
 1

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

GCaR: Garbage Collection aware Cache Management with
Improved Performance for Flash-based SSDs

Suzhen Wu, Yanping Lin
Department of Computer

Science
Xiamen University

suzhen@xmu.edu.cn

Bo Mao�
Software School

Xiamen University
corresponding author
maobo@xmu.edu.cn

Hong Jiang
Department of Computer
Science and Engineering

University of Texas at Arlington
hong.jiang@uta.edu

ABSTRACT
Garbage Collection (GC) is an important performance con-
cern for flash-based SSDs, because it tends to disrupt the
normal operations of an SSD. This problem continues to
plague flash-based storage systems, particularly in the high
performance computing and enterprise environment. An im-
portant root cause for this problem, as revealed by previous
studies, is the serious contention for the flash resources and
the severe mutually adversary interference between the user
I/O requests and GC-induced I/O requests. The on-board
buffer cache within SSDs serves to play an essential role
in smoothing the gap between the upper-level applications
and the lower-level flash chips and alleviating this problem
to some extend. Nevertheless, the existing cache replace-
ment algorithms are well optimized to reduce the miss rate
of the buffer cache by reducing the I/O traffic to the flash
chips as much as possible, but without considering the GC
operations within the flash chips. Consequently, they fail to
address the root cause of the problem and thus are far from
being sufficient and effective in reducing the expensive I/O
traffic to the flash chips that are in the GC state.
To address this important performance issue in flash-based

storage systems, particularly in the HPC and enterprise en-
vironment, we propose a Garbage Collection aware Replace-
ment policy, called GCaR, to improve the performance of
flash-based SSDs. The basic idea is to give higher priority to
caching the data blocks belonging to the flash chips that are
in the GC state. This substantially lessens the contentions
between the user I/O operations and the GC-induced I/O
operations. To verify the effectiveness of GCaR, we have
integrated it into the SSD extended Disksim simulator. The
simulation results show that GCaR can significantly improve
the storage performance by reducing the average response
time by up to 40.7%.

1. INTRODUCTION
Hard Disk Drives (HDD) have been the primary storage

deices in large-scale storage systems for a few decades now.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’16, June 01-03, 2016, Istanbul, Turkey
c⃝ 2016 ACM. ISBN 978-1-4503-4361-9/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2925426.2926263

The performance of HDDs has been improved rather slowly
relative to other layers/components of the computer systems
stack, making them the performance wall of storage systems.
With advancements in the semi-conductor technology, flash-
based SSDs have emerged as an appealing alternative or
supplement to HDDs owing to their many attractive features
such as light weight, high random-access performance and
shock resistance. As a result, they have received a great
deal of attention from both academia and industry. Besides
the deployment on mobile devices and desktop/laptop PCs,
they have been widely deployed in the high performance
computing and enterprise environments [1, 5, 8, 15, 24, 33].

Typically, an SSD consists of multiple flash chips with
each containing a large amount of flash blocks. Each block
consists of a fixed number of pages [1]. Besides the nor-
mal read and write operations, block erase is also a frequent
operation within flash-based SSDs because the pages can
only be written once before the entire block is erased. Erase
operations in flash memory are nearly an order of magni-
tude slower than write operations. Therefore, flash-based
SSDs use out-of-place writes instead of the in-place writes
used on HDDs. To reclaim invalid pages and to create free
space for writes, SSDs use a Garbage Collection (GC) pro-
cess [22]. The GC process is a time-consuming operation
since it copies valid pages in blocks into the free storage pool
and then erases the blocks that do not store valid data. A
block erase operation takes approximately 2 milliseconds [1].
Considering that valid pages in the victim blocks need to be
copied and then erased, GC overhead can be quite signifi-
cant.

Usually, GC operations can be executed when there is
sufficient idle time (i.e., no incoming I/O requests to SSDs)
to minimize the impact to the user performance. However,
workloads in server-centric enterprise data centers and High
Performance Computing (HPC) environments often have
bursts of requests with very short inter-arrival times. These
workloads do not exhibit sufficiently long idle times [4, 6] to
accommodate GC operations. Examples of enterprise work-
loads that exhibit this behavior include online-transaction
processing applications, such as OLTP and OLAP [5, 26].
Furthermore, it has been found that HPC file systems are
routinely stressed with write requests of frequent and pe-
riodic checkpointing and journaling operations [27]. In a
study of HPC I/O workload characterization of the Spider
storage system at Oak Ridge National Laboratory, it was
observed that the bandwidth distributions are heavily long-
tailed [20]. Thus, in the real environment, most GC opera-
tions are triggered on-demand. Our preliminary experiment

 2

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

results, detailed in Section 2.1, and previous studies [21, 22]
observed that the GC operations can significantly degrade
the user performance for bursty write-dominant workloads.
All these studies have implied or shown that GC is a signifi-
cant performance concern for flash-based storage systems in
enterprise and HPC environments.
There are many studies in the literature addressing the

GC issues within flash-based SSDs, including different Flash
Translation Layer (FTL) designs [6, 18] and sophisticated
data layout schemes that exploit the workload characteris-
tics and internal parallelism [13, 17, 21, 23]. However, since
they only try to optimize the random write traffic to alle-
viate the GC-induced overhead, they all fail to consider the
contention for resources and adversary interference between
the user I/O traffic and the GC-induced I/O traffic. During
an ongoing GC process of a flash chip, any incoming user I/O
request to this chip will be delayed until the completion of
the GC. Thus, the GC process can significantly impede user
I/O performance by increasing their read and write queuing
delays.
On the other hand, in order to bridge the performance gap

between the upper-level host memory and the lower-level
flash storage, the flash-based SSDs are usually embedded
with an on-board buffer cache to smooth the user I/O traf-
fic. In other words, the on-board buffer cache has the capa-
bility of changing the user accesses seen by the flash chips by
absorbing bursty traffic and leveraging access locality with
an appropriate cache replacement policy. The existing cache
replacement policies, such as LRU and LAMA [11], are well
optimized to maximally reduce the buffer cache miss rate by
reducing the I/O traffic to the backend devices. The vari-
ants of these policies designed to improve GC efficiency, such
as BPLRU [19] and GC-ARM [10], only consider how to re-
place data blocks to improve the GC efficiency and are not
aware of the underlying GC operations within flash chips.
Thus, none of them takes the GC operations within flash
chips into consideration, making them insufficient and in-
effective in reducing the expensive I/O traffic to the flash
chips that are in the GC state. GC state indicates that
a flash chip is conducting garbage collection: coping valid
data from a block and erasing the block to free up the flash
space for subsequent write data. We argue that, to alleviate
the aforementioned contention and interference between the
user I/O traffic and GC-induced I/O traffic, the manage-
ment of the on-board buffer cache should be made aware of
the real-time GC activities within the flash chips.
In this paper, we propose a garbage collection aware cache

management, named GCaR, to substantially reduce the con-
tention and interference between the user I/O operations
and the GC I/O operations. The basic idea is to give a
higher priority to caching the blocks on the flash chips that
are in GC state. When replacing or destaging a data block
in the cache line, we will check whether the data block be-
longs to the flash chips that are in or will soon be in the GC
state. If so, the data block will be kept in the buffer cache
for a longer time until the GC completes. Otherwise, it will
be replaced or destaged as usual. Different from the existing
goal of the cache management aiming to reduce as many user
I/O requests as possible, the objective of GCaR is to reduce
as many “right” kind of I/O requests as possible to signifi-
cantly alleviate the contention and interference between the
user I/O operations and the GC-induced I/O operations.
We have integrated GCaR into the SSD extended Disksim

Cache Buffer

Processor

Flash

Demux

/Mux

H
o
st In

terface

C
o
n
tro
ller

Flash Chip Flash Chip

H
o
st

Flash Chip Flash Chip

Flash Chip Flash Chip

SSD Controller

Channel 0

Channel 1

Channel n

In
terface

Figure 1: Overview of a typical SSD showing its
internal cache buffer and flash chips.

simulator and conducted extensive evaluations. The perfor-
mance results show that GCaR can significantly improve the
storage performance by reducing the average response time
by up to 40.7%.

The rest of this paper is organized as follows. Background
and motivation are presented in Section 2. We describe the
design details of GCaR in Section 3. The performance eval-
uation is presented in Section 4 and the related work is pre-
sented in Section 5. We conclude this paper in Section 6.

2. BACKGROUND AND MOTIVATION
In this section, we first present the key performance char-

acteristics of SSDs most relevant to this research. Then
we discuss factors affecting and affected by cache efficiency
to motivate our proposed GC-aware cache management for
flash-based SSDs.

2.1 SSD basics
Unlike mechanical HDDs, flash-based SSDs are made of

silicon memory chips and do not have moving parts (i.e.,
mechanical positioning parts). Figure 1 illustrates a logical
overview of a typical SSD with n independent channels, each
channel is shared by multiple flash chips. Despite of the
high energy-efficiency and high random-read performance
advantages of flash-based SSDs, they have the following two
main unique non-HDD characteristics.

First, flash-based SSDs have asymmetric read-write-erase
performance [1, 16, 36]. Writing to NAND flash is a multi-
step process. In general, to write to cells that have exist-
ing data, one must first read the cells, which is followed
by erasing the cells and then programming (writing) to the
cells. In particular, SSDs suffer from the poor performance
of small random-write requests. This leads to erase/program
(writing over existing data) operations that are 2-3 orders
of magnitude slower than reads. Furthermore, there are
at least two types of NAND flash cells: Single-Level Cell
(SLC) and Multi-Level Cell (MLC). SLC can store a single
bit of data while MLC can store two or more bits. MLC can
store at least twice the amount of data compared to SLC.
But the read performance of MLC is twice as slow as SLC
as could be expected and the write performance is over 3
times slower. To better understand the performance of the
NAND flash chips, Table 1 shows the concrete examples of
the read-write-erase performance asymmetry and the per-
formance differences between SLC and MLC.

Second, GC is an important but expensive background
process in flash-based SSDs. GC eliminates the need to per-
form erasure of the whole block prior to every write. It ac-
cumulates data marked for erase as “Garbage” and performs

 3

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

0 10 20 30 40 50 60 70 80 90 100

Elapsed Time (s)

A
v
er
ag
e
R
es
p
o
n
se
 T
im
es
 (
m
s)

0

2

4

6

8

(a) Financial1

0

2

4

6

8

0 10 20 30 40 50 60 70 80 90 100

Elapsed Time (s)

A
v
er
ag
e
R
es
p
o
n
se
 T
im
es
 (
m
s)

(b) Prn 0

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Elapsed Time (s)

A
v
er
ag
e
R
es
p
o
n
se
 T
im
es
 (
m
s)

(c) Prxy 0

Figure 2: The microscopic analysis of the average response times driven by the realistic traces.

Table 1: Read/Write/Erase times for SLC/MLC
flash chips [1].

Operations SLC chips MLC chips
Random Read 25 us 50 us

Write 250 us 900 us
Erase 2 ms per block 2 ms per block

whole block erase as space reclamation in order to reuse the
block. The required GC operations in SSD significantly af-
fect the user I/O performance. The granularity of each read
or write operation is a page (2KB-4KB) while that of an
erase operation is a block (128KB-256KB). The execution
time of an erase operation is one or two orders of magnitude
more than that of a write or read operation respectively, as
shown in Table 1. The reason is that, for flash-based SSDs,
each block (128-256KB) must be erased in advance before
any part of it can be written, which is the characteristic fea-
ture of flash chips and known as“erase-before-write”. Due to
the sheer size of a block, an erase operation typically takes
milliseconds to complete. When the number of free blocks
in an SSD is smaller than a predetermined threshold, the
valid pages in the victim blocks (i.e., to be erased) must be
copied to a different free block before the victim blocks are
erased to create new free blocks (thus free pages), which is
called garbage collection. The GC process can significantly
degrade both read and write performance by increasing the
queuing times of the user requests.
Figure 2 shows the microscopic analysis of the average re-

sponse times driven by the three realistic traces on the Intel
DCS3700 200GB SSD. Before the evaluations, the SSD is
filled with the written data. We can see that larger laten-
cies are occurred due to the frequent GC operations. The
large latencies are orders of magnitude than that in the nor-
mal state without GC operations. Moreover, previous stud-
ies also have similar findings [21] and shown that GC can
render the SSD performance significantly variable and un-
predictable in high performance computing and enterprise
environments [15, 22]. The Solid State Storage Initiative
of SNIA has initiated a project named “Understanding SSD
Performance Project” [31], which has found that, along with
the performance evaluations, the performance of flash-based
SSDs also degrades dramatically. All these studies have re-
vealed that GC progress has a significantly impact on the
system performance.

2.2 Cache efficiency
Different storage devices, such as register, RAM, flash and

disk, have different performance characteristics. The buffer
cache is widely used in the storage systems to bridge the per-
formance gap between two neighboring layers of the storage
stack that have storage devices with very different perfor-
mance characteristics. The efficiency of the buffer cache can
be assessed by the average memory access time that depends
on the Hit Time, Miss Rate and Miss Penalty. The Aver-
age Memory Access Time (AMAT) is represented by the
equation 1:

AMAT = Hit T ime+Miss Rate ∗Miss Penalty (1)

Each of the three factors can be optimized to reduce the
AMAT. As shown in Figure 1, the on-board buffer cache
is made up of the DRAM whose access time is consistent,
meaning that the Hit Time is consistent. The existing op-
timizations are trying to reduce the Miss Rate as much as
possible by reducing the number of the user I/O requests ac-
tually passed to the backend flash chips by exploiting access
locality. They assume that the Miss Penalty is also consis-
tent because the direct access times from the flash chips are
almost the same. While this assumption is valid for HDDs,
it may not be fully validated for flash-based SSDs, as we
discussed in Section 2.1. The access times of the flash chips
can be quite different and varying depending on the presence
or absence of the GC operations. The access time to the
flash chip that is in the GC state will be much longer than
that to one not in the GC state, by up to orders of mag-
nitude. Thus we argue that for the on-board buffer cache
within flash-based SSDs, not only the Miss Rate, but also
the Miss Penalty should be considered in the buffer cache
management.

Previous studies on the power-aware cache management
scheme PB-LRU [37] and availability cache management
schemes VDF and Shaper [32, 35] also found that under
some conditions, the Miss Penalty to the backend HDDs are
different. For example, in PB-LRU [37], the access times on
the active disks and sleep disks are different. In disk ar-
rays with a faulty disk, the access times on the surviving
disks and the faulty disk are also different. Thus, PB-LRU,
Shaper and VDF take the Miss Penalty as an important
factor into their optimization considerations for the man-
agement of the buffer cache.

For the on-board buffer cache within the flash-based SSDs,
the access times on the flash chips with GC and without GC
are also different and more significantly so. However, the
existing cache replacement schemes, such as BPLRU [19]
and GC-ARM [10], only consider how to replace data blocks
to improve the GC efficiency and are not aware of the un-

 4

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

derlying GC operations within flash chips. Inspired by the
previous studies on the power-aware cache management [37]
and availability cache management [32, 35], we propose a
GC-aware replacement scheme for buffer cache management,
called GCaR, to improve the efficiency of the on-board buffer
cache within the flash-based SSDs. By considering not only
the Miss Rate, but also the Miss Penalty, the AMAT with
GCaR will be shown to significantly improve.

3. GCaR
In this section, we first outline the main principles guiding

the design of GCaR. Then we present a system overview
of the GCaR, followed by a description of the the cache
replacement and the buffer destaging algorithms in GCaR.

3.1 Design Principles
The design of GCaR aims to achieve high user perfor-

mance and high GC efficiency, as explained below.

• High user performance. Most of the existing on-
board buffer cache management schemes are designed
to reduce the miss rate by reducing the user I/O re-
quests delivered to the flash chips, oblivious of the
GC activities in these chips. Our GCaR buffer cache
management scheme is designed to be made garbage
collection-aware in that it not only considers the miss
rate, but also considers the GC-dependent miss penalty.
As a result, GCaR will be able to reduce the user av-
erage response time by keeping as many of the expen-
sive user I/O requests in the memory as possible, thus
avoiding the long waiting time on the flash chips that
are in the GC state.

• High GC efficiency. GCaR is designed to reduce
the contention and interference between the user I/O
requests and the GC-induced requests by keeping the
interfering user requests in memory. This enables the
GC operations to perform in the flash chips unimpeded
to significantly improve the GC efficiency.

3.2 System Overview
Figure 3 shows a system overview of our proposed GCaR

within the flash translation layer (FTL) of a flash-based SSD
on the system I/O path. The host consists of the applica-
tions, file system and block device driver. The SSD device
receives the read and write requests from the block device
driver through the host interface. The on-board buffer cache
management will check whether the requested data is in the
buffer cache. If so, they will be serviced by the on-board
buffer cache. Otherwise they will be issued to the backend
flash chips.
GCaR has three main functional modules: The cache re-

placement module, the buffer destaging module and the GC
scheduler module. The cache replacement and buffer destag-
ing modules will interact with the GC scheduler module to
determine what data should be replaced or destaged to re-
duce the miss penalty, as shown in Figure 3. The GC sched-
uler module has access to the real-time information about
whether a given flash is in the GC state or not by its in-
teraction with the FTL. There are three operations that are
issued from the FTL to flash chips: read, write and erase.
The GC process will invoke all the three operations within
the involved flash chips, which significantly and adversely
affects the user read and write performance. Thus the miss

Flash Chip Flash Chip

Flash Chip Flash Chip

Flash Chip Flash Chip

F
la
s
h
-b
a
s
e
d
 S
S
D

Flash Chip

Flash Chip

Flash Chip

GC
Scheduler

Buffer
Cache

Read Write Erase

Read Write

Block Device Driver

File Systems

Applications

Host

Device

GCaR

F
T
L

R
ep
la
ce
m
en
t

D
es
ta
g
e

Page Mapping

Garbage Collection

Wear Leveling

Figure 3: Overview of GCaR on the I/O path.

penalty to a flash chip in the GC state will be waiting for a
much longer time than that to one not in the GC state and
thus it is very expensive.

Different from the traditional buffer cache management
schemes for flash-based SSDs, GCaR not only exploits the
locality of workloads, but also takes the miss penalty as an
important design factor in the cache replacement and buffer
destage. Figure 4 shows the data structure in GCaR. We
can see that all the data blocks in the buffer cache are as-
sociated with an LRU list to capture the workload locality.
However, our scheme also can integrate with the data struc-
tures of schemes with other replacement algorithms, such
as CFLRU [28] and LAMA [11]. Moreover, the conversion
from the original cache algorithms to the GCaR-based algo-
rithms will be smooth, because GcaR takes effect only when
any of the flash chips are in the GC state. In other words,
the buffer cache is managed by the original algorithms in
the GC-free mode, and the GCaR policy becomes effective
only when GC operations occur.

Figure 4 shows an example of the LRU scheme with flash
chip 2 being in the GC state. Based on the LRU scheme,
block D7 at the end of LRU list should be evicted from the
buffer cache. However, by checking the logical-block-address
to physical-block-address (LBA-PBA) mapping information,
block D7 is in flash chip 2 that is in the GC state, the GCaR
scheme will thus keep it longer in the buffer cache and in-
stead evict block D5 to free buffer space. Furthermore and
importantly, when a flash chip is in the GC state, the buffer
space allocated to that flash chip is also increased to further
reduce the miss rate because of the significantly increased
miss penalty in a chip in the GC state. In the following
two subsections, we will illustrate the cache replacement and
buffer destaging schemes in GCaR in more detail.

 5

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Flash Chips

Buffer Cache

D1

D7

D3 D5

In GC

D1 D3 D4 D7D5

LRU list

Chip 1 Chip 2 Chip 3 Chip nData

Structure

D4

Replaced
or

Destaged

Chip 1 Chip 2 Chip 3 Chip n

Figure 4: The data structure in GCaR.

3.3 Cache replacement
Traditional cache replacement algorithms by and large are

designed to reduce the miss rate on the cache by exploiting
request access locality while assuming that the penalty of
each miss at the same level is of the same constant value.
However, in flash-based SSDs with GC operations, the penalty
of a miss to the missing data in the flash chips that are in the
GC state are likely to be much more expensive than that of a
miss to the flash chips not in the GC state. Therefore, from
the aspect of an SSD device, the buffer cache performance
should not be simply evaluated by the traditional metrics
such as hit ratio or miss ratio. To address this issue, the
cache replacement in GCaR takes not only the hit rate, but
also the miss penalty as an important design parameter. A
detailed description of the cache replacement algorithm in
GCaR is given in Algorithm 1.
Upon receiving a read request, the GCaR scheme will

check whether it hits the cache. If yes, the cached data will
be returned. Otherwise, it will be fetched from the flash and
the free cache space availability will be checked. If the cache
is full, GCaR will replace data blocks to make free space for
the new fetched data. The data blocks at the LRU tail will
be checked to make sure that the evicted data blocks do not
belong to the flash chips that are in the GC state. Once
determined, the new fetched data from flash will be kept in
the cache and the LRU list is updated. If the cache has free
space, the new fetched data from flash will be written to
the cache directly and the LRU list is updated. After the
requested data is fetched from the flash to the cache, it will
be returned to the upper layer.
Since the miss penalty on the flash chips that are in the

GC state is orders of magnitude larger than the miss penalty
on the flash chips not in the GC state, the data blocks be-
longing to the former will be given a higher priority of being
retained in cache. When encountering a read miss and in
need of replacing an existing data block in the cache, the
data block from the tail of the LRU list not given the higher
priority (i.e., not belonging the a chip in the GC state) will
be selected as a victim data block. As shown in Figure 4,
since data block D7 belongs to the flash chip 2 that is in the
GC state, data block D5 belonging to flash chip n (not in
the GC state) will be evicted from the cache to free buffer

Algorithm 1 Cache replacement algorithm in GCaR

1: Input: the user read requests R 1, R 2, ... R i, ...
2: procedure GCaR LRU Replace(R i)
3: if R i is LRU List then
4: /*A cache hit case*/
5: Return from cache(R i)
6: else
7: /*A cache miss case*/
8: if Cache is full then
9: repeat Get bottom item in LRU List: L x
10: if L x belongs to the GC-flash-chip then
11: x = x-1
12: else
13: Delete(LRU List, L x)
14: Return from flash(R i)
15: Update(LRU List, R i)
16: break
17: end if
18: until x == 0
19: else
20: Return from flash(R i)
21: Update(LRU List, R i)
22: end if
23: end if
24: end procedure

space.
The GC operations are controlled and scheduled by the

FTL within flash-based SSDs. The GC scheduler module in
GCaR is responsible for getting the GC state information
of each chip. Based on the GC state of a given chip, the
GCaR can check whether a cache block to be replaced be-
longs to the flash chips that are in the GC state. In a real
environment, the GC operations are triggered dynamically
for each flash chips. Thus the priority of a data block in the
cache also changes dynamically according to the underlying
GC operations. Adding and updating a priority tag in the
metadata for each of the cached data blocks can introduce
a significant performance overhead. In our current design,
the check for the GC state only happens when a data block
needs to be replaced to avoid the metadata update overhead.

3.4 Buffer destaging
Buffer is an important storage pool to absorb and filter

the write traffic from the upper level before going to the
flash chips. For performance purposes, the buffer is usually
set up with a write-back scheme. If the buffer space is un-
limited, then the write performance will be the same as the
memory speed. However, due to the cost and power issues,
the buffer space is limited. The existing buffer management
schemes concentrate on first merging random writes into se-
quential ones to improve both the write performance when
destaging to the chips and the GC efficiency by reducing the
GC-induced I/O traffic [19, 10]. However, these schemes, be-
ing unaware of the GC state of the involved chips, are only
beneficial when writing to chips not in the GC state and are
unable to improve the user write performance during GC
operations.

The buffer destaging scheme in GCaR takes the GC op-
erations into consideration by first detaging data blocks be-
longing to the flash chips that are not in the GC state. To
make free space for the subsequent write data on the flash

 6

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Algorithm 2 Buffer destage algorithm in GCaR

1: Input: the user write requests W 1, W 2, ... W i, ...
2: procedure GCaR LRU Destage(W i)
3: if W i is LRU List then
4: /*A buffer hit case*/
5: Write to buffer(W i)
6: else
7: /*A buffer miss case*/
8: if Buffer is full then
9: repeat Get bottom item in LRU List: L x
10: if L x belongs to the GC-flash-chip then
11: x = x-1
12: else
13: Write to flash(D x)
14: Delete(LRU List, L x)
15: Write to buffer(W i)
16: Update(LRU List, W i)
17: break
18: end if
19: until x == 0
20: else
21: Write to buffer(W i)
22: Update(LRU List, W i)
23: end if
24: end if
25: end procedure

chips that are in the GC state, the GCaR scheme will al-
locate much more buffer space to temporally store all the
write data blocks belonging to the flash chips that are in
the GC state. Once a flash chip completes its GC process,
the corresponding data blocks belonging to that flash chip
will be destaged. By avoiding issuing the user write traffic
to the flash chips that are in the GC state, both the GC
efficiency and the user write performance can be improved.
Algorithm 2 provides a detailed description of the buffer

destaging scheme in GCaR. Once a write request arrives,
the GCaR scheme will check whether it hits the buffer. If
yes, the buffered data will be updated. Otherwise, the buffer
free space availability will be checked. If the buffer is full,
GCaR will destage data blocks to make free space for the
new write data. The data blocks at the LRU tail will be
checked to make sure that the destaged data blocks do not
belong to the flash chips that are in the GC state. Once
determined, the evicted data blocks will be written to the
flash chips that are not in the GC state. The new write data
will be kept in the buffer and the LRU list is updated. If
the buffer has free space, the new write data will be written
to the buffer directly and the LRU list is updated.

4. PERFORMANCE EVALUATIONS
In this section, we first describe the experimental setup

and methodology. Then we evaluate the performance of
GCaR through both benchmark-driven and trace-driven eval-
uations.

4.1 Experimental setup and methodology
To evaluate the efficiency of our proposed GCaR scheme,

we have implemented a prototype of the GCaR scheme by
integrating it into an open-source SSD simulator developed
by Microsoft Research (MSR) [1]. The MSR SSD simula-

Table 2: The default SSD model parameters.
Parameter Value

Total Capacity 28GB
Reserved Free Blocks 15%
Minimum Free Blocks 5%

Cleaning Policy Greedy
Flash Chip Elements 7
Planes Per Package 8
Blocks Per Plane 1024
Pages Per Block 64

Page Size 4KB

Page Read Latency 25 us
Page Write Latency 200 us
Block Erase Latency 1.5 ms

tor, an extension of Disksim from the Parallel Data Lab of
CMU [3], has been released to the public and widely used to
evaluate the performance of the SSD-based storage systems
in many studies [1, 22, 34]. In this paper, we extend the
original Disksim and the MSR SSD simulator to implement
our proposed GCaR scheme. The values of the SSD specific
parameters used in the simulator are shown in Table 2.

We use both the synthetic traces and the realistic enterprise-
scale workloads to study the performance impact of the dif-
ferent buffer cache schemes. The synthetic workloads allow
us to flexibly vary parameters such as request size, inter-
arrival time of requests, read access probability, and sequen-
tiality. The default values of the parameters that we use in
our experiments are shown in Table 3. The three realistic
enterprise-scale workloads were collected from the Microsoft
Cambridge Research [2]. The main workload parameters of
these traces are summarized in Table 4.

Table 3: The default parameters of synthetic traces.
Parameter Value
Request size 32KB

Inter-arrival time 4ms
Probability of sequential access 0

Probability of read access 0.2

In the evaluations, we have integrated our proposed GCaR
scheme with the LRU, CFLRU [28], and BPLRU [19] schemes,
with the resulting GCaR-based schemes being labeled GCaR-
LRU, GCaR-CFLRU, and GCaR-BPLRU respectively. We
compare the performances of these GCaR based schemes
with LRU, CFLRU, and BPLRU schemes in terms of the
average response time. The LRU scheme is the baseline for
all the other schemes. The main features of the CFLRU and
BPLRU schemes are summarized below.

• CFLRU (Clean First LRU) [28] is a buffer cache man-
agement algorithm for flash storage. It was proposed
to exploit the asymmetric performance of flash mem-
ory read and write operations. It attempts to choose a
clean page rather than a dirty one as a victim because
writing cost of the latter is much more expensive.

• BPLRU (Block Padding LRU) [19] aims to improve
the random-write performance of SSDs. It combines
three key techniques, block-level LRU management,
page padding, and LRU compensation to convert ran-
dom write requests to sequential ones.

 7

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Table 4: The realistic workload characteristics.
Traces Write Ratio Total I/Os Average Request Size (KB)

Financial1 76.8% 5,334,981 8.5
Prn 0 89.2% 5,585,886 22.2
Prxy 0 97.1% 5,000,000 6.8

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

LRU

GCaR-LRU

CFLRU

GCaR-CFLRU

BPLRU

GCaR-BPLRU

N
o
rm

al
iz
ed

 A
v
er
ag

e
R
es

p
o
n
se

 T
im

es

Buffer Size (MB)

Figure 5: The average response times, normalized to
that of the LRU scheme with a 1MB buffer, under
the synthetic workloads.

4.2 Performance results
Synthetic workloads: Figure 5 shows the average re-

sponse times, normalized to that of the baseline with a buffer
size of 1 MB, of the different schemes as a function of the
buffer size, driven by the synthetic workloads. We can see
that GCaR-based schemes reduce the average response times
by 35.9%, 32.1%, and 30.6% on average compared with the
LRU, CFLRU, and BPLRU schemes respectively. It is clear
that, by avoiding issuing GC-conflicting user requests to the
flash chips in the GC state, all the GCaR-based schemes are
able to significantly reduce user response times. The results
indicate that GC operations have a significant impact on the
user response times. On the other hand, as expected, the
average response times decrease as the buffer size increases.
When the buffer size is larger than 4 MB, the response times
become stable. However, the improvements of the GCaR-
based schemes over their original ones are also consistent.
For example, GCaR-LRU reduces the average response time
of the LRU scheme by 40.7% when the buffer size is 32 MB.
With a larger buffer size, GCaR-LRU scheme can keep data
blocks belonging to the flash chip in the GC state in mem-
ory without scarifying too much data access locality of other
blocks.
To better understand the reasons behind the above re-

sults, we examine the cache hit rate and GC count mea-
sures collected in the simulation study, as shown in Figure 6
and Figure 7. Figure 6 shows that the LRU scheme has
the highest cache hit rate under the different buffer sizes,
though the differences are not significant. The reason is ob-
vious. Among all the schemes, the LRU scheme is the only
one that tries exclusively to exploit the access locality to
improve the cache hit rate. The other schemes try to im-
prove the GC efficiency or reduce the miss penalty. Thus,
the access locality may be sacrificed to some extend. How-

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32

LRU

GCaR-LRU

CFLRU

GCaR-CFLRU

BPLRU

GCaR-BPLRU

Buffer Size (MB)

C
ac
h
e
H
it
 R
at
e

Figure 6: The cache hit rate of the different cache
schemes as a function of the buffer size, driven by
the synthetic workloads.

ever, their designs are based on the LRU scheme, the overall
hit rates are not reduced significantly. On the other hand,
the cache hit rates are not consistent with the average ac-
cess times, as shown in Figure 5. This phenomenon further
implies that cache hit rate is not the only influential factor
affecting the overall performance. It is also the reason why
cache hit rate should not be the only design objective of an
effective cache scheme for flash storage.

Figure 7 shows the GC count of the different cache schemes
as a function of the buffer size, driven by the synthetic work-
loads. First, compared with the LRU scheme, both the
CFLRU and BPLRU schemes reduce the GC count signif-
icantly under the different buffer sizes, especially when the
buffer size is small. BPLRU reduces the total GC count of
the LRU scheme by up to 11.2%. It confirms that reducing
GC count can significantly improve the overall system per-
formance. In other words, the GC operations have a signif-
icant impact on the overall system performance. Second, it
is interesting to notice that, while the GCaR-based schemes
have similar GC counts to their non-GCaR counterparts,
the former’s average response times are much better than
the latter’s. The reason is that the GCaR-based schemes
do not try to further improve the GC efficiency, but instead
try to reduce the interference between the user I/O requests
and GC-induced I/O requests. Although the GC efficiency
is not further improved by the GCaR-based schemes, the re-
sponsiveness to the user I/O requests has been significantly
improved. The overall system performance in terms of the
average response time is also improved accordingly. Third,
the GCaR-based schemes achieve their superiority in over-
all performance without sacrificing advantages of their non-
GCaR counterparts, as shown in Figure 5. In other words,
the GCaR scheme is orthogonal and complementary to these
existing schemes. This is because the GCaR scheme only

 8

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

46000

48000

50000

52000

54000

56000

58000

60000

62000

1 2 4 8 16 32

Buffer Size (MB)

G
C
 C
o
u
n
t

LRU

GCaR-LRU

CFLRU

GCaR-CFLRU

BPLRU

GCaR-BPLRU

Figure 7: The GC count of the different cache
schemes as a function of the buffer size, driven by
the synthetic workloads.

takes the GC activities into the buffer cache design, with-
out changing the original cache algorithm in the normal op-
erational (non-GC) state. The extra resource overhead is
minimal. Thus the other schemes can be easily extended to
be the GCaR enhanced schemes to improve system perfor-
mance.
Real application traces: Figure 8 shows the average

response times of the different schemes driven by the three
traces when the buffer size is 1 MB. The GCaR-based cache
schemes perform much better than the their non-GCaR coun-
terparts, especially for the Prn 0 and Prxy 0 workloads for
which the improvements are on average 25.9% and 15.0%
respectively. The reason is that for the Prn 0 and Prxy 0
workloads, the write ratio is high and the request size is
large, which means that much more data is written to the
flash chips than workloads with low write ratios and small
request sizes. Also note that the GC operations are much
more frequent than those in the Financial workload. As a
result, the GCaR-based schemes, capable of issuing much
fewer GC-conflicting user requests to the chips in the GC
state, are able to significantly reduce the overall user re-
sponse times.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Financial1 Prn_0 Prxy_0

LRU

GCaR-LRU

CFLRU

GCaR-CFLRU

BPLRU

GCaR-BPLRU

A
v
er
ag
e
R
es
p
o
n
se
 T
im

es
 (
m
s)

Figure 8: The average response times under the re-
alistic trace-driven evaluations.

We now examine the cache hit rates of the different schemes
driven by the three traces, normalized to that of the baseline
with the LRU scheme. Figure 9 shows that, similar to the
case of synthetic workloads, the LRU scheme outperforms

0

0.2

0.4

0.6

0.8

1

Financial1 Prn_0 Prxy_0

N
o
rm
al
iz
ed
 C
ac
h
e
H
it
 R
at
e

LRU

GCaR-LRU

CFLRU

GCaR-CFLRU

BPLRU

GCaR-BPLRU

Figure 9: The cache hit rates, normalized to that of
the baseline scheme (LRU), under the trace-driven
evaluations.

all the schemes in the cache hit rate measure, although its
advantage is only marginal. On the other hand, compared
with the results of the average response times in Figure 8,
the cache hit rate is not consistent with the average response
times. The reason is obvious in that the miss penalty is not
consistent for flash chips, e.g., much higher penalty on chips
in the GC state than on non-GC chips. On the other hand,
we also collect the GC count during the experiments. Fig-
ure 10 shows that request access delays caused by the GC
operations are an influential part of the average response
times. Thus, with the real application workloads we obtain
consistent results with and the same conclusion as with the
synthetic workloads.

0

0.2

0.4

0.6

0.8

1

1.2

Financial1 Prn_0 Prxy_0

T
h
e
N
o
rm
al
iz
ed
 G
C
 C
o
u
n
t

LRU

GCaR-LRU

CFLRU

GCaR-CFLRU

BPLRU

GCaR-BPLRU

Figure 10: The GC counts, normalized to that of
the baseline scheme (LRU), under the trace-driven
evaluations.

4.3 Sensitivity study
The cache performance in the presence of GC operations is

affected by various factors, such as the high/low watermark
(defined below) and the request size. In order to evaluate
their impact on the system performance, we carry out several
sensitivity studies driven by the synthetic workloads. Here
we only report results that compare GCaR-CFLRU with
CFLRU for simplicity, since all the other schemes share the
same trend.

 9

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

0

0.5

1

1.5

2

2.5

3

6% 7% 8% 9% 10%

CFLRU GCaR-CFLRU

The High Watermark Values

T
h
e
N
o
rm
al
iz
ed
 R
es
p
o
n
se
 T
im
es

Figure 11: The average response time, normalized to
that of the baseline with CFLRU scheme under 6%
high watermark, as a function of the high watermark
value, driven by the synthetic workloads.

High watermark. The high watermark is the threshold
on the number of available free blocks in a flash chip, below
which a GC operation within chip will be triggered. It is
set by default at 5% of the total number of blocks in a chip,
as shown in Table 2. Figure 11 shows the average response
time, normalized to that of the baseline with CFLRU scheme
under 6% high watermark, as a function of the high water-
mark values driven by the synthetic workloads. It shows
that the overall response time increases with high water-
mark value. The reason is that with a higher watermark,
the GC operations will be triggered more frequently and
thus more blocks will be erased to free up the invalid blocks,
which in turn increases the interference between the user IO
requests and GC-induced IO requests. However, the GCaR
scheme is shown to be much less affected by the change in
the high watermark value than the CFLRU scheme. The
reason is that the GCaR scheme tries to alleviate the ef-
fect of GC operations on the user performance. Thus the
GC operation overhead on the system performance in the
GCaR-based scheme is much less than the CFLRU scheme.

Request size. Figure 12 shows the average response
time, normalized to that of the baseline with the CFLRU
scheme with a request size of 4 KB, as a function of the re-
quest size, driven by the synthetic workloads. It shows that
as request size increases, so does the response time. The
reasons are two-fold. First, with a larger request size, the
transfer time is also longer since the response time is lin-
early increased with the increased request size [25]. Second,
with a larger request size, the overall written data size is in-
creased. Thus the available free space is also decreased much
faster, which causes the GC operations to be triggered more
frequently. Nevertheless, the GCaR-CFLRU scheme consis-
tently outperforms the CFLRU scheme in overall response
time regardless of the request size.

5. RELATED WORK
Buffer cache is one of the most important and effective

performance optimizations in storage systems [7]. Its man-
agement is well studied in the literature and a large num-
ber of cache algorithms have been proposed. Most of them
aim to improve the HDD-based storage systems. However,
due to the different performance characteristics, the cache

0

0.5

1

1.5

2

4 8 16 32

T
h
e
N
o
rm
al
iz
ed
 R
es
p
o
n
se
 T
im
es

The Request Sizes (KB)

CFLRU

GCaR-CFLRU

Figure 12: The average response time, normalized
to that of the baseline with CFLRU scheme with a
request size of 4KB, as a function of the request size,
driven by the synthetic workloads. Note: CFLRU
under 4KB request size is the baseline scheme.

schemes for HDDs are not suitable for flash-based SSDs [10,
19, 28].

Based on the asymmetric performance of read and write
operations of flash memory, CFLRU [28] divides the LRU list
into the working region and the clean-first region, and adopts
a policy that evicts clean pages preferentially in the clean-
first region until the number of pages hit in the working
region reaches a suitable level. Their experiments show that
CFLRU is able to reduce the average replacement cost by
26% in the buffer cache compared to the traditional LRU
algorithm. CFLRU reduces the number of writes by trading
off the number of reads. However, this is irrelevant when
only write requests are involved. The Flash Aware Buffer
policy (FAB) [14] groups the data pages belonging to the
same erasable block together and manages with an LRU
list. A group is moved to the beginning of the list when
a buffer in the group is read or updated, or a new buffer
is added to the group. When replacing a cache line out of
the memory, a group that has the largest number of data
blocks is selected as victim. All the dirty data blocks in the
victim group are flushed, and all the clean data blocks in it
are discarded. The main use of FAB is in portable media
player applications in which the majority of write requests
are sequential. However, both CFLRU and FAB are not
useful for enhancing random write performance.

To address the random-write performance issue, BPLRU [19]
is proposed. It manages a LRU list in the unit of NAND-
flash erasable block and pads a log block with some clean
pages from the data block to reduce the number of full
merges. However, it fails to consider the cost of extra padding
operations, which can degrade the performance significantly
and become a performance bottleneck particularly when the
buffer is much smaller than the working set. PUDLRU (Pre-
dicted average Update Distance LRU) [9] partly solves this
problem by carefully considering the average update dis-
tance and the fullness of the buffered blocks and then select-
ing one as victim. The extended GC-ARM [10] dynamically
destages either contiguous pages in a block as a whole or
a single page from the write buffer based on the benefit to
improve GC efficiency.

Some studies also try to dynamically allocate buffer space
between mapping table and user data to improve system
performance. Hyotaek et al. [29] propose an adaptive RAM
partitioning scheme for SSDs, which adaptively tunes the

 10

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Table 5: The related studies with GCaR and their differences.
Schemes Devices Objective Comments

PB-LRU [37] HDDs Power efficiency Miss penalties on the active and sleeping disks are different
VDF [32] HDDs Availability Miss penalties on the active and faulty disks are different

BPLRU [19] SSDs Performance Improving GC efficiency proactively but unaware of run-time GCs
GC-ARM [10] SSDs Perf. & Reliability Improving GC efficiency proactively but unaware of run-time GCs

GCaR SSDs Performance Miss penalties in run-time GC-active and GC-inactive chips are different

space ratio of the data buffer and mapping table according
to the workload characteristics. Hu et al. propose PASS [12],
which judiciously and actively writes an appropriate amount
of the buffered data back to flash by exploiting the light-
traffic periods of workloads and the parallelism inside SSDs
to avoid real-time flash operations and buffer overflow dur-
ing bursty-traffic periods. These space management schemes
only adaptively change the space allocation ratio between
the mapping table and the write data according the work-
load characteristics. Thus the cache management algorithms
for the user data are not affected.
All these schemes work well in the normal state when

there are no GC operations in process within the flash chips.
Whenever a GC operation is triggered on a particular flash
chip, most of the assumptions made for these schemes are
no longer valid. For example, the response time of a read
request on an ongoing GC-based flash chip is much longer
than that of a write request on a flash chip without GC op-
erations. Thus, the CFLRU scheme, for example, will lose
its key efficiency. Other optimizations, such as BPLRU,
PUDLRU, and GC-ARM, only proactively improve the GC
efficiency by reducing the amount of random write data
blocks. Their main and shared objective is to improve the
GC efficiency by optimizing the GC workflow. However,
GCaR improves the GC efficiency by avoiding the contention
between user requests and GC-induced requests. Dynamic
allocation scheme [30] is trying to avoid the resource con-
tention between the user I/O requests and the GC-induced
requests. However, dynamic allocation needs extra mem-
ory to store the mapping information and changes the data
layout on flash chips, which may affect the GC efficiency.
Moreover, our GCaR scheme works not only for write re-
quests, but also for read requests. Thus, our proposed GCaR
scheme is orthogonal to and can be easily incorporated into
the most existing cache management algorithms to further
improve system performance.
Since the main objective of most cache algorithms pro-

posed for HDD-based storage systems is performance, once
the objective is changed, their management is also changed.
For example, PB-LRU [37] takes the power saving rather
performance as the design objective and dynamically allo-
cates different buffer space for different disks based on the
power state, because the miss penalties to the active disk
and sleeping disk are different. VDF and Shaper [32, 35] are
cache management schemes for disk arrays under disk fail-
ure. In this condition, the miss penalties to the active disks
and the faulty disk are different. Thus they give higher
priority for the data blocks belonging to the faulty disk in
buffer cache to alleviate the disk contention between the user
I/O requests and the reconstruction-induced I/O requests.
Our proposed GCaR is inspired by the PB-LRU, VDF and
Shaper schemes, but works for the flash-based SSDs with dif-
ferent design objectives. Table 5 presents a summary com-
parison among the related studies and GCaR.

6. CONCLUSION
With the widening gap between the speeds of the proces-

sor/memory and the HDDs, the I/O access latency has be-
come the system performance wall. Flash-based SSDs have
emerged to be a promising technology to bridge this gap to
reduce the access latency in the high performance computing
environment and enterprise data centers. However, GC is a
significant performance concern for flash-based storage sys-
tems in enterprise and HPC environments. In this paper,
we propose a Garbage Collection aware Replacement pol-
icy, called GCaR, to improve the performance of flash-based
SSDs. The basic idea is to give higher priority to caching
the data blocks belonging to the flash chips that are in the
GC state. This substantially lessens the contentions between
the user I/O operations and the GC-induced I/O operations.
We have integrated GCaR into the SSD extended Disksim
simulator and conducted extensive evaluations. The per-
formance results show that GCaR can significantly improve
the storage performance by substantially reducing the afore-
mentioned contentions.

Our proposed GCaR is an ongoing research project and
we are currently exploring several directions for the future
work. First, we will build a hardware platform to incor-
porate our GCaR scheme within the FTL design in flash-
based SSDs and conduct many more experiments on the
prototype. Second, we will extend the GCaR scheme into
the semi-preemptive garbage collector [22] to increase the
GC efficiency. By improving the efficiency of both the GC-
induced I/O operations and user I/O requests, the overall
system performance will be further improved.

7. ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China under Grant No. 61100033, No. 61472336
and No. 61402385, US NSF under Grant No. NSF-CNS-
1116606 and NSF-CNS-1016609, Fundamental Research Funds
for the Central Universities (No. 20720140515).

8. REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis,

M. Manasse, and R. Panigrahy. Design Tradeoffs for
SSD Performance. In Proceedings of the 2008 USENIX
Annual Technical Conference (USENIX’08), Boston,
MA, Jun. 2008.

[2] Block I/O Traces in SNIA.
http://iotta.snia.org/tracetypes/3.

[3] J. Bucy, J. S. Schindler, S. W. Schlosser, and G. R.
Ganger. The DiskSim Simulation Environment
Version 4.0 Reference Manual. May 2008.

[4] A. M. Caulfield, J. Coburn, T. Mollov, A. De,
A. Akel, J. He, A. Jagatheesan, R. K. Gupta,
A. Snavely, and S. Swanson. Understanding the
Impact of Emerging Non-Volatile Memories on

 11

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

High-Performance, IO-Intensive Computing. In
Proceedings of the 2010 International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC’10), New Orleans, LA, Nov. 2010.

[5] F. Chen, D. A. Koufaty, and X. Zhang. Hystor:
Making the Best Use of Solid State Drives in High
Performance Storage Systems. In Proceedings of the
25th International Conference on Supercomputing
(ICS’11), Tucson, AZ, USA, Jun. 2011.

[6] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash
Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. In
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’09), Washington, DC,
USA, Mar. 2009.

[7] W. W. S. Hsu and A. J. Smith. The Performance
Effect of I/O Optimizations and Disk Improvements.
IBM Journal Research and Development,
48(2):255–289, 2004.

[8] J. Hu, H. Jiang, and Prakash. Understanding
Performance Anomalies of SSDs and Their Impact in
Enterprise Application Environment. In Proceedings of
the 12th Joint ACM SIGMETRICS/Performance
Conference (SIGMETRICS’12), London, UK, Jun.
2012.

[9] J. Hu, H. Jiang, L. Tian, and L. Xu. PUD-LRU: An
Erase-Efficient Write Buffer Management Algorithm
for Flash Memory SSD. In Proceedings of The 18th
Annual Meeting of the IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems
(MASCOTS’10), Aug. 2010.

[10] J. Hu, H. Jiang, L. Tian, and L. Xu. GC-ARM:
Garbage Collection-Aware RAM Management for
Flash based Solid State Drives. In Proceedings of the
7th IEEE International Conference on Networking,
Architecture, and Storage (NAS’12), Jun. 2012.

[11] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding,
S. Jiang, and Z. Wang. LAMA: Optimized
Locality-aware Memory Allocation for Key-value
Cache. In Proceedings of 2015 USENIX Annual
Technical Conference (USENIX’15), Santa Clara, CA,
USA, Jun. 2015.

[12] Y. Hu, H. Jiang, D. Feng, H. Luo, and L. Tian. PASS:
A Proactive and Adaptive SSD Buffer Scheme for
Data-Intensive Workloads. In Proceedings of The 10th
IEEE International Conference on Networking,
Architecture, and Storage (NAS’15), Aug. 2015.

[13] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and
S. Zhang. Performance Impact and Interplay of SSD
Parallelism through Advanced Commands, Allocation
Strategy and Data Granularity. In Proceedings of the
25th International Conference on Supercomputing
(ICS’11), Tucson, AZ, USA, Jun. 2011.

[14] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee. FAB:
Flash-Aware Buffer Management Policy for Portable
Media Players. IEEE Transactions on Consumer
Electronics, 52(2):485–493, 2006.

[15] M. Jung, W. Choi, J. Shalf, and M. Kandemir.
Triple-a: A non-ssd based autonomic all-flash array for
scalable high performance computing storage systems.

In Proceedings of 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’14), Salt Lake City,
Utah, Mar. 2014.

[16] M. Jung, W. Choi, S. Srikantaiah, J. Yoo, and
M. Kandemir. Hios: A host interface i/o scheduler for
solid state disks. In Proceedings of the 41st
International Symposium on Computer Architecture
(ISCA’14), Minneapolis, MN, Jun. 2014.

[17] M. Jung and M. Kandemir. Sprinkler: Maximizing
resource utilization in many-chip solid state disks. In
Proceedings of the 20th IEEE International Symposium
On High Performance Computer Architecture
(HPCA’14), Orlando, Florida, USA, Feb. 2014.

[18] M. Jung, R. Prabhakar, and M. Kandemir. Taking
Garbage Collection Overheads off the Critical Path in
SSDs. In Proceedings of the ACM/IFIP/USENIX 13th
International Conference on Middleware
(Middleware’12), Montreal, Quebec, Canada, Dec.
2012.

[19] H. Kim and S. Ahn. BPLRU: a Buffer Management
Scheme for Improving Random Writes in Flash
Storage. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST’08), San
Jose, CA, Feb. 2008.

[20] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A.
Dillow, Z. Zhang, and B. W. Settlemyer. Workload
Characterization of a Leadership Class Storage. In
Proceedings of the 5th Petascale Data Storage
Workshop Supercomputing (PDSW’10), New Orleans,
LA, Nov. 2010.

[21] Y. Kim, S. Oral, G. M. Shipman, J. Lee, D. A. Dillow,
and F. Wang. Harmonia: A Globally Coordinated
Garbage Collector for Arrays of Solid-state Drives. In
Proceedings of the 27th IEEE Symposium on Mass
Storage Systems and Technologies (MSST’11), Denver,
CO, May 2011.

[22] J. Lee, Y. Kim, G. Shipman, S. Oral, F. Wang, and
J. Kim. A Semi-Preemptive Garbage Collector for
Solid State Drives. In Proceedings of the 2011 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS’11), Austin, TX, Apr.
2011.

[23] B. Mao, H. Jiang, S. Wu, Y. Fu, and L. Tian. Sar: Ssd
assisted restore optimization for deduplication-based
storage systems in the cloud. In Proceedings of 7th
IEEE International Conference on Networking,
Architecture, and Storage (NAS’12), Xiamen, China,
Jun. 2012.

[24] B. Mao, H. Jiang, S. Wu, L. Tian, D. Feng, J. Chen,
and L. Zeng. HPDA: A Hybrid Parity-based Disk
Array for Enhanced Performance and Reliability.
ACM Transactions on Storage, 8(1):1–20, 2012.

[25] B. Mao and S. Wu. Exploiting Request Characteristics
and Internal Parallelism to Improve SSD Performance.
In Proceedings of the 33rd IEEE International
Conference on Computer Design (ICCD’15), Oct.
2015.

[26] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety,
and A. Rowstron. Migrating Server Storage to SSDs:
Analysis of Tradeoffs. In Proceedings of the 4th
European Conference on Computer Systems

 12

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(EuroSys’09), Nuremberg, Germany, Mar. 2009.

[27] S. Oral, F. Wang, D. A. Dillow, G. M. Shipman, and
R.Miller. Efficient Object Storage Journaling in a
Distributed Parallel Filesystem. In Proceedings of the
8th USENIX Conference on File and Storage
Technology (FAST’10), San Jose, CA, Feb. 2010.

[28] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee.
CFLRU: a Replacement Algorithm for Flash Memory.
In Proceedings of the 2006 International Conference
on Compilers, Architecture and Synthesis for
Embedded Systems (CASES’06), Oct. 2006.

[29] H. Shim, B. Seo, J. Kim, and S. Maeng. An Adaptive
Partitioning Scheme for DRAM-based Cache in Solid
State Drives. In Proceedings of the 26th IEEE
Symposium on Mass Storage Systems and
Technologies (MSST’10), May 2010.

[30] A. Tavakkol, M. Arjomand, and H. Sarbazi-Azad.
Unleashing the potentials of dynamism for page
allocation strategies in ssds. In Proceedings of the
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS’14), Austin, TX, USA, Jun. 2014.

[31] Understanding SSD Performance Project of SNIA.
http://www.snia.org/forums/sssi/pts.

[32] S. Wan, Q. Cao, J. Huang, S. Li, X. Li, S. Zhan,
L. Yu, C. Xie, and X. He. Victim Disk First: An
Asymmetric Cache to Boost the Performance of Disk
Arrays under Faulty Conditions. In Proceedings of the
2011 USENIX Annual Technical Conference
(USENIX’11), Portland, OR, Jun. 2011.

[33] W. Wang, T. Xie, and D. Zhou. Understanding the
impact of threshold voltage on mlc flash memory
performance and reliability. In Proceedings of the 2014
International Conference on Supercomputing (ICS’14),
Muenchen, Germany, Jun. 2014.

[34] G. Wu and B. He. Reducing SSD Read Latency via
NAND Flash Program and Erase Suspension. In
Proceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST’12), San Jose, CA,
Feb. 2012.

[35] S. Wu, B. Mao, D. Feng, and J. Chen.
Availability-Aware Cache Management with Improved
RAID Reconstruction Performance. In Proceedings of
13th IEEE International Conference on
Computational Science and Engineering (CSE’10),
Hong Kong, Dec. 2010.

[36] X. Zhang, J. Li, H. Wang, K. Zhao, and T. Zhang.
Reducing Solid-State Storage Device Write Stress
through Opportunistic In-place Delta Compression. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST’16), Feb. 2016.

[37] Q. Zhu, A. Shankar, and Y. Zhou. PB-LRU: A
Self-tuning Power Aware Storage Cache Replacement
Algorithm for Conserving Disk Energy. In Proceedings
of the 18th Annual International Conference on
Supercomputing (ICS’04), Malo, France, Jun. 2004.

