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Abstract—Mobile databases and key-value stores provide con-
sistency and durability through write-ahead logging. The tradi-
tional logging scheme appends the log records to the end of
the log file and flushes the records to durable storage using
fsync(). Due to the large block size of the underlying file
system and the Journaling of Journal anomaly, the logging
latency becomes the main bottleneck of the mobile databases. Our
experimental results indicate that the logging latency accounts
for more than 90% of the overall insert latency on a Samsung
Galaxy S4 smartphone. Moreover, we observe a significant write
amplification (up to 122×) induced by the traditional logging
scheme.

In this paper we present xLog, a fast transaction logging
service leveraging qNVRAM, a nearly non-volatile memory for
mobile devices. From our experimental results, xLog logs up to
77× faster than the traditional logging scheme, and speeds up
the LevelDB Put operation by up to 10.7×. Moreover, xLog
drastically reduces the write amplification of the traditional
logging scheme, from 122× to less than 1.6×.

I. INTRODUCTION

The smartphones and tablets have become ubiquitous in the

last five years. The databases in mobile devices (smartphones

and tablets) have become a crucial part of data management in

such mobile systems. The SQLite database serves as a persis-

tent storage layer in the Android system. LevelDB [1], another

NoSQL key-value database that only supports basic operations

like Get(), Put() and Delete(), has been widely used by

various applications [2]. Mobile databases employ write-ahead

logging to ensure data persistency (atomicity, consistency and

durability). Transaction logs are flushed to durable storage at

commit time to prevent data loss. The transaction logging,

however, is the main roadblock in achieving fast response

time of write transactions due to the wimpy storage device

in smartphones and the inefficiency of the Android I/O stack

induced by the Journaling of Journal (JOJ) anomaly [3]. A

recent study [4] points out that the JOJ anomaly, which refers

to the double-journaling phenomenon in which the file system

is journaling the database journal activities, drastically slows

down the mobile databases.

Several solutions have been proposed to resolve the JOJ

anomaly and improve the performance. One [4] is to optimize

the Android I/O stack using a combination of different tech-

niques, including log-structured file system, external journal-

ing and pooling-based I/O. Another solution [3] is to integrate

the recovery information into the database file itself so that the

database journal is omitted. Shen et al. [5] argue that the JOJ

is almost free through single-I/O data journaling in Ext4 file

system. Nevertheless, while these solutions have been shown

to boost the database transaction throughput, the inevitable

data flushes to the flash storage upon transaction commit

still cause a particularly long logging latency. Our previous

work [6] proposed a new design leveraging the battery-backed

nature of modern smartphones to enable the data in DRAM

to survive almost all the failure conditions, which can be used

to boost the performance of mobile databases.

In this paper, we propose xLog, a fast transaction logging

service in Android smartphones. xLog uses qNVRAM as

a persistent buffer to coalesce the small log records and

significantly reduce the latency of transaction logging in

SQLite and LevelDB. Our experimental results based on a

Samsung Galaxy S4 smartphone show that xLog speeds up the

transaction logging by up to 77× and the overall performance

of the LevelDB Put operation by up to 10.7×, while cutting

the write amplification from 122× to less than 1.6×.

II. BACKGROUND AND MOTIVATION

A. Transaction Logging Overhead in Mobile Databases

The gold standard for transaction logging is ARIES [7],

which uses fine-grained, record-oriented write-ahead logging

(WAL) to recover the database. The ARIES-style physiological

logging combines undo and redo logging: undo logging in

the conventional ARIES systems logs the description of the

operation and redo logging logs the after-image of the database

pages. Command logging [8], as an alternative to the ARIES-

style logging, writes the transaction’s logic (such as SQL

query statements) to the write-ahead log. Mobile databases

use variants of these two logging mechanisms.

SQLite’s WAL uses value logging, which is different from

the standard ARIES-style physiological WAL. It logs only

the modified database pages, called frames in the SQLite

WAL file, upon transaction commit. The log record for each

transaction in the SQLite WAL file consists of multiple frames,978-1-4673-9055-2/16/$31.00 c© 2016 IEEE



of which the last frame serves as a commit marker. Upon

transaction commit, the log record is flushed to eMMC flash

storage using the fsync() / fdatasync() system calls.

In Android smartphones, the default page size of SQLite

databases is 4KB, which is the same as the block size of the

underlying Ext4 file system.
The logging in LevelDB is somewhat similar to command

logging. For the Put() operation, LevelDB logs the operation

type (kTypeValue), the key and value; for the Delete()
operation, LevelDB writes the operation type (kTypeDeletion)

and the key to the log file. Generally, command logging will

write substantially fewer bytes per transaction than logging

the modified database pages, making the former a potentially

much better performer than the latter.
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Fig. 1: Average latency of insert operation. Each latency
value is the average of 10 repetitions with a < 5% standard
deviation.

The transaction logging has imposed a great deal of over-

head on mobile database systems due to the wimpy storage

device and the inefficiency of the Android I/O stack. To assess

the overhead of logging in Android smartphones, we run

benchmark tests against SQLite and LevelDB on a Samsung

Galaxy S4 smartphone. SQLite is configured to use write-

ahead logging, and LevelDB is configured in the synchronous

write mode. In each run of the benchmark test, 1000 records,

each of which consists of an integer key and a 100-byte string

value, are inserted to the SQLite or LevelDB in sequential or

random key order. The benchmark tests run on the Ext4 and

F2FS file systems respectively.
A breakdown view of the measured insert latency from

the tests is shown in Figure 1 and the corresponding log file

size and block-level I/O statistics are shown in Table I. The

Actual Writes refers to the amount of data writen to log file

and total writes to eMMC storage device. As shown in the

figure, the logging latency accounts for more than 90% of the

average insert latency. The bottleneck lies in the fsync() /

fdatasync() system calls. From Table I we can see that

the log file of SQLite is more than 20× larger than that

of LevelDB. For each of the insert transaction, SQLite will

modify 2 to 3 database pages, each of which is 4KB, and

write them to the log files. LevelDB, however, composes a

much smaller log record of approximately 130KB (4-byte key

+ 100-byte value + record header) for the same operation.

Nevertheless, the gap between logging latency in LevelDB

and SQLite is not as big as the log file sizes would suggest. On

the Ext4 file system, command logging (LevelDB) is only 38%
faster than the value logging (SQLite); on the F2FS file system,

the gap shrinks to only 12%. This counter-intuitive result is

due to the fact that the underlying file system and flash devices

use large block size (usually 4KB). Whenever the log record is

appended to the end of the log file, the data are flushed at the

file system block boundaries. In our benchmark test, a 4KB

block can hold about 30 LevelDB log records, thus for each

of the 30 Put() operations the same block will be flushed to

the storage devices 30 times. This results in drastically more

data written to the flash storage than the size of log file. In

the LevelDB benchmark test, the amount of data written to

the log file is 30.8× the size of the log file. This issue also

exists in SQLite when the log frame is not aligned with the file

system block size. Even worse, more data are written to file

system metadata or journals to ensure file system persistency.

The F2FS file system exhibits a total data write amplification

of up to 60.7×; in the Ext4 file system, due to the Journaling

of Journal anomaly [4], the write amplification of total data

written is up to 122×.

Another interesting observation from the benchmark test is

that the log-structured file system (F2FS) does not significantly

help with either the logging latency or the write amplification.

The sequential and random insert latencies of LevelDB on the

F2FS file system are only 12% and 18% shorter than those

on the Ext4 file system, while these latencies of SQLite on

F2FS are 28% and 31% shorter than those on the Ext4 file

system. The reason behind this is that the inevitable fsync()
/ fdatasync() system calls prevent the transaction from

committing more quickly due to the non-sequential I/O pattern

and the high write amplification.

B. qNVRAM Overview

qNVRAM [6] is a nearly non-volatile memory in smart-

phones that takes advantage of the ”battery-backed” nature

of mobile devices to make data in qNVRAM non-volatile

under almost all the failure conditions. There are four different

failure modes in smartphones, namely, (1) application crash,

(2) application hang, (3) self-reboot, and (4) system freeze.

qNVRAM manages a piece of the physical memory at fixed

location, and maps the physical memory into application’s

address space upon application’s request. When the application

restarts after crash or getting killed by the user (i.e., failure

mode (1) or (2)), the qNVRAM that the application allocates

is remapped into its address space so that the application can

recover from the qNVRAM; when the self-reboot (i.e., failure

mode(3)) happens, the data in the physical memory is not

lost since the DRAM in smartphone does not lose power thus

data in qNVRAM can be retrieved; when the user performs



Log file size (KB) Actual Writes (KB) Write Amplification
Log file Total Log file writes

Log file size
Total writes
Log file size

Ext4
LevelDB Seq 134 4132 16420 30.8 122.5

Rnd 134 4132 16428 30.8 122.6

SQLite Seq 2722 6720 23796 2.5 8.7
Rnd 3028 7028 24656 2.3 8.1

F2FS
LevelDB Seq 134 4132 8136 30.8 60.7

Rnd 134 4132 8136 30.8 60.7

SQLite Seq 2722 6720 10764 2.4 4.0
Rnd 3028 7020 11100 2.3 3.7

TABLE I: Log file size and block I/O statistics in the benchmark test.

hard reset (i.e., failure mode (4)), qNVRAM will flush the

data to flash storage so that next time the smartphone restarts

the data will be reloaded to the qNVRAM. As long as the

battery is not physically pulled out, data in qVNRAM can

be considered non-volatile. Given that the batteries in more

and more smartphones and tablets are made non-removable,

the qNVRAM can be considered non-volatile for practical

purposes.

III. XLOG DESIGN

Fig. 2: Architecture of xLog.

The architecture of xLog is shown in Figure 2. xLog runs as

a system service process in the Android platform and manages

a piece of qNVRAM as a flush buffer to coalesce the writes to

the log files. Application processes communicate with xLog

through Android Binder inter-process communication (IPC).

A small header with the information about the log record,

including a universal sequence number and checksum, is added

to each record for recovery. qNVRAM is used as a ring buffer,

and the offset of the buffer head and the size of valid data in

the ring buffer are stored in the first eight bytes of qNVRAM,

of which each is a 32-bit integer. These two variables are

the key to recovering the log records in the ring buffer after

a crash. Updating a 32-bit variable requires a single store
instruction, which can be considered atomic [9].

xLog has a logger thread that services the logging requests

from applications, and a flush worker thread that periodically

flushes the log records in the ring buffer to the log files.

All incoming requests are serialized by the logger thread and

inserted to the ring buffer one by one (with corresponding

CPU caches flushed to qNVRAM). During xLog’s recovery,

the log records in the log files and the ring buffer will be

concatenated using the universal sequence number.

xLog logs for all applications that need transaction logging

to persist data. The reason for choosing such a centralized

design is two-fold. First of all, the burst mode is very

common in mobile devices [?], and the bursty I/Os are

usually induced by a single application. Since the mobile

databases are embedded in the application’s own process,

every application can only allocate a small piece of qNVRAM

as a flush buffer due to the overall qNVRAM size limitation.

However, the qNVRAM in xLog can be made much bigger to

better handle bursty I/Os. On the other hand, the centralized

logging design helps improve the efficiency and qNVRAM

utilization. The background applications are subject to being

killed by lowmemkiller, thus a death-notification mecha-

nism is needed to ensure that the qNVRAM allocated by the

application is reclaimed after the application process is dead.

xLog, however, does not have such an issue: the xLog service

process is always running and will restart immediately if it is

terminated unexpectedly.

xLog manages a set of log files, one for each of the clients.

Using separate log files for a different logging clients, instead

of a single log file for all clients, simplifies the design and

provides a bounded recovery time, although it might require

more fsync() / fdatasync() system calls when flush-

ing the qNVRAM buffer. Considering the recovery scenario

where one application that uses the xLog service restarts

after a crash, it will request the log records from xLog since

the last checkpoint and replay them to recover from the

inconsistent state. To fetch the log records for this application,

xLog will only need to replay the log file corresponding to

this application, instead of replaying a single large log file

associated with all applications.

IV. PRELIMINARY RESULTS

A. Micro-benchmarks

We run a set of micro-benchmark tests on a Samsung

Galaxy S4 smartphone to evaluate the raw performance of

xLog. The xLog service process in the micro-benchmark

allocates 10MB qNVRAM as the ring buffer. The log files are

stored in a separate partition, formatted as an Ext4 file system.

A total amount of 100MB log records is logged using xLog

or the traditional logging scheme, which writes log records

directly to the log file using write() + fsync(). The size



26
58

445

3897
2085 2169 3096

11268

1

10

100

1000

10000

100000

100 1000 10000 100000

Av
er

ag
e 

L
og

gi
ng

 L
at

en
cy

 (μ
s)

Log Record Size (Byte)

xLog
write() + fsync()

Fig. 3: Micro-benchmark performance of xLog. This figure
shows the logging latency of native xLog. The latency is plotted
in the logarithmic scale, and the value is shown on the top of
each bar.

of a single log record varies from 100 bytes to 100 kbytes. We

measure the logging latency of native xLog inside the service

process without involving the Android Binder IPC.

The average latency of both the xLog and baseline logging

schemes is shown in Figure 3. From the figure we can see

that, when the log record is small in size, xLog is significantly

superior to the traditional logging method: the average logging

latency of a 100-byte record in xLog is only 1.3% of that of

the traditional scheme. As the size of the log record increases,

the gap between the two methods narrows because the write

amplification decreases. Yet, xLog still yields much better

performance than write() + fsync(): xLog’s logging

performance is 37×, 7× and 3× faster than that of the baseline

scheme using write() + fsync() when the log record

size increases to 1KB, 10KB and 100KB respectively.

Note that in the micro-benchmark, there is no interval time

between two consecutive logging requests. Therefore, the flush

worker thread cannot keep pace with the logger thread: the

logger thread needs to wait for the flush worker thread to make

room in the ring buffer for the new log record. In real world

scenarios, the I/O requests arrive in bursty patterns, which

leaves plenty of time for xLog to flush the log records to log

files before the next I/O burst comes. Thus the logging latency

is expected to be much smaller even when the log record is

big as long as the qNVRAM buffer is large enough to handle

the I/O burst.

xLog also addresses the write amplification issue by batch-

ing the small writes into a large I/O. The results from the

micro-benchmark tests are shown in Figure 4. When the log

record is small in size (100 byte per record), the write ampli-

fication induced by the traditional logging scheme (write()
+ fsync()) is exceedingly high (199.7×). xLog, however,

exhibits a write amplification of only 1.5×. Most of the
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Fig. 4: Write amplification of xLog. The figure shows the
write amplification in the micro-benchmark test. The write
amplification is calculated by dividing the total amount data
written to flash storage by the actual log size, and is shown
in the logarithmic scale.

overhead comes from the record header added by xLog. This

overhead is amortized as the record size increases.

B. Macro-benchmark: A LevelDB Example
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Fig. 5: LevelDB performance with xLog and traditional
logging scheme. The figure shows the performance of LevelDB
using different logging schemes in the benchmark test. In
the test, 1000 key-value pairs are randomly inserted to the
LevelDB in the synchronous mode. The average insert latency
is shown on the top of each bar.

To evaluate the performance benefits of xLog for mobile

databases, we modify the LogWriter in LevelDB so that it

writes log records using the xLog service instead of appending

them to log files. The performance of LevelDB using the xLog

and baseline traditional logging is shown in Figure 5. We vary



the value size of the key-value pairs in LevelDB to evaluate the

performance with different log record size. From the figure,

when the value size is small (100 bytes), xLog speeds up

the overall performance of LevelDB by 10.7×. As the value

size increases, the speedup decreases a little as the logging

latency increases. Nevertheless, xLog still boosts the LevelDB

performance by 9.1×, 8.2× and 8.6× when the value size is

400 bytes, 800 bytes and 1600 bytes respectively.

Compared to the latency of the native xLog from the micro-

benchmark, xLog logging via the Android Binder IPC induces

significant latency. When the value size is 100 bytes, the

overhead of the Android Binder IPC call is about 100 μs for

a two-way round trip, excluding the logging latency of native

xLog. A Binder IPC call will involve multiple context switches

and task switches/wakeups as both the client (LevelDB) and

server (xLog) fetch/pass data from/to the Binder kernel driver.

The IPC call becomes the major bottleneck in the overall

logging latency considering that the native xLog takes only 20

μs to log a 100-byte record, thus diminishing the performance

benefits from xLog. Nonetheless, the logging latency of xLog

over Binder IPC is still one order of magnitude lower than

that of writing to the log files.

V. DISCUSSION AND FUTURE WORK

In this paper we present xLog, a fast transaction logging ser-

vice that uses qNVRAM as a buffer, for Android smartphones.

Our previous work has demonstrated that a qNVRAM-based

persistent buffer cache can significantly boost the performance

of the SQLite database. The xLog, however, is a more gen-

eral solution to the overhead of enforcing persistence. The

persistent buffer cache can only be applied to applications

that use paged storage and perform in-place update. The

LevelDB, for example, is not able to benefit from persistent

page cache because it employs a log structured merge tree

(LSM-Tree), and all new records are appended to a sorted table

file. xLog, however, can be used to speed up both SQLite and

LevelDB. xLog can be used to accelerate existing databases,

as well as building new types of persistent storage. With

xLog, we can build a high performance persistent in-memory

database and do not need to worry about the overhead of

enforcing persistence. We plan to explore the performance

benefits of xLog in more applications, including the conven-

tional databases (e.g., SQLite) and the in-memory database

that usually achieve persistency through a combination of

checkpointing and logging.
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