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Abstract

Scale-out applications have emerged as the dominant In-
ternet services today. A request in a scale-out work-
load generally involves task partitioning and merging
with barrier synchronization, making it difficult to pre-
dict the request tail latency to meet stringent tail Ser-
vice Level Objectives (SLOs). In this paper, we find
that the request tail latency can be faithfully predicted,
in the high load region, by a prediction model using only
the mean and variance of the task response time as in-
put. The prediction errors for the 99th percentile request
latency are found to be consistently within 10% at the
load of 90% for both model and measurement-based test-
ing cases. Consequently, the work in this paper estab-
lishes an important link between the request tail SLOs
and the low order task statistics in a high load region,
where the resource provisioning is desired. Finally, we
discuss how the prediction model may facilitate highly
scalable, tail-constrained resource provisioning for scale-
out workloads.

1 Introduction

Scale-out, online-data-intensive (OLDI) workloads, such
as web searching and social networking, provide user-
facing services that involve a large number of servers for
parallel processing, while requiring sub-second request
responsiveness under high incoming request rates. The
system running these workloads usually operates under
stringent SLOs, such as imposing a tight tail constraint
on high percentile request response time, e.g., 99th or
99.9th-percentile, to satisfy as many user requests as pos-
sible [7,17].

However, imposing tight tail SLO for OLDI work-
loads makes resource provisioning in datacenter a chal-
lenging task. Due to the lack of good understanding of
request tail behaviors, the current practice is to overpro-
vision datacenter resources to meet SLO, at the cost of

low resource utilization, e.g., less than 50% CPU and
memory utilizations [5, 8, 22]. Although resource provi-
sioning proposals with tail SLOs in mind exist, they gen-
erally do not incorporate tail SLOs explicitly as design
constraints and rely on empirical data to verify whether
the design meets tail SLOs or not. For example, the re-
source provisioning problem is formulated as the min-
imization of the variance of data flow path latency, as
a way to indirectly curtail the tail latency [12]; the tar-
get tail latency SLOs are tracked using online dynamic
feedback-loop-control-based schedulers [9,25]; and em-
ploying job priority and a rate limiting technique based
on the network calculus theory [27]. The root cause of
the status quo is due to the lack of a link between system-
level request tail SLOs and the subsystem-level task per-
formance requirements. The key difficulty lies in the fact
that a scale-out workload may involvetask partitioning
andmerging as well astask queuing. Each request in the
request flow with average request rateλ involves tasks
to be queued at and processed by up to several thousands
of task subsystems in parallel and then all the task re-
sults are merged and returned, as depicted in Fig. 1a.
Here a task subsystem may involve multiple replicated
servers for task-level fault tolerance and load balancing,
e.g., Fig. 1b, whereλr = λ/3 in the case of load balanc-
ing. Notable examples are Web search engines [4] and
social networking [20]. In this case, the request response
time is determined by the slowest task [7]. As the sys-
tem scales out, the probability that the request response
time may hit the tail task latency quickly increases [7].
To date, no general results are available that can predict
the tail request response time at scale.

This lack of understanding of request tail behaviors is
further exacerbated by the various task scheduling and
tail-cutting techniques being used in task processing. In
particular, as an effective tail-cutting technique, repli-
cated servers in each subsystem are being used to al-
low redundant task issues to more than one replicated
server to be processed, with the earliest result returned
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(a) A system with subsystems as black
boxes.
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(b) A subsystem with one dispatcher
and three replicated servers.

Figure 1: The task partitioning and merging model.

and rest removed [7, 24]. Although some analytic re-
sults are available on redundant task issues [10, 21, 26],
they either address only a single replicated server sub-
system with exponential task service time distribution
only [10] or parallel request load balancing without task
partitioning [21, 26]. The task partitioning-and-merging
part of a scale-out workload generally lies in the criti-
cal path for request processing and constitutes a major
part of request processing time and hardware cost, e.g.,
more than two-third of the total processing time and 90%
hardware cost for a Web search engine [13]. Hence, it
is of paramount importance to establish a link between
the system-level request tail SLOs and the subsystem-
level task performance requirements to facilitate explic-
itly tail-constrained resource provisioning at scale.

This paper aims at tackling the above challenge. It
makes the following two major contributions. First, by
treating each subsystem as a black box, we find that the
tail behavior of a task mapped to a subsystem can be cap-
tured by a generalized exponential distribution function
in the high load region, which uses the mean and vari-
ance of the task response time as input. This black-box
solution allows the request distribution function and thus
any given request tail SLOs to be explicitly expressed
as a function of the means and variances of the individ-
ual task response times as the system scales out. Hence,
in the case of homogeneous subsystems for parallel task
processing, the request tail SLO is only dependent on
the mean and variance of the task response time for one
task mapped to any given subsystem. Second, we dis-
cuss how the proposed request tail prediction mecha-
nism may be used to facilitate highly scalable, explic-
itly tail-constrained resource provisioning using homo-
geneous virtual machines (VMs) in a cloud environment.

The remainder of the paper is organized as follows.
Section 2 presents the prediction model, simulation re-
sults, and analyses. Section 3 discusses how the pro-
posed model may facilitate tail-constraint resource pro-
visioning. Finally, Section 4 concludes the paper.

2 Tail Latency Prediction Model

2.1 Basic Ideas

A system serving scale-out, OLDI workloads commonly
involves a large number of task subsystems for parallel
processing. The diversity in the actual implementation
of subsystems makes it extremely difficult to predict the
task performance, let alone the request performance, in
general. However, since the ultimate goal of this research
is to be able to design request scheduling algorithms that
can meet stringent tail SLOs by proof of design, while
achieving high resource utilization, we are interested in
the peak-load resource provisioning in a high load re-
gion, e.g., 90% or higher. In this region, it is possible to
predict the task performance for a task mapped to a wide
range of subsystems using a simple prediction model, as
we now explain.

E[X], V[X]
λ λ 

Figure 2: A subsystem as a black box.

There is a large body of research results in the context
of queuing performance in high load regions (e.g., see
[23] and the references therein). In particular, a classic
result, known as the central limit theorem for heavy traf-
fic queuing systems [14,15], states that for a G/G/m (here
m is the number of servers) queue under heavy traffic
load, the waiting time distribution could be approximated
by an exponential distribution. Clearly, this theorem ap-
plies to the response time distribution as well, since the
response time distribution converges to the waiting time
distribution as the traffic load increases. The intuition
behind this approximation is that in the high load re-
gion, the long queuing effect helps effectively smooth
out service time fluctuations (i.e., the law of large num-
bers), which causes the waiting time or response time to
converge to a distribution closely surrounding its mean
value, i.e., the short-tailed exponential distribution, re-
gardless of the actual arrival process and service time
distribution. Inspired by this result, in this paper, we
treat any task subsystem, e.g., the one in Fig. 1b, as a
black box, given in Fig. 2. We further postulate that for
a task mapped to a black box subsystem and in the high
load region, the task response time distributionF(x) for
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any arrival process can be approximated as a generalized
exponential distribution function [11], as follows,

Fge(x) =

{

(1− e−µx)α x > 0,
0 otherwise,

(1)

whereµ andα are the scale and shape parameter, respec-
tively. The mean and variance of the task response time
are given by [11]

E[X ] =
1
µ
[ψ(α +1)−ψ(1)], (2)

V [X ] =
1

µ2 [ψ
′(1)−ψ ′(α +1)], (3)

where ψ(.) and its derivatives are the digamma and
polygamma functions.

From Eqs. (2) and (3), it is clear that the distribution in
Eq. (1) is completely determined by the mean and vari-
ance of the task response time. The rationale behind the
use of this distribution, instead of the exponential distri-
bution, is that it can capture both heavy-tailed and short-
tailed task behaviors depending on the parameter settings
and meanwhile, it degenerates to the exponential distri-
bution atα = 1 andE[X ] = 1/µ . As we shall see in the
following subsection, this distribution significantly out-
performs the exponential distribution in terms of tail la-
tency predictive power for all the cases studied.

The implication of the above black box approxima-
tion is significant. It allows not only the task perfor-
mance of a task mapped to a diverse range of subsys-
tems to be captured by a unified distribution function,
but also the request response time distribution and hence
the tail SLO for the entire task-partitioning-merging sys-
tem to be derived. To see why this is the case, one
notes that with all the task subsystems in Fig. 1a be-
ing viewed as black boxes, one effectively transforms
the task-partitioning-merging problem into a split-and-
merge model [16] whose distribution function can be ex-
pressed as follows, assuming the task response times for
tasks mapped to different subsystems are independent
random variables,

F(N)(x) =

{

∏N
i=1(1− e−µix)αi x > 0,

0 otherwise,
(4)

Now assume that the parallel subsystems are homoge-
neous, the distribution function can be further simplified
as,

F(N)(x) =

{

(1− e−µx)Nα x > 0,
0 otherwise,

(5)

With Eq. (5), it can be easily shown that thep-th per-
centile request response timexp can be written as,

xp =−
1
µ

log

(

1−
( p

100

)
1

Nα
)

(6)

Sincexp is a function ofµ and α, which in turn, are
functions ofE[X ] andV [X ] of the task response time (ac-
cording to Eqs. (2) and (3)), a link between any given tail
SLO in terms ofxp and p, andE[X ] andV [X ] is estab-
lished. The implication of this result is significant. On
one hand, with any given tail SLO, the resultingE[X ]
and V [X ] can serve as the task response time budgets
for highly scalable, distributed task-level resource provi-
sioning. On the other hand, with given measured task re-
sponse time statistics in terms ofE[X ] andV [X ], whether
the system meets the target tail SLO or not can be ac-
curately predicted. In the following two subsections, we
test the performance of this prediction model at the sub-
system and system levels, separately.

2.2 Subsystem Tail Latency Prediction

In this section, we test the accuracy of the pro-
posed prediction model against a wide range of sub-
systems including pure model-based subsystems, hybrid
measurement-and-model-based subsystems, as well as a
pure measurement-based subsystem.

For pure model-based and hybrid subsystems, we con-
sider a typical subsystem setup given in Fig. 1b. It in-
cludes a dispatcher and three replicated servers. A task
arriving at the subsystem is distributed to server replicas
by a dispatcher based on a predetermined policy. Each
server replica is modeled as an M/G/1 queuing system.
Namely, for all the cases studied, the task arrival process
is modeled as a Poisson process, which is considered a
good model for scale-out workloads [19]. Both model-
based and measurement-based service time distribution
functions are considered, including the following,

– Empirical distribution measured from a Google search
test leaf node provided in [18], which has a mean ser-
vice time of 4.22ms, a coefficient of variance (CV) of
1.12, and the largest tail value of 276.6ms;

– A heavy-tailed truncated Pareto distribution [2] with
the same mean service time, i.e., 4.22ms, and a CV
of 1.2, resulting in the corresponding parameters: the
shapeα = 2.0119, the lower boundL = 2.14ms, and
the upper boundH = 276.6ms, which is set at the same
maximum value of the empirical distribution above.

– Weibull distribution [6] also with the same mean ser-
vice time and a CV of 1.5, resulting in the correspond-
ing parameters: the shape parameterα = 0.6848< 1,
i.e., a heavy-tailed distribution [6], and the scale pa-
rameterβ = 3.2630.

We consider two task dispatching policies. The first pol-
icy is a popular one, known as the Round-Robin (RR)
policy. In this policy, the dispatcher will send tasks to
different server replicas in an RR fashion. The second
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policy is still RR, but it also allows redundant-task issue,
a well-known tail-cutting technique [7, 24]. This policy
allows one or more replications of a task to be sent to dif-
ferent server replicas in the subsystem. The replications
may be sent in predetermined intervals to avoid overload-
ing the server replicas. In our experiments, at most one
task replication can be issued, provided that the origi-
nal one does not finish within 10ms, which is around the
95th-percentile of the empirical distribution above.

For model-based and hybrid subsystems, the simu-
lated tail task response time is compared against the
tail response time predicted by the proposed prediction
model, i.e., Eq. (1), which uses the simulated mean and
variance of the task response time as input.

For the pure measurement-based subsystem, we im-
plemented a Solr search engine [1] subsystem using a
cluster of three Amazon EC2 m3.medium instances, each
responsible for the same sample shard of the Wikipedia
index. The dispatching policy is, again, RR. In this
experiment, multiple client threads issue tasks to the
servers in a stop-and-wait fashion, i.e., a client sends a
task and then waits for the response before sending the
next one. The random combination of the task flows from
all the clients mimics a random arrival process. We focus
on the cases when the number of clients is large enough
to put a heavy load on the servers. Without knowing the
inner-working of the VMs, we simply treat them as black
boxes and the testing is solely based on the measured task
response time statistics.

For the experiments on both pure model-based and hy-
brid subsystems, Fig. 3 presents the prediction errors for
both the exponential and generalized exponential distri-
butions at the load of 90%. First, we note that the gener-
alized exponential distribution significantly outperforms
the exponential distribution for all the cases studied. Sec-
ond, the prediction errors for the generalized exponential
distribution are consistently within 10% across the en-
tire 95-99.9th percentile response time range, even for
the RR case without tail cutting. These results confirm
our postulation that the generalized exponential distribu-
tion function could accurately predict the task tail perfor-
mance in the high load region.

Now we further test the performance of the gener-
alized exponential distribution for the aforementioned
measurement-based subsystem. The relative errors of the
predicted task tail latencies against the measured ones
are given in Table 1. In this experiment, as the number of
clients increases, the aggregate task throughput increases
and then levels off as the number of clients reaches 40,
indicating that the subsystem is under heavy load condi-
tion. As one can see, the prediction errors reduce to less
than 10% for all cases as the number of clients reaches
40, consistent with the performance data for the model-
based and hybrid cases.

Table 1: The prediction errors for the measurement-based subsystem.

Percentiles
#clients 95th 99th 99.9th

20 -11.305 7.911 24.216
30 -3.233 5.295 13.429
40 -1.718 5.452 2.974
50 0.703 2.015 -1.381

2.3 System Tail Latency Prediction

In this section, we evaluate the accuracy of our general-
ized exponential distribution model as the system scales
out. We consider the task-partitioning-merging system in
Fig. 1a withN = 10,100,500, and 1000 nodes for all the
previously studied model-based and hybrid subsystems.
Fig. 4 presents the prediction errors at different load lev-
els for the 99th percentile request response times. Again,
for all the cases studied, the errors are within 10% at the
load of 90%. Even at the load of 80%, the prediction er-
rors are with 10% and 20% for the cases with and without
tail cutting, respectively.

As a work in progress, the testing of the proposed pre-
diction model for a complete Solr-based search engine on
Amazon EC2 is underway. The above testing results at
both subsystem and system levels give us the confidence
to expect that the results from this testing case will also
be fairly accurate.

3 Facilitating Resource Provisioning

In this section, we discuss how the above prediction
model may be used to facilitate highly scalable, explic-
itly tail-constrained resource provisioning. For ease of
discussion, we use the following example scenario as a
guide throughout the discussion. Assume that a content
service provider wants to outsource its OLDI scale-out
services to a cloud service provider. With a given size of
parallel searchable databaseD (e.g., an entire index as in
a Web search engine) and monetary budgetC, the con-
tent service provider wants to know whether or not the
service to be deployed may sustainR requests per sec-
ond, while meeting the tail SLO, i.e., thep-th-percentile
request response time ofL ms.

An ad hoc approach is to immediately deploy the ser-
vice to a certain scale and at runtime, scale out/up or
down the system dynamically in a pay-as-you-go man-
ner to meet the performance targets or monetary bud-
get. Without an initial estimation, however, such ap-
proaches run the risk of either over budgeting or failing
to meet SLO and/or targeted request throughput perfor-
mance. Moreover, using the pay-as-you-go service for
dynamic resource provisioning is generally much more
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Figure 3: The prediction errors for both model-based and hybrid subsystems with the Round-Robin (RR) and redundant-task-issue policies.
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Figure 4: The prediction errors for the system composed of both model-based and hybrid subsystems with the Round-Robin (upper three plots) and
redundant-task-issue (lower three plots) policies.

expensive than static resource reservation for resource
planning [3]. Given the sheer size of the system to be
deployed, it is of paramount importance to develop an
offline, highly scalable resource provisioning approach
that can provide a quick initial assessment of whether
the performance targets and monetary budget can be met
or not.

The idea of our approach is sketched by the following
tail-constrained resource provisioning procedure, in the
context of the above example scenario:

– For a desired type of VMs with, e.g., given CPU speed,
memory size, and pricing model, build a replicated
server cluster subsystem in the cloud usingm (two
to three) VMs by replicating a portion of the total
database, i.e.,D/N, to all the VM replicas, whereN,
an integer value, may be selected in such a way that
D/N can fit comfortably in the memory in each VM;

– Measure the mean and variance of task response time
in the cluster running a task scheduling policy, at de-
sired task rateλ = R;

– Find the parameters of the generalized exponential
distribution in Eq. (1) by plugging in the measured
mean and variance task latency into Eqs. (2) and (3),
respectively;

– Estimate thep-th-percentile request response timexp

based on Eq. (6);

– Finally, xp is compared againstL and the total cost
for runningN VM clusters withm each is compared
against the associated budgetC, to see if both the
tail SLO and monetary budget are met. If both are
met, a feasible tail-constrained resource provisioning
is found. Otherwise, the performance targets and/or
budget are revised and then rerun the procedure. Note
that if xp is found well belowL, one may consider re-
ducingN and/orm and see if it is still belowL. This
iterative testing can help minimize the cost.

4 Conclusions

This paper proposed a simple prediction model to predict
the tail SLOs for scale-out applications involving task-
partitioning-merging. The required inputs to the pre-
diction model are only the mean and variance of task
response time for a task mapped to a subsystem. The
experimental results showed that the prediction model
yields accurate prediction with errors consistently within
10% at the server loads of 90% or higher, providing a
much needed prediction tool to facilitate tail-constrained
resource provisioning for scale-out applications.

This is a work in progress. A full-fledged testing of
the proposed prediction model in Amazon EC2 cloud is
currently underway.
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