMs. A key idea of PSLO is to precisely
enforce the Xth percentile latency SLO by adaptively con-
figuring the level of IO concurrency based on tracking the
level of latency SLO violations for each and every individ-
ual VM. PSLO adopts integral control from the classic con-
trol theory [8, 14] to accurately enforce throughput SLOs for
consolidated VMs. The integral control is able to guarantee

1 A VM issue queue represents a set/array of pending IOs maintained by
each individual VM at the device.

the actual throughput converging to the SLO target. To our
best knowledge, PSLO is the first solution to enforce the VM-
level Xth percentile latency SLO in the presence of another
important SLO, the throughput SLO, especially for a typical
application deployed across multiple VMs.

We implement a prototype of PSLO in the Xen hypervisor
[3] and evaluate our framework with real production [2, 18]
and synthetic workload traces under a consolidated VM en-
vironment. Our extensive trace-driven evaluation shows that
PSLO can support the Xth percentile latency and through-
put SLOs for consolidated VMs and take full advantage of
spare resources to optimize these two measures of storage
performance for each VM under SLO constraints.

The rest of the paper is organized as follows. Section 2
first motivates our study of storage performance optimiza-
tion under the SLO constraints, and then reviews the related
works. The architecture and design of PSLO are described
in Section 3. Section 4 presents the implementation issues.
Detailed performance evaluation of PSLO on a real system
is presented in Section 5. We conclude the paper with an
overview for future work in Section 6.

2. Motivation and Related Work
We first investigate the impact of IO concurrency on the Xth

percentile latency and throughput to motivate our study. We
then present the related works of SLO-based storage sharing
and review the limitations of the existing QoS techniques for
the consolidated VM environment.

2.1 Motivation
A modern application deployed in a cloud environment can
be built from multiple disjoint components, of which each
can be deployed in a VM under shared storage infrastruc-
ture [15]. Thus, the variability in the latency distribution of
the application can be magnified at the VM level since the
application request latency is affected by the responsiveness
of each corresponding VMs. The combination of the Xth

percentile latency 2 of each VM and the number of VMs
on which an application is deployed decides the application-
level latency QoS.

To intuitively illustrate the impact of IO concurrency on
the Xth percentile latency and throughput and thus moti-
vate our study, we let four consolidated VMs each run one
of the four different production trace workloads (i.e., TPC-
E, MSN, Exchange and WebSearch) [2, 18] respectively and
access their respective virtual disks deployed on a 16-disk
RAID-0 disk array, with their IO capacity being limited be-
low 150 IOPS. We continuously increase the level of IO con-
currency for each VM by increasing the upper bound of the
number of read or write requests in each VM issue queue
(denoted by D) from 1 to 4. For the VM running the TPC-E

2 The Xth percentile latency refers to the request latency seen by a VM
at the Xth percentile, which is resulted from the underlying network and
storage IO delay.
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Figure 1: The 99.9th percentile latency and throughput of the
VM running the TPC-E workload as a function of the upper
bound D of the number of read or write requests in the VM
issue queue (i.e., the level of IO concurrency) (D = 1, 2, 3, 4).

workload, as shown in Figure 1, the curve depicting the
99.9th percentile latency and throughput as a function of D
(denoted by the performance & concurrency curve) actually
defines the feasible region (i.e., the shaded region above the
curve) in which the simultaneous enforcement of the 99.9th

percentile latency and throughput SLO targets (i.e., the two-
dimensional SLO) is feasible. If the 99.9th percentile latency
and throughput SLO targets (e.g., 150 ms and 125 IOPS) can
be simultaneously enforced accurately, they are represented
by the two perpendicular lines of the red and blue colors re-
spectively. Thus, we obtain two optimization settings (i.e.,
A and B). Setting A is located at the cross point between the
performance & concurrency curve and the blue line, which
represents the attainable minimum 99.9th percentile laten-
cy under the throughput SLO constraint. Similarly, setting
B is located at the cross point between the performance &
concurrency curve and the red line, signifying the achiev-
able maximum throughput under the 99.9th percentile laten-
cy SLO constraint. The significance of this observation is
that it is feasible to optimize the Xth percentile latency or
throughput under their SLO constraints for each VM only if
the red line and blue line cross each other within the feasible
region. Otherwise, the Xth percentile latency and through-
put SLOs cannot be met simultaneously. More importantly,
the performance & concurrency curve in Figure 1 indicates
the feasibility of optimizing the trade-off between the Xth

percentile latency and throughput by controlling the level of
IO concurrency.

2.2 Related Work
In what follows we introduce the existing approaches to
throughput-based storage sharing, which followed by an ex-
amination of the existing schemes supporting latency SLO
under shared storage infrastructure.

Throughput-based Storage Sharing: The existing ap-
proaches of throughput-based storage sharing can be broad-
ly divided into three categories. The first is the class of ap-
proaches that support proportional sharing, such as PARDA
[11], Argon [28], Aqua [30], Fahrrad [23] and SFQ(D) [16].
Proportional-sharing based solutions commonly use tech-

niques such as request queue length control or disk time u-
tilization reservation to enforce proportional-share fairness
among co-scheduled workloads. The second class of solu-
tions aim for IO isolation and include SARC [33], Priori-
tyMeister [34] and Triage [17], etc. To provide IO isolation,
these solutions adopt IO throttling techniques, such as Leaky
bucket [5], deficient round robin (DRR) [24] and start-time
fair queuing (SFQ) [9], etc., to limit throughput among con-
currently running workloads. The third is the class of algo-
rithms supporting max-min fairness of throughput sharing
among clients, such as mClock [12], SRP [13] and Pisces
[25]. Our work uses a feedback control solution combining
the IO throttling technique and integral control [8, 14] to pre-
cisely enforce throughput SLOs for consolidated VMs with
near-zero deviation.

Latency SLO Support: Two main categories of solutions
comprise the state-of-the-art schemes supporting latency
SLO, namely, (1) schemes providing average latency SLO
and (2) schemes focusing on reducing tail latency at a spe-
cific percentile (e.g., at the 99.9th percentile).

The first is the class of approaches that support average
latency SLO for consolidated workloads, such as Façade
[21], Triage [17] and pClock [10]. In contrast, PSLO is
designed to accurately bound the Xth percentile latency for
each VM according to its SLO target, which enables the
latency SLO compliance of a user application built on one or
more VMs to be accurately guaranteed. The second category
focusing on tail latency can also be divided into three groups
according to different implementations and techniques.

The first is the group of approaches that make use of
multiple replicas servicing the duplicated requests, including
the studies of [6, 27], D-SPTF [20], Kwiken [15], CosTLO
[31] and C3 [26]. An extensive verification is made in the
study reported in [27] to obtain a specific server load thresh-
old under which the redundancy can be used effectively to
reduce the mean and tail latencies. The study of [6] com-
bines the techniques of request reissues, load balancing of
micro-partitions and selective replication to reduce tail la-
tency. D-SPTF [20] uses the technique of request reissue to
reduce tail latency by dynamically selecting the server with
a high speed interconnect. Kwiken [15] focuses on tail la-
tency of a large-scale service built on multiple disjoint com-
ponents. It formulates the problem of tail latency reduction
over a general processing DAG (directed acyclic graph) as a
multi-layer optimization on the number of reissues over indi-
vidual stages. CosTLO [31] addresses the trade-off between
the control target of the request latency variability and the
acceptable cost of redundant requests. And C3 [26] improves
the mean and median latency and the 99.9th percentile tail
latency by the techniques of adaptive replica selection, dis-
tributed rate control and backpressure.

The second group refers to solutions such as Priori-
tyMeister [34] and Cake [29] that enforce tail latency by
multi-resource scheduling. PriorityMeister [34] adopts the



techniques of IO throttling and priority-based IO schedul-
ing among consolidated workloads across multiple stages
(i.e., a network transmission and a shared storage stage)
to enforce tail latency for bursty workloads. Cake [29] can
coordinate multi-resource allocation (CPU and storage re-
sources) across a multi-layer software stack consisting of
HBase and HDFS to enforce the 99th percentile tail latency.

The third group of approaches, such as Stout [22], can
cut down request latency by congestion control adapting to
storage-layer performance variation.

Although the above solutions can reduce tail latency or
alleviate latency variability to different degrees, they can-
not support a more accurate and flexible latency SLO, i.e.,
the Xth percentile latency SLO for consolidated VMs un-
der shared storage infrastructure, which is proposed in this
paper. Our work aims at supporting consolidated VMs run-
ning with different Xth percentile latency and throughput
SLOs so as to make a more accurate and effective perfor-
mance differentiation for the user applications with distinct
scales (i.e., the number of VMs on which an application is
deployed). More importantly, our proposed system PSLO is
able to take full advantage of the available IO capacity al-
lowed by SLO constraints to increase throughput or reduce
latency for each VM under different optimization policies.

3. Architecture and Design
PSLO is designed for the consolidated VM environment that
consists of a large number of application servers with each
consolidating multiple VMs under a shared storage infras-
tructure. There is a hypervisor (e.g., Xen hypervisor [3])
running on each application server to monitor and harness
the VMs consolidated on the server. PSLO is integrated in-
to each hypervisor to enforce the Xth percentile latency and
throughput SLOs for each individual VM. It views the un-
derlying service infrastructure (e.g., network transformation
and storage service) for a host as a black box, with the as-
sumption that IO isolation among application servers is pro-
vided by a host-level approach that focuses on fair IO shar-
ing, such as PARDA [11], Argon [28] or SFQ(D) [16], which
cannot support VM-level IO isolation.

3.1 The Architecture of PSLO
It is non-trivial to simultaneously enforce the Xth percentile
latency and throughput SLOs for the consolidated VMs.
Request execution can be delayed by network congestion
or IO contention at the underlying storage devices (e.g.,
competing for resources such as controller, cache and disk
heads in a disk array), resulting in an unpredictable request
completion. Once the execution of a request is delayed,
the request service time 3 will increase and the subsequent
requests in flight will very likely suffer from queuing and
waiting. Thus, a level of IO concurrency that specifies an

3 Request service time refers to the time interval between the dispatching
time of a request and its completion time.

Decision-making module

Control module

VM1

VM2

VMn

VM3

OR

STn > H

ST3 > H

ST2 > H

ST1 > H

Forecast module

Storage

server
H
y
p
e
rv
is
o
r

Requests in flight

D3

D2

Dn

D1

Issue queue

IO depth controller (Dk)
Dk

R3

R2

Rn

R1

Rate controller (Rk)
Rk

Figure 2: The architecture of PSLO.

upper bound on the number of requests in flight can correlate
the degree of latency SLO violation risk with the metric of
throughput. This essentially determines a trade-off between
latency SLO enforcement and the enforcement cost in terms
of reduced throughput. The key is to coordinate the level of
IO concurrency adapting to the status of the Xth percentile
latency SLO enforcement.

To achieve its design goal, PSLO consists of three key
functional modules, the forecast module, control module and
decision-making module. As shown in Figure 2, the forecast
module and the control module work together to minimize
the latency SLO violations. The control module exports the
interfaces for IO rate control and VM issue queue length
control. The decision-making module uses these interfaces
to coordinate the IO concurrency level and the arrival rate for
each VM so as to gain a good trade-off between the Xth per-
centile latency enforcement and the throughput reduction.

3.2 Forecast Module
The forecast module is designed for the prediction of high
percentile (e.g., 99.9th) latency SLO violation, which must
be able to forecast SLO violation timely and accurately. To
achieve this, we take full advantage of the latency violation
forecasts from each individual VMs based on an analysis
suggesting that the latency SLO violated requests among
consolidated VMs have a certain time-correlation, or tem-
poral locality, as explained below.

For the consolidated VMs built on a shared storage in-
frastructure, the IO congestion taking place at the network
transmission stage, the IO stack of the storage server or the
underlying storage devices will very likely lengthen the re-
quest service time. Once the execution of a request from
a VM is delayed, the subsequent requests issued by other
concurrently running VMs will be blocked. This may result
in possible SLO violations. As a result, there exits a cer-
tain time-correlation among requests that violate the latency
SLO issued by different consolidated VMs, and the request
service time is a critical indication for SLO violation. This
implies that as soon as any VM detects a sign of imminent
SLO violation of one of its requests, other consolidated VMs
should be warned of potential SLO violations of their respec-
tive requests. Specifically, as shown in Figure 2, the forecast
module collects the forecasts from all the consolidated VMs,
where a state bit associated with each VM is set to ”0” if no



latency SLO violation is predicted in it, and ”1” otherwise.
The forecast module ensures the earliest forecast to take ef-
fect by ORing all the state bits for consolidated VMs. The
forecast model can be represented as:

ζ = 1−
n∏

k=1

(1− pk) (1)

where ζ represents the probability of issuing SLO viola-
tion forecasts for n consolidated VMs (denoted by VMk, 1 ≤
k ≤ n), and pk represents the probability of detecting the
sign of an imminent SLO violation for VMk. The forecast
module determines the value of pk by assessing the variabil-
ity of request service time for each VM in terms of normal-
ized service time. The normalized service time of a request
issued by a VM is defined to be the ratio of the request ser-
vice time to the average service time across all the requests
issued by the VM over the last fixed-length interval (e.g.,
20ms). Once the newly measured normalized service time
of any request issued by VMk (i.e., STk) exceeds a thresh-
old (i.e., H), we consider that there is a risk of imminent
latency SLO violation for consolidated VMs, which can be
represented by the following formula:

pk = Pr(STk ≥ H) (2)

Based on Formulas 1 and 2, we can conclude that the
normalized service time threshold (H) can be used to adjust
the probability of issuing SLO violation forecasts (ζ). In
other words, the larger the value of H is, the smaller the
value of ζ is. And a smaller ζ indicates a lower probability
of limiting IO concurrency for consolidated VMs due to
fewer SLO violation forecasts. This in turn results in a higher
throughput, however, at the possible cost of more request
latency SLO violations.

To experimentally verify the above analysis, we conduct
an experiment by running five consolidated VMs that are
created by Xen [3] and accessing a 16-disk RAID-0 disk
group. There are 5 workloads deployed on these five VMs,
respectively, including four real production traces, MSN,
Excange, TPC-E and WebSearch [2, 18], and a synthetic
workload trace of a large file copy, File copy. We set the
normalized service time threshold at 2, 4, 8, 16, 32 and 64
respectively for all the consolidated VMs. The value of ζ
can be observed to decrease monotonously from 60.13%
to 7.19% as the value of H increases from 2 to 64. In the
meanwhile, the maximum throughput reduction, defined to
be the ratio of the actual throughput to the baseline through-
put obtained under the default Xen host OS, among all the
consolidated VMs is observed to decrease from 21.92% to
4.45% while the latency SLO violation ratios for these VMs
increase monotonously. Thus, it is necessary to obtain appro-
priate normalized service time thresholds for consolidated
VMs based on their Xth percentile latency and throughput
SLOs.

However, it is unavoidable for the model to have some
false positive rate in latency SLO violation forecast. More-

over, it is very difficult to find the best combination of nor-
malized service time thresholds to both meet the Xth per-
centile latency SLOs and have the lowest cost of through-
put reduction for all the consolidated VMs by exhaustively
searching for all the possible combinations. The search s-
cope can be increased exponentially with the number of con-
solidated VMs, resulting in an unacceptable overhead. So we
allow the forecast model to have a certain false positive rate
to adequately prevent latency SLO violations. Thus, H can
be empirically set at an appropriately small value to con-
struct a forecast model adequately sensitive to the variability
of request service time (e.g., set at 2 for HDD based storage
and 1.5 for SSD based storage for our evaluation in Section
5). To avoid the consequent unnecessary throughput reduc-
tion due to an H setting that results in too high a probability
of limiting IO concurrency for consolidated VMs, PSLO us-
es the decision-making module to coordinate the threshold
that limits the IO concurrency level for each VM so that it
adapts to the actual Xth percentile latency and throughput
SLO compliance, as explained in Section 3.4.

3.3 Control Module
The control module is designed to enforce the Xth percentile
latency SLO and throughput SLO for each VM by adjusting
the level of IO concurrency and controlling the arrival rate
at each VM’s issue queue. As shown in Figure 2, the IO
concurrency of a VM (VMk) is decided by the upper bound
on the number of read or write requests in the issue queue
(Dk) and the arrival rate at VMk is limited by the arrival rate
limit (Rk). So a rate controller and an IO depth controller are
established for each VM to work together based on these two
parameters.

3.3.1 Rate Controller
The rate controller, equipped for each VMk (1 ≤ k ≤ n
with n being the number of VMs), is responsible for co-
ordinating the arrival rate at the issue queue of VMk by a
time-stamp based IO scheduling that underlies many pre-
vious studies [4, 7, 12]. The time-stamp T q

k , assigned to a
request q from VMk, is the larger of the sum of the previous
time-stamp T q−1

k and 1/R̂k and the arrival time, as:

T q
k = max(T q−1

k + 1/R̂k, Arrival time) (3)

The rate controller for VMk controls the interval be-
tween two consecutively scheduled requests by adjusting
R̂k. Specifically, we use integral control, adopted from the
control theory [8, 14], to make the measured arrival rate Rm

k

converge to the pre-specified target Rk by coordinating R̂k

to adapt to the deviation between Rm
k and Rk.

3.3.2 IO Depth Controller
The IO depth controller, equipped for each VMk, is em-
ployed to limit the length of VMk’s issue queue according to
the setting of Dk. Once triggered by the forecast module and
given the arrival rate of Rk at the issue queue of VMk, the



IO depth controller will exact further admission control as
follows. Read or write requests are admitted to into the VM
issue queue if the number of read or write requests residing
in the issue queue is now less than the upper bound of Dk. It
is noted that the IO depth controllers for all the consolidat-
ed VMs are triggered simultaneously by the forecast module
and remain active for a time interval τ . Thus, the risk of la-
tency SLO violation can be reduced due to the reduced level
of IO concurrency. The control module exports a control in-
terface of IO concurrency level for all the consolidated VMs
(i.e., VMk, 1 ≤ k ≤ n), which can be called by inputting
the parameter set of [D1, D2, ..., Dn].

3.4 Decision-Making Module
The decision-making module is designed to strike a proper
trade-off between the level of IO concurrency and latency
SLO violation by specifying the parameters Rk and Dk for
each VM VMk. Based on the statistics on IO latency and
completed requests collected by the IO scheduler of the hy-
pervisor, the decision-making module can obtain the actu-
al throughput and the accumulated number of SLO violated
requests for each VM. To differentiate the Xth percentile
latency SLO for each VM, PSLO first formulates the bound-
ary curve of the Xth percentile SLO violation for each VM.
As elaborated next in subsection 3.4.1, this curve marks the
boundary below which the number of SLO violated requests
for a given number of completed requests is considered ac-
ceptable without sacrificing too much IO concurrency. Thus,
if the curve of the actual accumulated number of SLO violat-
ed requests lies below this boundary curve for a VM during
a time interval, then it provides an opportunity to increase
the throughput of the VM by increasing its IO concurrency
during that interval.

3.4.1 Upper Bound on the Xth Percentile Latency
SLO Violations

The Xth percentile SLO is a statistical metric obtained at the
end of the execution of a workload. For example, if a work-
load with a million requests runs for 5000 seconds and its
99.9th percentile SLO is 200ms, we cannot affirm that the
99.9th percentile SLO of the workload is met by knowing
only the number of violations during the first 4000 seconds
since there could be more than 1000 SLO violations (request
latency exceeding 200ms) taking place during the final 1000
seconds, resulting in a 99.9th percentile latency higher than
the SLO of 200ms. So it is difficult to accurately bound the
Xth percentile latency according to the pre-specified SLO
during the run of the workload. The key is to let SLO viola-
tions spread evenly across the entire length of the workload
execution according to the percentile specified by the latency
SLO.

The boundary curve of the Xth percentile SLO violation
for each VM is formulated based on the assumption that the
number of SLO violations of a VM during a time interval is
roughly proportional to the number of completed requests is-
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Figure 3: The illustration of the correlation among the three
curves: the boundary curve of the 99.9th percentile SLO vi-
olation, curve A of the accumulated number of SLO viola-
tions above the boundary, and curve B of the accumulated
number of SLO violations below the boundary. Curve A indi-
cates that every point on the curve violates in the 99.9th per-
centile SLO. On the contrary, curve B suggests that there is
ample room for throughput optimization. The ideal case hap-
pens when the curve of the number of SLO violations coincides
with the boundary curve.
sued by the VM during that interval. In other words, the SLO
violations of a VM are fairly evenly distributed among the
time intervals where each has the same number of complet-
ed requests from the VM. Thus, if the latency SLO of a VM
is specified at the 99.9th percentile and 1000 requests are
completed during an observed period, then the upper bound
on the number of SLO violations for that period is 1. We
obtain the boundary curve of the 99.9th percentile SLO vio-
lation as a function of the accumulated number of completed
requests (denoted by boundary curve), as shown in Figure 3,
which can be represented as:

G(Xk, t) =
∑t

i=1
(1−Xk) ∗N (4)

where Xk is the percentile at which the latency SLO is
defined for VMk, t is the index of the time interval dur-
ing which N requests issued by VMk are completed and
G(Xk, t) is the upper bound on the accumulated number of
SLO violations at the end of the tth time interval. The value
of t can be bounded by the number of intervals for the appli-
cation execution or the maximum statistical cycle defined by
the cloud service provider. If the actual accumulated number
of SLO violations for VMk at the end of the tth time interval
(denoted by Mk(t)) is larger than G(Xk, t), we affirm that
the Xth

k percentile latency SLO is violated during the period
from the first time interval to the end of the tth time inter-
val. Otherwise, if Mk(t) is smaller than G(Xk, t), as curve
B shown in Figure 3, we can increase the level of IO con-
currency for a higher throughput at the cost of an increased
Mk(t) whose value is allowed to reach G(Xk, t).

3.4.2 IO Concurrency & Arrival Rate Control
The decision-making module coordinates the level of IO
concurrency and the limit on arrival rate for VMk by ad-
justing the parameters Rk (arrival rate limit) and Dk (upper
bound on the length of the request issue queue).



Based on the detailed evaluation of the impact of the
Dk parameter on the latency SLO violation with real-world
production traces [2, 18] (in Section 5.2), we find a positive
correlation between Dk and the actual accumulated number
of SLO violations for VMk. Thus, we can increase Dk to
improve throughput, subject to the following condition:

Mk(t) ≤ G(Xk, t) (5)

Formula 5 stipulates that the Xth percentile latency SLO
must be complied with. The goal of IO concurrency control
is to minimize the difference between G(Xk, t) and Mk(t),
as expressed in Formula 6, when G(Xk, t) is larger than
Mk(t). In this way, SLO violations can be evenly distributed
among the time intervals as much as possible and IO concur-
rency can be maximized while still complying with the Xth

percentile latency SLO.
e(k, t) = G(Xk, t)−Mk(t) (6)

Note that the larger the value of e(k, t) is, the fewer the
latency SLO violations are. To convert e(k, t) into a more
intuitive metric and thus easier to control, we use Dk(t) to
denote the value of Dk set at the tth interval for VMk and
divide e(k, t) by Dk(t) as follows:

E(k, t) =
e(k, t)

Dk(t)
(7)

where E(k, t) represents the difference between the actu-
al latency SLO violations and the upper bound on the latency
SLO violations, which makes it independent of Dk that is as-
sociated with workload IO characteristics and latency SLO.

In addition, the distinct IO characteristics and different
requirements on the percentile latency SLO of user applica-
tions can lead to different latency SLO violations and unfair
allocation of throughput among consolidated VMs under the
different Xth percentile latency SLO constraints.

To address the above problem, each VM is reserved cus-
tomized throughput as its throughput SLO target, and the
decision-making module dynamically adjusts the arrival
rates for the n consolidated VMs through the control in-
terface of [R1, R2, ..., Rn] exported by the control module.
For a time period divided into t intervals, where the same
number N requests are completed in each interval i whose
actual length is denoted by λ(i), 1 ≤ i ≤ t, the average
throughput Thk(t) over this time period is defined as:

Thk(t) =
t ∗N∑t
i=1 λ(i)

(8)

Thus, we can obtain the following recursive formula
based on Formula 8:

Rk(t+ 1) = Max(
ThSLO

k

Thk(t)
∗Rk(t), Th

SLO
k ) (9)

where ThSLO
k represents the throughput SLO target of

VMk. The constraints on the arrival rates based on Formula

9 help enforce the fairness of throughput allocation among
consolidated VMs. However, the user-customized through-
put SLO for a VM is very likely lower than the potential
value the system is able to provide. Thus, another task of
the decision-making module is to explore throughput targets
for all the n consolidated VMs (VMk, 1 ≤ k ≤ n) that are
higher than their user-customized SLOs to exploit the spare
resources on the condition that the Xth percentile latency
SLO for each VM is respected.

Let Th(k, i) denote the actual throughput of VMk aver-
aged over the ith interval and assume that Th(k, i) correlates
positively with the number of latency SLO violations in the
ith interval. This is reasonable since a higher throughput of
VMk usually requires a higher level of IO concurrency, i.e.,
a larger value of Dk that is experimentally proven to corre-
late positively with the number of latency SLO violations in
Section 5.2. Thus, we adjust the throughput target of VMk

by obtaining the values of A(k, t) and P (t) represented by
the following formulas.

A(k, t) = Max(σ ∗ e(k, t)

G(Xk, t)
, 0) (10)

P (t) = Min1≤k≤nA(k, t) + 1 (11)

A(k, t) depends on the ratio of e(k, t) to G(Xk, t), which
reflects the extent to which the actual number of latency SLO
violations deviates below the upper bound regulated by the
Xth percentile latency SLO target. The larger the values
of A(k, t) are for all the consolidated VMs, the higher the
throughput SLO target can be specified for each VM. σ is
a parameter that reflects the trade-off between the cost of
throughput reduction and latency SLO violations. A larger
σ is more conducive to high throughput while a smaller σ is
more beneficial to the Xth percentile latency SLO enforce-
ment. By adding 1 to the minimum value of A(k, t) among
all the n consolidated VMs, P (t) serves as a proportional co-
efficient to determine how much to increase the throughput
targets of all the consolidated VMs in the (t + 1)th inter-
val, denoted by ThG

k (t + 1), 1 ≤ k ≤ n, and expressed as
follows.

ThG
k (t+ 1)=

P (t) ∗ ThG
k (t) if ∀j, Th(j, t) ≥ ThG

k (t),

Max(η ∗ ThG
k (t), Th

SLO
k ) otherwise.

(12)
Rk(t+ 1) = Max(

ThG
k (t)

Thk(t)
∗Rk(t), Th

G
k (t)) (13)

Dk(t+ 1)=



1 if ∃j, E(j, t) < 0,

Max(Dk(t)− 1, 1) else if Thk(t)>ThG
k (t),

Dk(t) + 1 else if E(k, t) ≥ U,

Dk(t) otherwise.

(14)
As expressed in Formula 12, if the actual throughput of

each VM is larger than or equal to its throughput target in the



tth interval, then the throughput target of VMk for the next
interval is set at the value of P (t) ∗ ThG

k (t). Otherwise, all
the throughput targets for the next interval for consolidated
VMs will be the product of η (set at 0.95) and ThG

k (t). The
initial value of ThG

k (t) is set at the value of the throughput
SLO target of VMk, ThSLO

k . The corresponding value of
the arrival rate limit Rk(t + 1) is expressed by Formula
13. Similarly, the value of the upper bound on the request
issue queue depth, Dk(t + 1), is given by Formula 14, with
its initial value (i.e., Dk(1)) being 1. The constant U in
Formula 14 is the threshold for E(k, t) to increase Dk(t+1)
and set at 5 by default. Specifically, if there exists E(j, t)
(1 ≤ j ≤ n) that is smaller than zero, meaning that the Xth

percentile latency SLOs of one or more VMs are violated,
we set Dk(t + 1) at the smallest value (i.e., 1). Otherwise,
if E(k, t) is larger than or equal to U , Dk(t+ 1) is set to be
Dk(t) plus one. If the measured throughput Thk(t) is larger
than the throughput target ThG

k (t), indicating that the level
of IO concurrency is higher than necessary, then Dk(t + 1)
will be decreased by 1 provided that its value is greater than
1 (the smallest value). We keep Dk(t + 1) invariable for all
the other cases.

3.4.3 Feasibility of Simultaneous Enforcement of the
Xth Percentile Latency and Throughput SLOs

Based on the experimental analysis in Section 2.1 and the IO
isolation among consolidated VMs by VM-oriented arrival
rate control, it is possible to assess the feasibility of simulta-
neously enforcing the Xth percentile latency and throughput
SLOs for a VM. Specifically, we first obtain the performance
& concurrency curve by sampling the Xth percentile laten-
cy and throughput for the VM under different levels of IO
concurrency. And then, we determine if there exists a sam-
pling point with the measured Xth percentile latency that
is lower than the Xth percentile latency SLO and the mea-
sured throughput that is higher than the throughput SLO. If
yes, it is considered feasible to simultaneously enforce these
two SLOs for the VM. Otherwise, these two SLOs cannot
be simultaneously met. In fact, we believe that it is possible
to reduce the sampling points for the performance & con-
currency curve so as to decrease the cost of SLO feasibility
estimation. This, however, is beyond the scope of this paper
and thus a topic of our future research.

4. Implementation Issues
In this section, we present the implementation details of
PSLO’s critical functionalities, latency SLO violation fore-
cast and end-to-end VM-oriented control.

4.1 Forecast Latency SLO Violation
The forecast module monitors the service time of each re-
quest issued by each individual VM in a VM-oriented end-
to-end fashion. The request service time is measured be-
tween the time when a request is dispatched to the under-

lying storage device and the time when the request is com-
pleted, obtained based on the Linux block layer statistics and
collected by the IO statistics sub-module. In all the following
experiments, we obtain the value of normalized service time
by dividing the measured request service time by the average
service time over the latest 20ms time interval for each VM.
Moreover, whenever the currently measured normalized ser-
vice time of a VM exceeds a pre-determined threshold H
(empirically set at 2 for our evaluation), the forecast module
will issue a latency SLO violation forecast. In this way, the
forecast is proven to be adequately sensitive to the variabili-
ty of request service time that is key to predicting the latency
SLO violation at a high percentile (e.g., 99.9th).

4.2 End-to-End VM-oriented Control
In the current version of Xen [3], an IO request issued by
a VM is first sent to the frontend driver while an event is
simultaneously sent by blkfront to notify the backend driver
for the corresponding virtual disk of the VM to redirect the
request to the block layer. The request is then handled by the
hypervisor IO scheduler where the control module of PSLO
resides. Each request will be tagged with the identification
of the issuing VM in the hypervisor, which is used by the
control module to implement VM-oriented end-to-end IO
control. Specifically, once the first request of a VM arrives,
the control module will recognize the newly activated VM
and establish a rate controller and an IO depth controller
dedicated to that VM.

The rate controller carries out IO throttling according to
the arrival rate target determined by the decision-making
module and adopts the integral control [8, 14] to reduce the
deviation of the actual IO rate from the target value. The IO
depth controller for a given VM VMk limits its issue queue
length according to Dk, the optimized upper bound on the
number of the read or write requests in the issue queue of
the VM that is determined by the decision-making module.
Thus, the value of E(k, t) (Formula 7) that determines the
value of Dk(t+1) is key to striking a good trade-off between
the level of IO concurrency and the latency SLO violations.
In practice, we collect IO statistics for each individual VM
in every time interval with 1000 completed requests.

5. Performance Evaluation
In this section, we present the evaluation results of a PSLO
prototype implemented in a real consolidated VM environ-
ment. All the following evaluation experiments are conduct-
ed on a dedicated rack of servers. The storage server is a
PowerLeader PR2760T machine configured with 2 Intel X-
eon E5620 quad-core processors, 12GB of RAM, a Mel-
lanox MT26428 ConnectX VPI Infiniband NIC and a stor-
age array. The storage volume is hosted on a 16-disk RAID-0
disk group on the array, consolidating all the virtual disks,
where each VM is associated with a virtual disk of 80GB.
The application server is a PowerLeader PR2760T machine



Policy
Throughput SLO

compliance
The Xth percentile latency

SLO compliance
Throughput allocation

fairness
Throughput
optimization

Latency
optimization

PSLO(TS+L) Y Y Y N Y
PSLO(LS+T) Y Y Y Y N

PSLO(L) N Y N N Y
PSLO(LS+U) N Y N Y N

PSLO(T) Y N Y N N
No PSLO N N N N N

Table 1: Comparison of different optimization policies under PSLO.

that uses CentOS 6.3 with 64-bit Linux kernel 3.9.9 for the
host OS and supports VM consolidation based on the hyper-
visor of Xen 4.2 [3].

We evaluate PSLO with a collection of real production
traces [2, 18] (i.e., MSN, Excange, TPC-E and WebSearch)
and a synthetic workload trace of a large file copy (i.e., File
copy). There are five consolidated VMs running these five
traces respectively, concurrently accessing the storage vol-
ume hosted on the large-scale RAID-0 disk array. The VM
running the File copy workload only requires a throughput
SLO of 150 IOPS for all the following experiments.

5.1 Evaluation Objectives and Policies
Objectives: In the following experiments, we first investi-
gate the impact of Dk, i.e., the upper bound on the number
of read or write requests in the issue queue of VMk, on the
Xth percentile latency and throughput of VMk. Dk is the
key parameter for PSLO to strike an appropriate trade-off
between the Xth percentile latency and throughput by coor-
dinating the level of IO concurrency. This is enabled by the
forecast module when the normalized service time is larger
than a pre-specified threshold. The arrival rate limit for each
VM is set at 150 IOPS. We examine how latency SLO vio-
lations, throughput and latency distribution change with Dk,
thus illustrating the impact of the IO concurrency level on
latency and throughput.

To comprehensively evaluate PSLO, we design two ap-
plication scenarios to verify the effectiveness of PSLO in
optimizing the Xth percentile latency or throughput for con-
solidated VMs under different policies. We let the VMs de-
ployed with totally different applications be consolidated on
the same server sharing the 16-disk RAID0 disk array. This
configuration allows the interplay of IO flows with distinct
IO characteristics to aggravate the IO interference and re-
sult in very different latency SLO violations among the con-
solidated VMs. As a result, PSLO can be stress-tested in a
realistic scenario that requires strong adaptivity to adequate-
ly address the interplay of highly variable IO characteristics
when enforcing the Xth percentile latency and throughput
SLOs.

The first scenario consists of four applications (i.e., MSN,
Excange, TPC-E and WebSearch) that are deployed on 100
VMs. Each application requires an IO latency SLO of 300ms
with at least a 90% compliance ratio and a throughput SLO
of 15000 IOPS. Thus, based on the analysis presented in

Section 2.1, we should set the 99.9th percentile latency SLO
at 300ms and the throughput of 150 IOPS for each VM. With
this scenario, we assess the ability of PSLO in optimizing
throughput under the Xth percentile latency SLO constraint
as well as enforcing the fairness of throughput allocation
among consolidated VMs.

The second scenario has the same four applications de-
ployed on 25 VMs, 15 VMs, 100 VMs and 100 VMs respec-
tively. These four applications need the latency SLOs of 100
ms, 100 ms, 200 ms and 200 ms respectively with at least
a 90% compliance ratio and the throughput SLOs of 3750
IOPS, 2250 IOPS, 10000 IOPS and 10000 IOPS respective-
ly. Thus, each of the VMs running MSN requires the 99.6th

percentile latency SLO of 100 ms and the throughput SLO
of 150 IOPS. Each of the VMs with Exchange needs a laten-
cy SLO of 100 ms at the 99.3th percentile and a throughput
SLO of 150 IOPS. And each VM of the VMs for TPC-E
and WebSearch requires the 99.9th percentile latency SLO
of 200 ms and a throughput SLO of 100 IOPS. In this sce-
nario, we evaluate the robustness and effectiveness of PSLO
in optimizing the Xth percentile latency or throughput under
different SLO constraints.

Polices: PSLO can enforce the Xth percentile latency
and throughput SLOs for consolidated VMs according to d-
ifferent policies. As listed in Table 1, under the PSLO(TS+L)
policy, PSLO optimizes the Xth percentile latency under
throughput SLO constraints and aims to achieve a low val-
ue of the Xth percentile latency for each VM with the
best effort on the condition that the throughput SLO of
each VM is complied with. With the PSLO(LS+T) poli-
cy, PSLO optimizes throughput under the Xth percentile
latency SLO constraint. If we only focus on the performance
of the Xth percentile latency, PSLO will keep the lowest
level of IO concurrency (i.e., set the value of Dk(t) at 1)
for each VM, which is the PSLO(L) policy. In addition, if
the arrival rate limit Rk(t) is set to be infinity, PSLO adopt-
s the PSLO(LS+U) policy that optimizes the throughput for
each VM under the Xth percentile latency SLO constraint,
but likely leading to throughput allocation unfairness. The
PSLO(T) policy means that PSLO only enforces throughput
SLO for each VM by controlling its arrival rate with the inte-
gral control model [8, 14]. Finally, the No PSLO policy is the
earliest deadline first (EDF) scheduling policy implemented
on the side of the storage server and the deadline for each
request is configured with its arrival time so as to realize
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(a) Number of SLO violations as a function of Dk(1 ≤ k ≤ 4) for different SLOs
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(b) Throughput as a function of Dk(1 ≤ k ≤ 4)
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(c) Average latency and latencies at the 99.9th, 99.5th and 99th percentiles as a function of Dk(1 ≤ k ≤ 4)
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(d) Latency distribution as a function of Dk(1 ≤ k ≤ 4)

Figure 4: Impact of Dk on the Xth percentile latency and throughput of VMk, 1 ≤ k ≤ 4.

the first-come, first-served (FCFS) order without additional
IO wait. The VM running the File copy workload is always
controlled under the PSLO(T) policy in all the following ex-
periments.

Each measurement in the following experiments involves
1 million requests issued by each VM and the measurement
period is divided into 1000 intervals with each having 1000
completed requests. Unless otherwise specified, the through-
put for each VM is obtained by averaging over the measure-
ment period according to Formula 8.

5.2 IO Concurrency Control
PSLO controls the level of IO concurrency for consolidated
VMs by adjusting the upper bound on the number of read or
write requests in each VM issue queue, i.e., Dk for VMk,
also referred to as upper bound on issue queue length. To
comprehensively investigate the impact of Dk on IO latency
and throughput SLO enforcement, we measure the number
of latency SLO violations, throughput, average latency, la-
tencies at different percentiles and latency distributions as a
function of Dk whose value ranges from 1 to 16.

As shown in Figures 4(a) and 4(c), we observe that Dk is
positively correlated with both the number of latency SLO
violations under different SLOs and the latency measures
in average and percentiles. The higher the Dk value, thus
the level of IO concurrency, the greater the number of laten-
cy SLO violations. Specifically, there are three successive
phases of Dk, namely, (1) 1 ≤ Dk ≤ 4, (2) 4 < Dk ≤ 6
and (3) Dk > 6, that exhibit distinctive impacts of Dk on
latency SLO violations and latency measures. For Phase (1),
latency SLO violations and latency measures at different per-
centiles for all the VMs increase slowly with Dk. Phase (2)
is characterized by a steep and rapid increase in both la-
tency SLO violations and latency measures at different per-
centiles with Dk, where a 10-fold increase in the number of
latency violations is observed for all the VMs. This is fol-
lowed immediately by the continued but very smooth and
slow growth trends of SLO violations and latency measures
at different percentiles in Phase (3). Actually, with the incre-
ment of Dk in Phase (3), the effectiveness of performance
isolation enforced by Dk is gradually weakened and even-
tually lost, thus aggravating IO contention among consoli-
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(a) A comparison among different policies in the accumulated number of latency SLO violations
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(b) A comparison among different policies in the 99.9th percentile latency
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(d) A comparison among different policies in latency distribution

Figure 5: A comparative evaluation of different policies in terms of the number of latency SLO violations, the 99.9th percentile
latency, throughput and latency distribution for VMs with the 99.9th percentile latency SLO of 300ms.

dated VMs as indicated by the increased number of latency
SLO violations (Figure 4(a)) and decreased throughput (Fig-
ure 4(b)) in Phase (3).

In addition, as shown in Figure 4(d), a smaller value of
Dk means a lower latency at the Xth percentile except for
Phase (3). In Phase (3) the effectiveness of Dk in affecting
the latency SLO enforcement is basically lost, thus the la-
tency distributions in this phase (i.e., Dk = 6, 8, 16) almost
perfectly coincide with one another. In contrast, as shown in
Figure 4(b), the throughput for all the VMs can be observed
to increase sharply and reach the peak value in Phase (1)
immediately before the beginning of Phase (2).

As a result, it is feasible for PSLO to seek a good trade-off
between latency at different Xth percentiles and throughput
according to different optimization requirements by control-
ling the level of IO concurrency for each VM.

5.3 Throughput Optimization and Fair Allocation
In the first scenario described in Section 5.1, the consol-
idated VMs running the workloads of MSN, Exchange,
TPC-E and WebSearch require a latency SLO of 300 ms

at the 99.9th percentile and a throughput SLO of 150 IOPS.
We repeat the experiment under different polices, including
No PSLO, PSLO(L), PSLO(LS+U) and PSLO(LS+T). As
shown in Figure 5, PSLO(L) performs the best in terms of
latency SLO enforcement without considering the cost of
throughput reduction while No PSLO, which serves as the
baseline of latency SLO enforcement, performs the worst
among all the policies. In fact, with the exception of the
throughput measure, PSLO(L) and No PSLO perform the
best and worst among all policies in the measures of SLO
violations (Figure 5(a)), the 99.9th percentile latency (Fig-
ure 5(b)) and the Xth percentile latency distribution (Figure
5(d)). However, as shown in Figure 5(c), No PSLO outper-
forms all other policies in the throughput measure.

The PSLO(LS+U) policy enforces the Xth percentile la-
tency SLO and sets the arrival rate limit at infinity for each
consolidated VM. As a result, PSLO(LS+U) only focus-
es on the coordination of the IO concurrency level with-
out considering the fairness of throughput allocation among
consolidated VMs. However, the PSLO(LS+T) policy si-
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Figure 6: A comparative evaluation of different policies in terms of the number of latency SLO violations, the Xth percentile latency,
throughput and latency distribution for VMs with the Xth percentile latency and throughput SLOs.

multaneously bounds the issue queue length and the arrival
rate of each VM according to Formulas 13 and 14. Thus,
PSLO(LS+T) optimizes the throughput of each VM under
the Xth percentile latency SLO constraints of all the con-
solidated VMs while simultaneously enforces the fairness
of throughput allocation. As shown in Figure 5, although
PSLO(LS+U) outperforms PSLO(L) in total throughput
(sum of all four throughputs) by 24.2% and achieves a max-
imum value of 299.8 ms for the 99.9th percentile latency,
which complies almost perfectly with the latency SLO of
300 ms, under the Exchange workload its throughput per-
formance of 74 IOPS falls far below the throughput SLO
of 150 IOPS. In contrast, the PSLO(LS+T) policy not on-
ly achieves very similar advantages over PSLO(L), with a
margin of 26.8% in total throughput and a maximum value
of 294.4 ms for the 99.9th percentile latency, its throughput
measure for each VM is higher than the SLO of 150 IOPS. In
other words, the Xth percentile latency SLO and throughput
SLO for each VM can be met under the PSLO(LS+T) poli-
cy. In addition, the actual throughput of the VM running the

File copy workload under the PSLO(LS+T) policy is 150.2
IOPS, which perfectly complies with the SLO of 150 IOPS.

5.4 Optimization under Different Constraints
For the second scenario described in Section 5.1, the consoli-
dated VMs differ in the Xth percentile latency and through-
put SLOs. Under such complicated SLO requirements, we
assess the robustness and effectiveness of PSLO in enforcing
these SLOs under different constrains and policies. Recal-
l that the PSLO(LS+T) policy optimizes the throughput and
enforces the fairness of throughput allocation among consol-
idated VMs under the constraint that the Xth percentile la-
tency SLO of each VM be met. In this optimization, the best
case would be when the Xth percentile latencies of one or
more VM are equal to their latency SLOs respectively, while
at the same time the throughput of each VM is increased pro-
portionally to its throughput SLO with the best effort. In con-
trast, the PSLO(TS+L) policy optimizes IO latency with the
best effort under the constraint that the throughput SLO of
each VM be complied with. The best case of this optimiza-
tion would be when the level of IO concurrency is controlled



at the lowest level for each VM issue queue while still meet-
ing the throughput SLO. The PSLO(T) and PSLO(L) poli-
cies are used as the baseline policies, since PSLO(T) only
enforces throughput SLO for each VM while PSLO(L) en-
forces the Xth percentile latency SLOs of consolidated VMs
without considering the cost of throughput reduction.

As shown in Figure 6(a), the curve of latency SLO vi-
olations under PSLO(T) lies largely beyond the boundary
curve for all the consolidated VMs, meaning that the Xth

percentile latency SLOs are violated for all the VMs due to
lack of latency enforcement under PSLO(T). The PSLO(L)
curve lies below the boundary curve and those of all the oth-
er policies. This illustrates that PSLO(L) ensures the low-
est Xth percentile latency for each VM among all the poli-
cies, which is verified explicitly in Figure 6(b). However, the
measured throughput of the VMs running the workloads of
MSN, Exchange and TPC-E under PSLO(L) is lower than
their throughput SLOs. In contrast, PSLO(TS+L) exceeds
PSLO(L) in the Xth percentile latency measure for each
VM by 25.4% on average across all the consolidated VMs.
In the meantime, as shown in 6(c), the throughput SLO of
each VM is accurately complied with. This is perhaps one of
PSLO(TS+L)’s best case scenarios.

As shown in Figure 6(a), the curve of SLO violations
for the VM running TPC-E almost perfectly coincides with
the boundary curve, indicating that the Xth percentile la-
tency (200.4 ms) is almost exactly right on the SLO target
(200 ms), as verified in 6(b). In this case, we believe that
any increase in the level of IO concurrency for any con-
solidated VM will make the VM running the TPC-E work-
load violate its Xth percentile latency SLO. In other words,
PSLO(LS+T) is virtually in its best case scenario too. More-
over, the throughput for the four VMs running the work-
loads of MSN, Exchange, TPC-E and WebSearch respec-
tively is increased by 19%, 19%, 18% and 19%, almost i-
dentical proportions, over their respective throughput SLOs
under PSLO(LS+T). That is, the throughput of each VM
is increased basically proportionally to its throughput SLO.
Thus, the fairness of throughput allocation is enforced under
the Xth percentile latency SLO constraint.

In addition, as shown in Figure 6(d), the cumulative dis-
tribution function (CDF) curve of IO latency obtained under
PSLO(T) lies below the CDF curves under other policies for
all the consolidated VMs. This indicates that a higher laten-
cy at the Xth percentile will be obtained under PSLO(T)
than those under other polices due to the lack of support for
the Xth percentile latency SLO enforcement in PSLO(T). In
contrast, the CDF curve under PSLO(L) lies above those un-
der all the other policies except for the VM running the Web-
Search workload where the CDF curves under PSLO(L), P-
SLO(TS+L) and PSLO(LS+T) almost coincide with one an-
other. This indicates that PSLO(L), which maintains the low-
est level of IO concurrency among all the policies, achieves a
lower latency at the Xth percentile than those under all oth-

er policies. And the PSLO(TS+L) and PSLO(LS+T) CDF
curves lie between the PSLO(T) and PSLO(L) CDF curves.
These are the results of making trade-offs between the Xth

percentile latency SLO violations and the cost of through-
put reduction under the constraints of throughput SLOs (i.e.,
PSLO(TS+L)) or the constraints of the Xth percentile laten-
cy SLOs (i.e., PSLO(LS+T)) for all the consolidated VMs.

6. Conclusion
In this paper, we focus on optimizing the Xth percentile la-
tency and throughput under the two-dimensional SLO con-
straints of the Xth percentile latency SLO and throughput
SLO targets for consolidated VMs. To achieve this goal, we
propose a framework called PSLO. The essence of PSLO is a
decision-making system that, based on a given optimization
policy and constraints, dynamically and adaptively applies
the IO concurrency and arrival rate controls to each individ-
ual VM to attain the specific optimization goal. Specifically,
PSLO can maximize the throughput for consolidated VMs
under the constraints of the Xth percentile latency SLOs as
well as enforce the fairness of throughput allocation among
consolidated VMs. In addition, PSLO is also able to opti-
mize the Xth percentile latency under the throughput SLO
constraint. We implement a prototype of PSLO based on
the Xen hypervisor and verify the robustness and effective-
ness of PSLO in enforcing the Xth percentile latency and
throughput SLOs under different optimization policies and
constraints by an extensive production-trace driven evalua-
tion. As future work, we plan to improve PSLO on support-
ing the Xth percentile latency and throughput SLOs under
the energy-saving constraints.
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