
Energy-efficient I/O Thread Schedulers for NVMe
SSDs on NUMA

Junjie Qian, Hong Jiang†, Witawas Srisa-an, Sharad Seth
University of Nebraska–Lincoln, †University of Texas–Arlington

Email: {jqian, witty, seth}@cse.unl.edu, †hong.jiang@uta.edu

Stan Skelton, Joseph Moore
NetApp Inc.

Email: {stan.skelton, joseph.moore}@netapp.com

Abstract—Non-volatile memory express (NVMe) based SSDs
and the NUMA platform are widely adopted in servers to
achieve faster storage speed and more powerful processing
capability. As of now, very little research has been conducted
to investigate the performance and energy efficiency of the state-
of-the-art NUMA architecture integrated with NVMe SSDs, an
emerging technology used to host parallel I/O threads. As this
technology continues to be widely developed and adopted, we
need to understand the runtime behaviors of such systems in
order to design software runtime systems that deliver optimal
performance while consuming only the necessary amount of
energy.

This paper characterizes the runtime behaviors of a Linux-
based NUMA system employing multiple NVMe SSDs. Our
comprehensive performance and energy-efficiency study using
massive numbers of parallel I/O threads shows that the penalty
due to CPU contention is much smaller than that due to remote
access of NVMe SSDs. Based on this insight, we develop a
dynamic “lesser evil” algorithm called ESN, to minimize the
impact of these two types of penalties. ESN is an energy-
efficient profiling-based I/O thread scheduler for managing I/O
threads accessing NVMe SSDs on NUMA systems. Our empirical
evaluation shows that ESN can achieve optimal I/O throughput
and latency while consuming up to 50% less energy and using
fewer CPUs.

I. INTRODUCTION

The traditional storage interfaces (e.g., SATA and SAS) do

not provide sufficient bandwidth and concurrency [1] for the

latest high-speed non-volatile memory (NVM) devices (e.g.,

STT-RAM, PCM, RRAM, Flash). To overcome this bottle-

neck, the non-volatile memory express (NVMe) technology

has recently been introduced to provide wider bandwidths and

efficient concurrent accesses to these NVM devices and Flash

SSDs. This technology is expected to be used to satisfy the

needs of the next-generation fast storage solutions [2], [3].

To fully take advantage of NVMe, designs of software

components that manage data movements to and from storage

modules via NVMe have also been improved. Prior work

by Bjørling et al. [1] identifies the interrupts and locks in

the traditional single queue block layer as the major barriers

limiting the scalability of parallel I/Os. This finding led to

the adoption of a multi-queue implementation in the block

layer of Linux. The goal was to resolve lock contention

among multiple I/O processes from different CPUs to different

devices. Initially, NVMe also used multiple submission and

completion queues to process I/Os in the block layer. To

further improve performance, the submission and completion

queues have been integrated into a hardware dispatch queue

in the multi-queue block layer [4]. These two changes further

promote the scalability of parallel I/O threads accessing NVM

and NVMe SSDs.

While these modifications have been implemented, most re-

cent work on performance analysis and optimization of NVMe

and storage devices do not use them for two major reasons.

First, NVMe-based systems are not generally available as

research platforms. Second, most studies still rely on outdated

software platforms (e.g., out-of-date Linux kernels or NVMe

implementations) [5], [6], [7], [8], [9], [10], [11]. For example,

a recent work by Dullor et al. [12] used PMEP emulator to

emulate the bandwidth and latency of the NVM. However,

PMEP emulator fails to characterize the NVM application

in the software layer because PMEP does not use the actual

NVMe connection and the multi-queue block layer in Linux.

So, the reported results do not represent the most up-to-date

usage of NVMe.

In addition, more servers increasingly rely on the NUMA

(non-uniform memory access) architecture to achieve good

overall memory performance. In a NUMA set up, NVMe

modules are directly attached to the CPUs of a NUMA server

in a way very similar to how DRAM modules are attached

to the CPUs. In this configuration, there are local and remote

accesses between NVMe SSDs and CPUs that would result

in significantly different I/O throughputs and latencies. Often,

past studies on this issue do not consider the latest platforms

that integrate the NUMA architecture with NVMe SSDs and

NVMe [9], [5]. As a result, the reported results from these

studies also do not reflect the performances of the state-of-

the-art NVMe-based systems.

Furthermore, outdated platforms used in those studies can-

not be used to evaluate the current energy consumption of

NVMe-based systems. Energy saving is important for large

storage services because a significant portion of the total cost

of ownership (TCO) is due to energy consumption. As such,

investigation into the performance and energy characteristics

of different system configurations (e.g., configuring NUMA

nodes) can greatly improve the understanding of the architec-

tural impacts, such as the mapping of I/O threads to different

sockets, etc., as well as providing guidance on designs of

runtime systems including I/O thread schedulers.

To illustrate this point, we present a hypothetical example.

Because energy is consumed by both storage devices and pro-

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.24

569

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.24

569

cessors, an improved I/O thread scheduler, which recognizes

energy impacts of different I/O requests and scheduling param-

eters, has a great potential to save energy [13], [14] consumed

by these two components due to I/O requests and execution

while maintaining optimal performance. Unfortunately, prior

suggested solutions cannot achieve both. Solutions to improve

energy efficiency tend to employ approaches that reduce the

overall system performances (e.g., controlling voltage and

frequency scaling for data-intensive applications [15], [16]).

To this end, our comprehensive investigation aims to answer

the following research questions regarding trade offs between

performance and energy consumption of parallel I/O threads

in NVMe-based NUMA servers employing the state-of-the-art

Linux kernel:

• Given the I/O workload, how are the I/O performance

and energy efficiency impacted by the numbers of NVMe

SSDs and CPUs and why?

• What is the impact of the different SSDs-NVMe-NUMA

configurations on energy consumption of the processors?

Based on our experimental results, we develop a

performance-energy analytical model to project the I/O per-

formance and energy consumption of modern NVMe-based

systems. The results are used to guide the design of the

proposed scheduling algorithm for I/O requests called Energy-
efficient Scheduler for NVMe or ESN. ESN can help improve

the energy efficiency by judiciously mapping I/O threads to

the appropriate CPU nodes without decreasing the throughput

and latency. In summary, our work makes the following

contributions.

• We demonstrate that utilizing more than two CPUs in

the NUMA architecture can actually degrade the I/O

performance. We find that using a single CPU achieves

the best performance when the number of parallel I/O

threads is less than 512, and utilizing two CPUs performs

best when a larger number of threads are used. When

more than two sockets are used, we see degradation of

both I/O performance and energy efficiency.

• We implement a profiling-based user-level scheduler

for parallel I/O threads, ESN, which achieves optimal

throughput performances and small latencies, while con-

suming 50% less energy than the existing scheduler. We

also propose a self-adjusting energy-efficient I/O threads

mapping scheduler.

The rest of this paper is organized as follows. Section II

introduces the background information of this work. Section

III explains the software and hardware platforms used in this

work. Section IV demonstrates the experimental evaluation

results of the NVMe SSDs attached to the NUMA architecture,

from which useful observations are drawn. Section V presents

the ESN scheduler, along with an evaluation of ESN. Section

VI discusses the design of a self-adjusting energy-efficient I/O

scheduler. The related works are introduced and discussed in

Section VII. Section VIII concludes this work.

II. BACKGROUND

This section provides the background information on the

current implementation of the I/O path in Linux 4.0.0 or later,

the NVMe connections on NUMA processors, and the impact

of process scheduling on the parallel I/O threads performance.

A. I/O Path

Multi-queue block layer and NVMe improve the concurrent

I/O accesses by reducing lock contention through employing

more I/O job queues implemented in both the software and

hardware layers [1], [2]. Each CPU maintains its own I/O

request queue (software staging queue) containing requests

from the CPU. Each device also has one or more hardware

dispatch queues for the I/Os. If a device is connected with

NVMe, the hardware dispatch queues in the block layer are

used as submission and completion queues in NVMe. On the

contrary, the older implementation of Linux only has one

queue for all I/O requests in both software and hardware

layers.

There are two other types of contention for the shared

resources that can reduce I/O throughput and increase latency.

The first is the contention for the NVMe device. Even when

both the device and connection support the parallel execution,

the physical limitation of the NVMe and the bandwidth of the

NVMe cannot fulfill all I/O requests if there are too many

requests at the same time. The second type is the contention

for the CPU by multiple I/O requests. The block I/O path

uses polling instead of interrupt, as NVMe devices are fast.

However, this can result in more CPU usage due to polling.

When multiple I/O processes are running on the same CPU,

these I/Os can contend, resulting high polling time.

B. NUMA Effect

Because each device is attached to the CPU directly via the

NVMe in a similar fashion to that of DRAM modules, there

are local and remote accesses to the device from different

CPU nodes in a NUMA system as shown in Figure 1. A

local access occurs when the data is available on the device

module connected to a CPU that performs that I/O access. A

remote access occurs when a CPU node tries to operate data

on a device attached to another CPU. The multi-queue block

layer prioritizes local I/O accesses. However, once there are

more I/O requests than the number of the processing cores on

a local CPU, the OS distributes some I/O requests to other

available cores, resulting in more remote NVMe accesses.

Fig. 1: Local/Remote NVMe SSD access on NUMA

The throughput and latency are different for local and

remote NVMe SSD accesses, as shown in Table I. The

data is based on our experimental measurements made with

570570

ioping [17]. Remote accesses take longer because they need

additional interconnect traversals and access contention. This

behavior is the same as that of remote memory accesses in a

typical NUMA system.

Local Remote
Bandwidth (GB/sec) 2.2 1.2
Latency (us) 10.9 21.8

TABLE I: Performance of local and remote accesses

C. Process Scheduling

In addition to the cost of remote access, CPU contention

can also degrade I/O performance. Each I/O thread is mapped

as a kernel process in Linux and is subjected to OS process

scheduling. Because of the locality and the contention for

shared CPUs and other resources, employing fewer threads on

a single CPU often results in better performance. However,

assigning fewer threads to a CPU can result in more remote

accesses; therefore, it is possible that the cost of these remote

accesses would offset the gain from fewer instances of CPU

contention. Due to such interplays between remote access and

CPU contention, it is also important to understand the I/O

performance degradation caused by the process contention.

Fig. 2: I/O performance with respect to I/O threads running

on a single CPU

Figure 2 presents changes in I/O performance when more

I/O threads are running on a single CPU. The data shows that

the throughput increases with the number of I/O threads up

to a limit. The latency also increases with more I/O threads

due to CPU contention. Considering the trade-off between the

throughput and the latency, the optimum combination appears

to be 2 I/O threads running on the same core concurrently.

CPU contention can occur only if there are more I/O threads

than available cores. When the contention does occur, however,

it is not clear which strategy is better: distributing the excess

threads to remote CPUs to reduce CPU contention or keeping

the threads on the local node to avoid the remote-access

penalty. The answer depends on the relative costs of CPU

contention vs remote access. Clearly, a performance model is

called for to resolve this issue. The model should, additionally,

consider energy consumption, because the energy consumption

will rise as more CPUs are deployed.

D. Energy Consumption

Energy is consumed by various components within a system

including NVMe devices, memory systems, peripherals, inter-

connects, and CPUs. For multi-core and many-core systems,

studies have shown that CPUs consume the most power [18],

[19]. Each CPU in our experimental platform has three states:

busy (normal and low power), idling, and shutdown. Accord-

ing to its specification [20], the power consumption of different

states in an Intel Xeon processor are compared in Table II.

The Intel processor adopts Dynamic Voltage and Frequency

Scaling (DVFS) to adjust power consumption, which means

that the actual energy consumption in a given period is

determined by the workload of the processor as well as its

state, as shown in Table II [21]. In order to accurately estimate

the processor power consumed by the I/Os in different CPU

states, we used the Intel power gadget tool [22] to compile

the data.

CPU state
Busy

Idling (C3) Shutdown (C6)
Normal (C0) Low power (C1)

Power
Specifications (W)

95 47 22 14

TABLE II: Power specifications of CPUs’ different states

III. EXPERIMENT METHODOLOGY

Experimental Platform. Our experimental platform is a 4-

socket Intel E5-4610 v2, with each socket having 8 physi-

cal cores (with hyper-threading) and 16MB last-level cache.

This particular architecture uses the Sandy Bridge technol-

ogy, which attaches the PCIes to different NUMA sockets,

respectively [20]. The NVMe SSD device is Intel SSD DC

P3700. There are 2 NVMe SSDs installed in the system, and

each can be attached to one CPU socket with 4 PCIe lanes.

The PCIe bandwidth is 1GB/sec. We use Linux kernel version

4.0.0, equipped with multi-queue block layer implementation

and latest NVMe driver.

Item Version/Count
Processor Intel E5-4610 v2, 16M Cache

of sockets 4
Cores per socket 8

Memory 256 GB
NVMe SSD 2*Intel DC P3700

Linux kernel 4.0.0-rc7 (blk-mq enabled)
FIO 2.2.8

TABLE III: Experiment platform characteristics

Software Systems. The I/O workload is generated and tested

with flexible I/O generator (fio-2.2.8) [23]. By default, the

Linux OS uses page cache for all the I/Os to improve the

I/O performance. It stores the disk page data in main memory

for quicker I/O accesses. In our experiments, however, we

leveraged the fio’s direct I/O feature to bypass the page

cache. Again, this is because NVMe SSD operates at a much

higher speed than typical I/O devices. The I/O workloads

are generated by fio’s libaio engine. The performance

measurements, including the submission latency, completion

571571

(a) Config. 1 (b) Config. 2 (c) Config. 3

Fig. 3: Experimental configurations of I/O mappings for 1

NVMe SSD. Config. 1, all I/O threads on local CPU socket.

Config. 2, all I/O threads on local and nearest CPU sockets.

Config. 3, all I/O threads on all 4 CPU sockets

latency, throughput (bandwidth) and disk utility, are reported

by fio. Unless stated otherwise, the I/O block size is 4KB

which is recommended as the best configuration in the NVMe

SSD’s specification document [24]. Intel power gadget [22],

a software-based tool to monitor power usage of Intel proces-

sors, is adopted to measure the energy consumed during our

experiments. To map the I/O threads to different CPUs and

CPU sockets, numactl [25] is adopted.

Performance metrics. We evaluate the I/O performance in

terms of the throughput in IOPS and latency in microseconds

(μ-seconds). The energy consumption is measured in milliwatt

hour (mWh).

IV. EXPERIMENTAL RESULTS

In this section, we conducted a set of experiments to observe

the impacts of various possible runtime penalties by doing

our best to isolate each of the potential factors. We use

NUMA architecture for this experiment and explored differ-

ent CPU configurations to evaluate factors such as resource

contention and remote memory access penalties, that can

degrade performance. Second, because I/O threads are also

subjected to scheduling by the default Linux scheduler, we

also investigated the impacts of process scheduling on I/O

performance. Our investigation was done on the two best

performing configurations. Lastly, we discuss a dilemma of

achieving optimal I/O performance while conserving energy.

A. Effect of Process Scheduling in a Single NVMe SSD System

So far, the I/O performance is evaluated with the Completely

Fair Scheduler (CFS), the default scheduler in Linux [26].

However, the NUMA architecture introduces the remote device

access penalty, on top of the shared resource contention

between I/O threads. Process-contention penalty and remote-

device-access penalty are two possible I/O performance bot-

tlenecks that can significantly degrade the overall perfor-

mance [27]. In this section, we investigate the impacts of I/O

scheduling on these two types of penalties and how it can

affect the performance and scalability of NVMe SSD.

We mapped I/O threads to different CPU sockets to show

the trade-offs between these two penalties. Figure 2 in Section

II demonstrates the effects on performance due to increased

contention between multiple I/O threads on a single CPU.

Furthermore, the throughput and latency of parallel I/O threads

requesting from a single NVMe SSD are evaluated with three

different NUMA configurations as shown in Figure 3: 1) all

I/O threads running on only a local CPU socket, 2) all I/O

threads running on a local and a nearest neighboring remote

socket, and 3) all I/O threads running on all four sockets,

which is referred to as the default setting henceforth. The

CFS equally distributes all I/O threads to the available CPU

cores to balance the CPU workload [26]. Figure 4 presents the

impacts of contention and remote NVMe SSD access penalty

on the performance of parallel I/O threads. As shown, there

are two interesting numbers of I/O threads, 16 and 512 that

show significant changes in performance.

When the number of I/O threads is less than 16, there is

no difference in the number of available CPU cores among

the three mapping configurations. This is because all I/O

threads can run on a local CPU socket automatically. Although

there are other CPU sockets available in the second and third

configurations, only CPU cores on the local socket are busy

running. The throughput is the same for all configurations,

but the latency is best when only the local CPU socket is

used. In the second and third configurations, the CPU cores on

remote sockets can respond to I/O interrupts. The OS may also

migrate I/O threads to the local CPU node for better locality.

Such response latency and migration cost can prolong the I/O

latency.

When the number of I/O threads is between 16 and 512,

both throughput and latency are worst when four CPU sockets

are used among the three configurations. This is because

of the remote access penalty on NUMA, as some I/Os are

running on the remote CPU sockets. Both I/O throughput and

latency are the same with one and two CPU sockets, which

is reasonable according to Figure 2, which shows that CPU

contention also degrades the I/O performance. This indicates

that the contention penalty and remote access penalty have

similar effect on the I/O performance when the number of

I/Os falls into this range.

When the number of I/Os is more than 512, the performance

with one CPU socket is worst but the other two settings show

similar throughputs and latencies. The contention among these

512 I/O threads has more negative impacts on I/O performance

than those of the remote device access penalty. With two CPU

sockets the contention is less than that of only one CPU socket.

According to the reported results, we observe that when the

number of I/O threads reaches 1536, the configuration with

four CPU sockets delivers the best I/O performance. When we

have more than 512 I/O threads per CPU socket, it is better

to distribute additional I/Os to neighboring CPU sockets.

An important point to consider based on the above obser-

vation is that when we utilize fewer CPUs, the system also

uses less energy to operate. If the same I/O performance can

be achieved with fewer CPUs, it is better to map the I/Os to

a set of CPUs and then idle or turn off the remaining CPUs.

With one NVMe SSD, only the local CPU socket is the best

in terms of energy efficiency and I/O performance when there

are 16 I/O threads or less. The configuration with one local

and one nearest neighboring CPU sockets performs best in

572572

(a) Throughput

(b) Latency

Fig. 4: Comparison of I/O performance for one NVMe SSD

when all I/O threads are allowed to run on one, two or four

NUMA nodes with 1 to 2048 I/O threads.

terms of I/O latency, I/O throughput and energy consumption

in the remaining scenarios.

B. Effect of Process Scheduling in a Two NVMe SSDs System

To show the limitation of bandwidth and its effects, we con-

ducted experiments using two NVMe SSDs with two different

types of connections: 1) two NVMe SSDs are connected to

two CPU sockets, and 2) two NVMe SSDs are connected to

the same CPU socket.

1) Two NVMe SSDs Connected to Two CPU sockets: In

this configuration, each NVMe SSD has its own local CPU

socket as shown in Figure 1. The workload and number

of parallel I/Os for each NVMe SSD is the same, but the

order in which read/write requests are directed to each device

is random. Three NUMA mapping configurations are also

adopted as shown in Figure 5: 1) all I/O threads run on one

local CPU socket (randomly choosing one NVMe SSD); 2)

the I/O threads run on two local CPU sockets each connected

to a NVMe SSD; and 3) the default setting of having all I/O

threads run on all four sockets.

The experiment results are presented in Figure 6. Config-

uration 1) performs the worst as half of the I/O requests are

issued to one remote NVMe SSD. There are little differences

in the throughput performances between configuration 2) and

3), when the number of I/Os is less than 512. This is consistent

with the results of a single NVMe SSD where mapping

fewer than 512 parallel I/Os to local socket gets the best I/O

performance.

(a) Config. 1 (b) Config. 2 (c) Config. 3

Fig. 5: Experimental configurations of I/O mappings for 2

NVMe SSDs that are connected to different CPU sockets.

Config. 1, all I/O threads on one local CPU socket. Config.

2, all I/O threads on two local CPU sockets for each SSD.

Config. 3, all I/O threads on all 4 CPU sockets.

The latency is worst in the configuration with one CPU

socket (Configuration 1) than that of Configuration 3. As

a reminder, this is due to the initial CPU response latency

and I/O migration cost. With more I/O threads, the latencies

between Configurations 2 and 3 become similar because in

Configuration 2, I/O threads contend for CPU more.

In summary, we observe that Configuration 3 suffers from

CPU response latency and I/O migration cost. At the same

time, the Configuration 2 also suffers from the contention

penalty. As such, these two systems show nearly identical

throughput performance as shown in Figure 6(a), and very lit-

tle difference on latency performance as shown in Figure 6(b).

When there are more than 512 I/O threads, the penalty

due to contention is larger than that due to remote access

in the case of using just one CPU socket. To reduce the

contention penalty, we utilize neighboring CPU sockets to

support additional I/O threads. As shown in Figure 6, the

latency with 4 CPU sockets is shortest but the throughput

performances between configuration 2) and 3) are similar.

2) NVMe SSDs share one CPU socket: Each CPU socket in

our platform has 40 PCI-e lanes that can host up to 10 NVMe

modules. We experimented with another configuration that

connects two NVMe SSDs to one CPU socket; i.e., these two

NVMe SSDs share the same local CPU socket. Three NUMA

mapping configurations are adopted as shown in Figure 7: 1)

all I/Os run on only the local CPU socket; 2) the I/Os run on

the local and a nearest neighboring CPU sockets; and 3) all

I/Os run on all four sockets, which is the default setting.

Figure 8 demonstrates the I/O performance with different

numbers of I/O threads. Due to additional contention for the

shared CPU and buses, mapping all I/O threads to a local

CPU socket performs worse than the other two configurations.

Using two CPU sockets (local and one nearest neighboring

sockets) has the same I/O performance as the default config-

uration, which uses four CPUs.

Summary. We observe that we can use fewer CPUs to deliver

the same I/O performance using all four CPUs. This means

that if we should use a configuration that utilizes fewer CPUs

, we can conserve energy while maintaining the optimal

performance. Next, we present a model that can provide

guidance on how to configure the system to strike a good

balance between performance and energy conservation.

573573

(a) Throughput

(b) Latency

Fig. 6: Comparison of I/O performance for two NVMe SSDs

(each connected to different NUMA node) when all I/O

threads are allowed to run on one, two or four NUMA nodes,

the number of I/O threads changes from 1 to 2048. The xlabel

is the number of I/O threads to each NVMe SSD, ranges from

1 to 1024.

(a) Config. 1 (b) Config. 2 (c) Config. 3

Fig. 7: Experimental configurations of I/O mappings for 2

NVMe SSDs that are connected to same CPU sockets. Config.

1, all I/O threads on local CPU socket. Config. 2, all I/O

threads on local and nearest CPU sockets. Config. 3, all I/O

threads on all 4 CPU sockets

V. ESN: ENERGY-EFFICIENT I/O SCHEDULER

Based on our evaluation results, we implemented ESN, an

I/O thread scheduler that can help determine how to map

I/O threads to the CPUs at runtime to achieve the best I/O

performance and the least energy consumption for a given

I/O workload. ESN is a profiling-based, user-level runtime

scheduler, which makes the mapping decision during the

execution according to the runtime environment, underlying

platform and the the locality of the I/O threads.

A. Design

ESN has been designed to reduce energy consumption with-

out sacrificing the I/O performance. Algorithm 1 describes the

(a) Throughput

(b) Latency

Fig. 8: Comparison of I/O performance for two NVMe SSDs

(both connected to same NUMA node) when all I/O threads

are allowed to run on one, two or four NUMA nodes. The

xlabel is the number of I/O threads to each NVMe SSD, ranges

from 1 to 1024.

proposed energy-efficient I/O scheduler for multiple NVMe

SSDs on a NUMA system. The scheduler first identifies the

number of I/O target devices, and then counts the number

of concurrently running processes on the local CPU socket,

Nlocal, by reading system file /proc/$pid/stat. It then compares

Nlocal with N to determine if the nearest neighboring CPU

socket should be used to host the I/Os. In other words, N is
the number of parallel IO threads running on the local socket
that would cause the contention penalty to be greater than the
remote access penalty.

Based on the previously presented observation, the con-

tention penalty has less negative effect than the remote access

penalty. As such, ESN detects an increase in the numbers of

I/O threads, which leads to an increasing contention penalty,

and then allocates these I/O threads to the nearest neighboring

CPU once the number of I/O threads is more than the number

N . Currently, a profile run is needed to generate the optimal

schedule. We leave an automatic approach to generate an

optimal schedule as future work.

The criterion to decide N is identifying the number of

parallel I/O threads running on the local socket that would

cause the contention penalty to be larger than the remote

access penalty. As shown previously, N is 512 on the platform

used in this study.

It must be noted that the various parameters and coefficients

in the proposed performance-energy model can be obtained

for a different platform and/or NVM(SSD)-NVMe-NUMA

configuration by a combination of profiling and curve-fitting

574574

(a) Throughput (b) Latency (c) Energy

Fig. 9: Comparison of I/O performance for one NVMe SSD when all I/Os are scheduled by ESN and allowed to run on one,

two or four NUMA nodes. Xlabel is the number of parallel I/Os to one NVMe SSD, ranges from 1 to 1024.

Algorithm 1: The proposed energy-efficient scheduler

Initialization: launch the I/O application (A) and the

helper script (S) concurrently;

for each thread (T) in A do
count the number (Nlocal) of processes running on

local socket;

if Nlocal smaller than number N then
map T to local CPU socket (or certain CPU

cores);

else
map T to neighbor remote CPU socket;

end
end

processes as explained in Section IV.

B. Evaluation

We compare the I/O performance and energy consumption

of a system using the proposed ESN scheduler to that of a

system using the default Linux I/O scheduler. We previously

described the experimental platform in Section III.

One NVMe SSD. Figure 9 presents the performances of the

proposed ESN and those of the default Linux I/O scheduler

using different CPU settings. As shown, the throughputs and

latencies are nearly identical to the settings using 1 or 2

NUMA sockets. When there are more than 1024 I/O threads,

the proposed scheduler performs better than the other settings

because ESN allocates two nearest neighbor sockets compared

with the two-socket setting that uses only one nearest neighbor

socket (more contentions) and default four sockets setting that

has higher remote access penalty.

The energy consumed by the CPUs using ESN is normalized

to the energy consumed by CPUs using the default setting.

Because direct I/O is used in our experiment, the profiling

results indicate similar DRAM energy consumption profiles

for both schedulers. The profiling results also indicate that

when there are fewer than 16 I/O threads, ESN consumes the

same amount of energy as that of the Linux I/O scheduler.

This is because ESN, in effect, binds threads to the CPUs

in the same fashion as the Linux I/O scheduler. However,

when more I/O threads are used, ESN consumes less energy

than the default scheduler while maintaining a similar I/O

performance. Because ESN introduces more contention, it

incurs more workload on the CPUs than the default setting.

In addition, the default scheduler also utilizes more CPUs so

each CPU is less busy. As such, the energy saving of ESN is

not proportional to the number of CPU sockets used by the

default scheduler.

Two NVMe SSDs connected to two NUMA sockets. Figure

10 compares the performance of ESN with that of the default

scheduler. As shown, the performances of ESN and the de-

fault scheduler are the same but ESN consumes less energy.

Because I/O requests are issued independently to each NVM,

the I/O threads are then mapped to the local CPUs for each

NVM. When there are fewer than 512 I/O threads for each

NVM, all threads run on the local sockets of each NVM. The

nearest neighbor socket is used if the number of I/Os is more

than 512. When there are more than 768 for each NVMe SSD,

all four sockets would be used to run the I/O threads with more

bias toward running them on the two local CPU sockets.

Different from the one NVMe SSD energy comparison

result, ESN performs better for two NVMe SSDs from the

beginning. ESN consumes less energy than that of the default

scheduling because, first, ESN avoids thread migration costs

by mapping the I/O threads to the local CPU socket of each

NVMe SSD from the time they start; second, ESN uses only

half of the CPUs than default approach.

C. Discussion

The tradeoff between I/O throughput, latency, and energy

consumption is described in Equation 1. In this equation, a

higher performance tradeoff value implies higher throughput,

shorter latency, and less energy consumption. In the equation,

three elements are equally weighted, but the equation can

be modified so that elements are weighted differently. For

example, to design a system focused on shorter latency, we can

replace Latency in the equation with Latency2 to increase

the weight.

Performancetradeoff =
Throughput

Latency × Energy
(1)

Figure 11 compares the performance of ESN with that of

the default scheduler for one and two NVMs according to

575575

(a) Throughput (b) Latency (c) Energy

Fig. 10: Comparison of I/O performance for two NVMe SSDs when all I/Os are scheduled by ESN and allowed to run on

one, two or four NUMA nodes. Xlabel is the number of parallel I/Os to each NVMe SSD, ranges from 1 to 1024.

Equation 1. The calculated values of ESN is normalized to the

corresponding value of the default scheduler while managing

the same number of parallel I/O threads.

(a) 1 NVMe SSD performance tradeoff

(b) 2 NVMe SSDs performance tradeoff, x-axis is the
number of I/Os issued to each NVM

Fig. 11: Performance tradeoff comparison between ESN and

default (4 sockets). Bars are values normalized to default

setting’s value (higher better). Line is the calculated value of

default setting based on Equation 1.

Figure 11 (a) shows the calculated values of one NVMe

SSD. The best performance is achieved with 8 I/O threads

(i.e., at 8 I/O threads, the actual magnitude as shown using

the black line is the highest). This conclusion is based on the

combination of throughput, latency and energy. When there

are more I/O threads, as illustrated in Section IV, the energy

consumption also increases with the improved throughput and

reduced latency. The optimal number of I/O threads, 8, is also

the number of physical processing cores on a local NUMA

socket.

When there are two NVMe SSDs, the combined perfor-

mance continues to improve with more I/O threads (i.e., up

to 1024 I/O threads) according to Figure 11 (b). This is true

because the throughput is twice as large while the latency

is half as small. Processors and NVMe also experience less

contention.

VI. SELF-ADJUSTING ENERGY-EFFICIENT I/O

SCHEDULER

In this section, we extend ESN to make it self-adjusting.

We conducted our experiment on a simulator for parallel I/Os

to NUMA-based NVMe devices to demonstrate the flexibility

and effectiveness of the proposed scheduler on a larger plat-

form that has more sockets and cores than our previous system.

We used SPIN1 to simulate the parallel I/Os to NUMA-based

NVMe storage devices. The simulated platform has 6 CPU

sockets and each socket has 8 cores (i.e., two more sockets

that our actual system used in Section IV). The results are

then compared against those of the default CFS scheduler.

As demonstrated in Section IV, the I/O performance and

energy consumption are better when I/O processes running

on local CPU socket until the contention penalty is worse

than NUMA penalty. The design of the proposed self-adjusting

scheduler is based on the analysis of NUMA and contention

penalties. Because both penalties depend on the platform and

its operation [28], the penalty values adopt in this scheduler are

the results reported in prior research. For example, we use the

prior reported results indicating that NUMA-penalty can result

in 30% performance degradation and contention-penalty is a

second polynomial order of the number of the I/O processes

[29].

To obtain accurate penalty values, one approach is using

profile runs as explained in Section IV and Section V. Another

approach is using a self-adjusting process to tune the penalty

values during the runs. This approach suffers from poor perfor-

mance during the initial runs but achieves good performance

improvement in the subsequent runs. In this study, we take the

self-adjusting approach.

Algorithm 2 describes the proposed self-adjusting energy-

efficient I/O scheduler. Before scheduling the I/O processes,

the algorithm identifies the platform that the local/neighbor

CPU sockets of the NVMe device and the number of I/O

processes on local CPU socket to achieve best I/O and energy

performance with Equation 2, where N is the number of I/O

processes and α: -1936, β: 628201, γ: 9829.

1https://github.com/junjieqian/spin

576576

{
NUMA− penalty = 1.3

Contention− penalty = α ∗N2 + β ∗N + γ
(2)

Algorithm 2: The proposed energy-efficient scheduler

Platform identification: Identify the number of CPU

cores per socket (Ncpus), the

local\nearest neighbor\remote CPU sockets;

Pre-scheduling: Calculate the balance point (the number

of I/O processes per local CPU socket, NI/O) that the

contention penalty equals the NUMA penalty;

Initialization: Launch the I/O application (A) and the

helper script (S) concurrently;

Scheduling: 1. Identify the number of existing I/O

processes on local CPU socket, Nexisting;

if Nexisting is less than NI/O then
Map part of the I/O processes in A to local CPU

socket, NI/O −Nexisting;

while not all I/O processes in A are mapped do
Map n ∗NI/O of the I/O processes in A to n

adjacent neighbor CPU sockets;

end
else

while not all I/O processes in A are mapped do
Map n ∗NI/O of the I/O processes in A to n

adjacent neighbor CPU sockets;

end
end
Periodically re-balance the load when one or more I/O

processes on local CPU socket finish.

As previously mentioned, we used SPIN to simulate the

hardware system running our self-adjusting scheduler. Table

IV compares the performance of the proposed scheduler to

that of the default CFS I/O scheduler. As shown in the table,

the proposed self-adjusting scheduler can achieve the same

throughput performance as that of CFS in most cases with

significantly less energy consumption and shorter latency. As

the table reports, in the case of 1024 parallel I/O threads, we

can reduce latency by 70% and energy consumption by 25%,

while retaining 90% of the throughput performance.

VII. RELATED WORK

In this section, related research efforts on NVMs and I/O

schedulers for SSDs are presented.

NVM studies can be broadly categorized into performance

analysis, performance optimization, and applications of NVM

modules as memory. Work by Zhang et al. [5] and Sehgal et.al

[10] use the PMEP emulator [12] to emulate part of DRAM as

NVM and investigate file system performances on NVMs. Son

et al. [7] optimize the file system for fast storage device and

the battery-backed DRAM is used as NVM. Vuvcinic et al. [6]

explore the performance bottlenecks of PCI-e for NVMs and

implement a new protocol for much higher I/OPS. Awad et al.

[8] analyze the performance impacts of PCI-e connections and

32 I/Os 128 I/Os 512 I/Os 1024 I/Os
Throughput 1 1 1 0.9
Latency 0.625 0.7 0.7 0.3
Energy 0.6 0.3 0.67 0.75

TABLE IV: Performance of the proposed scheduler for 1 NVM

compared with CFS scheduler.

design a new interface for better parallelism and low-latency.

These studies are based on simulation or emulation, while we

are using real NVM devices for evaluations.

Xu et al. [9] investigate how different databases perform

with NVM device but only use the single queue block layer

which does not reflect the impact of the latest I/O path

in the software stack. Onagi et al. [30] evaluate the effect

of wear leveling on the PCI-e connected SSD performance,

energy consumption, and endurance. Cully et al. [31] present

a storage system that has two parts, an address virtualization

layer for network attached PCI-e connected SSDs and a host

environment for scalable protocols.

I/O schedulers are mostly designed based on an assumption

that most storage devices are slow, and therefore, a single

queue block layer is acceptable. However, there have been

work to conserve energy by creating custom I/O schedulers

specific for SSDs.

Cheng et al. [13] analyze the energy consumption of I/Os in

hard real-time systems with a preemptive periodic task model

and propose an online scheduler that utilizes device slack to

perform power state transitions for better energy performance.

Ge et al. [15] propose an I/O scheduler for data intensive

applications, which changes the voltage and frequency of

processors to save the energy. Gim et al. [32] propose a

mechanism to decide if an I/O request should be serviced using

interrupt or pooling according to device and other aspects such

as CPU utilization and I/O size. Akram et al. [33] studied

the NUMA effects on storage I/O performance. Their paper

presents that remote NUMA node access degrades the I/O

performance as well, but without solution and investigations

on the energy consumption.

Energy aware schedulers have been recently investigated.

For example, Ali et al. [34] present a power aware scheduler

on the NUMA architecture for hypervisor. Frasca et al. [19]

propose a NUMA aware graph mining technique to improve

both performance and energy consumption. Gough et al. [18]

investigate power management of memory system and I/Os in

servers. Qian et al. [35], [36] study energy efficient schedulers

in mobile devices. However, these techniques do not address

energy consumption issues in NVM-based NUMA systems.

VIII. CONCLUSION

In this work, we show that it is possible to achieve good

parallel I/O performance while reducing energy consumption

of NVMe-based NUMA systems. Our insight is obtained

through an in-depth investigation of various penalties due

to resource contention and remote NVMe SSDs accesses

in NUMA. We find that contention among I/O threads on

shared resources such as CPUs incurs less penalty than that

577577

incurred by remote NVMe device access in NUMA. Based

on this insight, we implement an energy-efficient profiling-

based I/O scheduler, called ESN. ESN maps the I/O threads

to local or nearest neighbor remote CPU sockets according

to the number of concurrently running I/O threads on a CPU

socket. As compared to the default scheduler, ESN can deliver

equivalent parallel I/O performance, while consuming up to

50% less energy by idling CPUs that cannot contribute to

better throughput performance.

ACKNOWLEDGMENT

Part of this work is done by Junjie Qian during his 2015

Summer internship in NetApp Inc. This material is based

on research sponsored by NetApp Inc, NSF and Maryland

Procurement Office under agreement number CNS-1116606,

CCF-1629625 and H98230-14-C-0140. Any opinions, find-

ings, conclusions, or recommendations expressed here are

those of the authors and do not necessarily reflect the views

of the funding agencies or the U.S. Government.

REFERENCES

[1] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block
IO: introducing multi-queue SSD access on multi-core systems,” in
Proceedings of the 6th International Systems and Storage Conference.
ACM, 2013, p. 22.

[2] A. Huffman and D. Juenemann, “The nonvolatile memory transforma-
tion of client storage,” Computer, no. 8, pp. 38–44, 2013.

[3] J. Min, S. Ahn, K. La, W. Chang, and J. Kim, “Cgroup++: Enhancing
I/O Resource Management of Linux Cgroup on NUMA Systems with
NVMe SSDs,” in Proceedings of the Posters and Demos Session of the
16th International Middleware Conference. ACM, 2015, p. 7.

[4] “Non-Volatile Memory Express,” http://www.nvmexpress.org/.
[5] Y. Zhang and S. Swanson, “A Study of Application Performance with

Non-Volatile Main Memory,” in Mass Storage Systems and Technologies
(MSST), 2015 31th Symposium on. IEEE, 2015, pp. 1–10.

[6] D. Vučinić, Q. Wang, C. Guyot, R. Mateescu, F. Blagojević, L. Franca-
Neto, D. Le Moal, T. Bunker, J. Xu, S. Swanson et al., “DC express:
shortest latency protocol for reading phase change memory over PCI
express,” in Proceedings of the 12th USENIX conference on File and
Storage Technologies. USENIX Association, 2014, pp. 309–315.

[7] Y. Son, H. Han, and H. Y. Yeom, “Optimizing file systems for fast
storage devices,” in Proceedings of the 8th ACM International Systems
and Storage Conference. ACM, 2015, p. 8.

[8] A. Awad, B. Kettering, and Y. Solihin, “Non-Volatile Memory Host
Controller Interface Performance Analysis in High-Performance I/O
Systems,” in Performance Analysis of Systems and Software, 2015 IEEE
International Symposium on. IEEE, 2015, pp. 145–154.

[9] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance Analysis of NVMe
SSDs and their Implication on Real World Databases,” in Proceedings
of the 8th International Systems and Storage Conference. ACM, 2015,
p. 22.

[10] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, “An Empirical Study
of File Systems on NVM,” in Proceedings of the 2015 IEEE Symposium
on Mass Storage Systems and Technologies (MSST15), 2015.

[11] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A
Lightweight Performance Emulator for Persistent Memory Software,”
in Proceedings of the 16th Annual Middleware Conference. ACM,
2015, pp. 37–49.

[12] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems.
ACM, 2014, p. 15.

[13] H. Cheng and S. Goddard, “Online energy-aware I/O device scheduling
for hard real-time systems,” in Proceedings of the conference on Design,
automation and test in Europe: Proceedings. European Design and
Automation Association, 2006, pp. 1055–1060.

[14] W. Sul, H. Eom, and H. Y. Yeom, “Energy-Aware I/O Scheduler for
Flash Drives,” in Information Science and Applications (ICISA), 2014
International Conference on. IEEE, 2014, pp. 1–4.

[15] R. Ge, X. Feng, and X.-H. Sun, “SERA-IO: Integrating energy con-
sciousness into parallel I/O middleware,” in Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012). IEEE Computer Society, 2012, pp. 204–211.

[16] S. Park, W. Jiang, Y. Zhou, and S. Adve, “Managing Energy-
performance Tradeoffs for Multithreaded Applications on Multiproces-
sor Architectures,” in Proceedings of the 2007 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’07. ACM, 2007, pp. 169–180.

[17] “ioping: simple disk i/0 latency measuring tool,” https://github.com/
koct9i/ioping.

[18] C. Gough, I. Steiner, and W. Saunders, “Memory and I/O Power
Management,” in Energy Efficient Servers. Springer, 2015, pp. 71–
91.

[19] M. Frasca, K. Madduri, and P. Raghavan, “NUMA-aware graph mining
techniques for performance and energy efficiency,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for. IEEE, 2012, pp. 1–11.

[20] “Intel Xeon Processor E5-2600/4600 Product Family Technical
Overview,” http://www.intel.com/content/dam/www/public/us/en/
documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf.

[21] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An Energy Efficiency Feature Survey of the Intel Haswell
Processor,” in Parallel and Distributed Processing Symposium Workshop
(IPDPSW), IEEE International. IEEE, 2015.

[22] “Intel Power Gadget,” https://software.intel.com/en-us/articles/
intel-power-gadget-20.

[23] “Fio: Flexible I/O Tester Synthetic Benchmark,” https://github.com/
axboe/fio.

[24] “Intel SSD DC P3700 Series Specifications,” http://www.intel.com/
content/www/us/en/solid-state-drives/ssd-dc-p3700-spec.html.

[25] “A NUMA api for Linux,” http://linux.die.net/man/8/numactl.
[26] “Completely Fair Scheduler in Linux,” https://www.kernel.org/doc/

Documentation/scheduler/sched-design-CFS.txt, 2015.
[27] B. Lepers, V. Quéma, and A. Fedorova, “Thread and memory placement

on NUMA systems: asymmetry matters,” in Proc. of the USENIX
Conference on USENIX Annual Technical Conference, 2015.

[28] K. Spafford, J. S. Meredith, and J. S. Vetter, “Quantifying numa and
contention effects in multi-gpu systems,” in Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics Processing
Units. ACM, 2011, p. 11.

[29] Z. Majo and T. R. Gross, “Memory management in numa multicore
systems: trapped between cache contention and interconnect overhead,”
in ACM SIGPLAN Notices, vol. 46, no. 11. ACM, 2011, pp. 11–20.

[30] T. Onagi, C. Sun, and K. Takeuchi, “Design guidelines of storage
class memory based solid-state drives to balance performance, power,
endurance, and cost,” in Japanese Journal of Applied Physics, vol. 54.
IOP Publishing, 2015.

[31] B. Cully, J. Wires, D. Meyer, K. Jamieson, K. Fraser, T. Deegan,
D. Stodden, G. Lefebvre, D. Ferstay, and A. Warfield, “Strata: High-
performance scalable storage on virtualized non-volatile memory,” in
Proceedings of the 12th USENIX conference on File and Storage
Technologies. USENIX Association, 2014, pp. 17–31.

[32] J. Gim, T. Hwang, Y. Won, and K. Kant, “SmartCon: Smart Context
Switching for Fast Storage IO Devices,” in ACM Transactions on Storage
(TOS), vol. 11. ACM, 2015, p. 5.

[33] S. Akram, M. Marazakis, and A. Bilas, “Numa implications for storage
i/o throughput in modern servers,” in 3rd Workshop on Computer
Architecture and Operating System co-design (CAOS12), 2012.

[34] Q. Ali, H. Zheng, T. Mann, and R. Srinivasan, “Power Aware NUMA
Scheduler in VMware’s ESXi Hypervisor,” in Workload Characteriza-
tion (IISWC), 2015 IEEE International Symposium on. IEEE, 2015,
pp. 193–202.

[35] H. Qian and D. Andresen, “An energy-saving task scheduler for mobile
devices,” in Computer and Information Science (ICIS), 2015 IEEE/ACIS
14th International Conference on. IEEE, 2015, pp. 423–430.

[36] ——, “Jade: Reducing energy consumption of android app,” the In-
ternational Journal of Networked and Distributed Computing (IJNDC),
Atlantis press, vol. 3, no. 3, pp. 150–158, 2015.

578578

