
161

ROS: A Rack-based Optical Storage System with
Inline Accessibility for Long-Term Data Preservation

Wenrui Yan Jie Yao ∗ Qiang Cao †

Changsheng Xie

Wuhan National Laboratory for Optoelectronics,

Key Laboratory of Information Storage System,

Ministry of Education of China

School of Computer Science and Technology,

Huazhong University of Science and Technology

{wenrui yan, jackyao, caoqiang,
cs xie}@hust.edu.cn

Hong Jiang

Dept. of CSE University of Texas at Arlington

hong.jiang@uta.edu

Abstract
The combination of the explosive growth in digital data and

the need to preserve much of this data in the long term

has made it an imperative to find a more cost-effective way

than HDD arrays and more easily accessible way than tape

libraries to store massive amounts of data. While modern

optical discs are capable of guaranteeing more than 50-

year data preservation without migration, individual optical

disks’ lack of the performance and capacity relative to HDDs

or tapes has significantly limited their use in datacenters.

This paper presents a Rack-scale Optical disc library Sys-

tem, or ROS in short, that provides a PB-level total capacity

and inline accessibility on thousands of optical discs built

within a 42U Rack. A rotatable roller and robotic arm sep-

arating and fetching the discs are designed to improve disc

placement density and simplify the mechanical structure. A

hierarchical storage system based on SSD, hard disks and

optical discs are presented to hide the delay of mechanical

operation. On the other hand, an optical library file system

is proposed to schedule mechanical operation and organize

data on the tiered storage with a POSIX user interface to pro-

vide an illusion of inline data accessibility. We evaluate ROS

on a few key performance metrics including operation de-

lays of the mechanical structure and software overhead in a

∗ Corresponding author: jackyao@hust.edu.cn
† Corresponding author: caoqiang@hust.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23-26, 2017, Belgrade, Serbia

c© 2017 ACM. ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064207

prototype PB-level ROS system. The results show that ROS

stacked on Samba and FUSE can provide almost 323MB/s

read and 236MB/s write throughput, about 53ms file write

and 15ms read latency via 10GbE network for external users,

exhibiting its inline accessibility. Besides, ROS is able to ef-

fectively hide and virtualize internal complex operational be-

haviors and be easily deployable in datacenters.

CCS Concepts • Information systems → Cloud based
storage

1. Introduction
It has been considered highly desirable for much the digital

data generated from various sources such as scientific re-

search, social and commercial activities to be preserved for

more than 50 years or longer, if not forever [9, 23, 26, 28]. In

addition, since emerging big data analytics technologies en-

able to further unlock the value of data, an increasing amount

of data that used to be discarded on a daily basis in the past

are now considered target for long-term preservation once

the storage systems become more cost-effective. More im-

portantly, increasing analytics applications that depend on

mining historical data require inline accessibility to these

long-term preserved data in order to produce timely results.

In other words, these data should be conveniently accessed

by big data analytics applications in a manner similar to ac-

cessing databases or filesystems, without the cumbersome

interventions of conventional archival or backup systems.

Unfortunately, reliably preserving data for the long term

remains a significant challenge [10]. Mainstream online

storage media such as solid state drive (SSD) and hard disks

(HDD) have limited lifecycles of up to 5 years in which

data reliably stored [3, 15]. Offline storage media like mag-

netic tapes only guarantee 10-year data preservation [19].

For longer-term data preservation, data migration from old

162

media to new media is inevitable, increasing risks of data

loss and complexity of maintenance[14]. Additionally, these

three typical mainstream storage media demand strict envi-

ronmental conditions such as constant temperature and hu-

midity, thus consuming extra amount of energy.

Optical discs are shown to be able to reliably store

data in excess of 50 years without specific environmental

requirements[11], far outperforming hard disks and tapes

in terms of reliable life expectancy and management cost.

Since each optical disc is made of a piece of plastic and

multiple thin layers of coating films at sereval ums [18],

the material and manufacturing costs of optical discs are

very low. Furthermore, considering the data migration and

maintenance cost, the TCO (Total Cost of Ownership) of

optical-discs based storage is significantly lower than that of

hard-disks or tapes based storage for long-term data preser-

vation. Nevertheless, there are three fundamental limitations

of optical discs that greatly hamper their use in any storage

systems, much less a stand-alone optical storage. First, the

capacity of a single optical disc is still far less than that of

a hard disk or tape. Second, the maximal access throughput

for an optical disc is up to 40MB/s, far lower than that for

a hard disk. Third, the writing pattern for optical discs is

preferred to be write-all-once, where all prepared data are

burned onto discs once.

In order to overcome these limitations of optical discs,

we present an optical library called ROS, which stands for a

Rack-based Optical Storage system for long-term data stor-

age with inline accessibility. ROS contains thousands of op-

tical discs to improve the overall storage capacity and tens

of optical drives to enhance the sustained access through-

put. More importantly, ROS is inline accessible and can

be deployed easily. It can be conveniently integrated into

rack-scale datacenters without the introduction of an ex-

tra backup or archival system. At the heart of ROS is a

novel system-level co-design of mechanical-electrical and

hardware-software that provides general and virtualized

POSIX storage interfaces for transparent, inline access of

the long-term preserved data from the user space. The main

contributions of ROS are summarized as follows.

Mechanical subsystem: To maximize the overall capac-

ity, ROS designs a high-precision electromechanical struc-

ture to systematically organize up to 12240 optical discs, 48

drives and a server-level controller in a 42U rack. This de-

sign offers a highly compact and relatively simple mechan-

ical structure. Each 6120 discs are placed in one of the two

rotatable rollers, each with 510 trays (of 12 discs each) that

are organized in 85 layers with each layer containing 6 con-

centric slots. ROS further develops an efficient robotic arm

to automatically switch discs into/out of drives, to correctly

separate and place a disc from a disc array to a drive. All me-

chanical components can be precisely and correctly driven

by ROS in a feedback control loop with a set of sensors.

Architecture: ROS combines long-term data preserva-

tion of optical discs with fast access performance of hard

disks and SSDs to consolidate the best characteristics of the

three technologies, constituting an externally transparent and

internally tiered storage architecture based on SSDs and/or

HDDs, referred indistinguishably as disks hereafter unless

noted otherwise, optical drives, and discs in rollers. All the

disks and drives are connected to a server-based controller

accessible by external clients via high-speed network such

as 10GbE and Infiniband, making ROS a network attached

storage. The disks are used as write buffer and read cache.

All optical drives can be accessed in parallel to ensure high

sustained throughput. This design guarantees that all write

requests can be completely buffered and most read requests

can hit in disks to effectively hide the tens-of-seconds la-

tency of the mechanical operations.

Software: ROS develops an optical library file system

(OLFS) to orchestrate the interplay and interaction among

software, hardware, and mechanical subsystems. It offers a

general and programmable POSIX interface to realize inline
accessibility for external applications, as well as effectively

hide the long mechanical delays. OLFS can automatically

access and manage PB-level data across tens of thousands

of discs without manually partitioning datasets across phys-

ical discs and burning discs. OLFS maintains a global file

view and strategically partitions all files into Universal Disc

Format(UDF)[1] disc images on disks or discs. The global

view is built on a fast and small mirroring volume while

all file data and their abstract path are ultimately stored in

disc images. ROS can further asynchronously generate par-

ity disc images based on a set of prepared data disc images,

enhancing data reliability at the system level.

Evaluation: We ran a series of experiments to evaluate

ROS performance. The latency of critical operations, such

as accessing disks and discs, and mechanical behaviors, can

be further analyzed. The experimental results also illustrate

that ROS can effectively and transparently respond to file

requests through the POSIX interface at an acceptable per-

formance for inline accessing long-term preserved data[2].

The rest of the paper is organized as follows. Section 2

provides the necessary background and analysis to motivate

our research on optical storage for long-term preserved data.

The ROS mechanical and hardware designs are detailed in

Section 3. Section 4 presents the design of the optical library

file system OLFS. In Section 5, we evaluate the performance

and functionalities of ROS. Finally, Section 6 and Section 7

respectively discuss related work and conclude the paper.

2. Background and Motivations
Long-term preserved data have become a primary source of

big data. Valuable data such as scientific experiments, com-

mercial activities, social insurance and human health records

are mandated to be regularly preserved without any modi-

fication for a very long time, if not forever. Besides, more

163

daily accumulated data, from sources such as social net-

working and Internet of Things, are also desired to be long-

term stored because these data could produce unexpected

values when mined by emerging big data analytic technolo-

gies. Therefore, long-term and inexpensive data preserv-

ing techniques are attracting more and more attention from

academia and industry alike.

Unfortunately, considering that current mainstream stor-

age media deteriorate in relatively limited lifetimes, the

long-term availability of their stored data is dependent upon

storage media replacement and data migration. The lifetimes

of SSD and HDD are generally less than 5 years[3, 15].

Tapes can in principle reliably store data for about 10 years

under constant temperature, strict humidity, and rewinding

operations every two years, which are inevitable to protect

tapes from adhesion and mildew[19]. Additionally, these

three media are also not resilient against electromagnetic

pulse and nature disasters such as flood and earthquake.

These essential media replacement and data migration sig-

nificantly increase maintenance cost and risks of data loss.

2.1 Optical Discs
In comparison, Blu-ray discs have been experimentally val-

idated to preserve data for over 50 years and are potentially

cost-effective data storage media. Optical discs have good

compatibility. The first generation compact discs (CDs)

manufactured 30 years ago can still be read using the cur-

rent generation of optical drives. The Blu-ray disc technol-

ogy inherits the 120mm physical feature from CDs with

higher storage density. Additionally, optical discs are re-

silient against disasters[22], such as flood and electromag-

netic pulse. They were the only digital media that survived

the hurricane Katrina[27]. Considering that optical discs are

each simply made up of a piece of plastics plus multiple

thin layers of coating films at several ums, the material and

manufacturing costs of optical discs are relatively low. Once

the amount of produced discs exceeds a threshold where the

investment of production lines for optical discs can be suf-

ficiently amortized, the cost per GB for discs will surely be

competitive with hard disks and tapes. Current media cost

per GB of 25GB discs has become close to that of tapes.

Hologram discs[6] with 2TB have been realized and demon-

strated, although their drives are plans to be productized in

two years. In the foreseeable future, 5D optical discs are

poised to offer hundreds of TB capacity[29]. Assuming the

use of tapes, hard disks, SSDs and blu-ray discs to build a

datacenter with a capacity of 1PB for 100 years, Preeti Gupta

and his group construct an analytical model to calculate the

TCO of such a system [12]. Optical discs have an lifetime

of more than 50 years while the lifetime of HDDs are only 5

years, so the HDD-based datacenter needs more data migra-

tion cost and media repurchase cost than the optical based

datacenter. As mentioned above, the preservation of tapes re-

quires strict environment and regular rewinding operations,

thus the tape-based datacenter needs more operational cost

than the optical disc based datacenter. The simulation result

shows that the TCO of an optical disc based datacenter is

250K$/PB about 1/3 of an HDD-based datacenter, 1/2 of a

tape-based datacenter. Consequently, industry and academia

have also begun to consider store long-term data on optical

discs as an alternative approach.

Despite of these potential advantages, the current capac-

ity and performance of Blu-ray discs are individually far

lower than those of hard disks. Even though 300GB Blu-ray

discs are now becoming increasingly popular, they are still

an order of magnitude smaller in capacity than normal hard

disks with 4TB or 8TB per-disk capacity. Additionally, the

basic reference speed of a Blu-ray disc is at most 4.49MB/s,

which is defined as 1X. Current standard reference speeds

for 25GB and 100GB discs are respectively 6X and 4X[17].

The maximal speed obtained in our experiments are 12X for

25GB discs and 6X for 100GB discs, which are far lower

than the speed of hard disks of almost 150MB/s.

Most recordable optical discs are write-once-read-multiple

(WORM) while re-writable (RW) discs can re-write with rel-

atively low burning speed (2X), limited erase cycle (at most

1000) and high cost. Optical drives at high voltage burn a

series of physical grooves on the unused smooth surface of

discs. It is best to steadily and sequentially burn data once

into discs to ensure high quality and low risk of errors. An

entire prepared disc image is burned into a disc once, re-

ferred to as the write-all-once mode. Optical drives also sup-

port the Pseudo Over-Write mechanism where the drive can

write multiple data tracks into a disc, with each track rep-

resenting an independent disc image. An optical drive first

takes tens of seconds to format a predefined metadata area

and writes data. When over-write happens, the previously

burned area cannot be used and the drive needs to format

a new metadata area and then writes data. This mechanism

causes capacity loss and performance degradation, and thus

is not recommended.

2.2 Optical Library
In order to overcome the limitations of individual opti-

cal discs, optical libraries have been proposed to increase

system-level capacity by leveraging the combined capacity

of a large number of discs and improve performance by de-

ploying multiple optical drives to access discs concurrently.

The first generation optical jukebox only contained up to

hundreds of discs in relevant physical slots and accessed by

1-6 drives. Their mechanical appliances can deliver discs be-

tween drives and slots. Current large-scale optical libraries,

such as Panasonic LB-DH8[4] and Sony Everspan[24], can

further deploy thousands of discs and tens of drives. These

discs are grouped into a series of disc arrays as a logical

block volume with an internal RAID redundant mechanism.

The disc arrays can solely mount/unmount to a host via the

SCSI interface. LB-DH8s are 6U racked-devices. Everspan

has a controller rack unit consisting of drives and up to 13

additional expansion rack units with discs.

164

However, these optical libraries are more like tape de-

vices rather than storage nodes deployed in current cloud

datacenters, making them difficult to be integrated into data-

centers. Current tape and optical libraries generally rely on a

dedicated backup system running on a front host to manage

all data on media in an off-line mode. The typical backup

process can involve datasets collection, catalog creation or

update, compression or deduplication, transforming datasets

into a specific format suitable for tapes, then copying these

formatted data into tapes. The restore process essentially re-

verses the above procedure. Besides, raw data on tapes are

not readable for applications without interpretation of the

backup system. In order to address this problem, IBM de-

veloped LTFS[20] that allows its files on tapes to be directly

accessed by user applications through a standard POSIX.

However, LTFS is only based on single tape like UDF for

discs.

2.3 Motivation
Optical discs have exhibited their advantages in long-term

data preservation. However, their disadvantage in capacity

and performance will persist for some time to come. An op-

tical library is expected to maximize disc placement density

within a limited physical space and provide a reliable and

simple mechanical structure. Furthermore, an optical library

is also designed to effectively manage discs and their storing

of data, as well as to hide disc boundary, internal specific

access behaviors and mechanical delays.

Additionally, for long-term data preservation, consider-

ing that hardware, software and mechanical components are

not likely to have the same lifetime as discs and part of discs

might be lost, data on survived discs should be by and large

self-descriptive, independently accessible and understand-

able.

More importantly, in the era of big data, long-term pre-

served data are required to be conveniently and directly

searched and retrieved through programmable interfaces by

big data analytics applications without the aforementioned

extra backup/archival system intervention. Therefore, opti-

cal libraries should provide a persistent online view of their

data so that the data can be shared by external clients using

standard storage interfaces that can be easily integrated and

scaled in cloud datacenters. Furthermore, as storage nodes

in current datacenters, optical libraries should have in-place

computing capacity to process their data locally.

In summary, optical libraries as storage nodes used in

cloud datacenters should be reliable, self-manageable, scal-

able, low cost, ease of use and capable of local processing

of data. To this end, we design and implement a Rack-based

Optical library System (ROS) with a sophisticated by effec-

tive mechanical-electrical integrated system with a full visu-

alized file view and tiered storage consolidating SSDs, hard

disks and discs. In next section, we detail our design and im-

plementation considerations for ROS, including mechanical,

hardware and software architectures and their co-design.

3. System and design
ROS is a complex mechanical-electrical integrated optical

library system designed to achieve PB-level long-term data

preservation at low cost. ROS is also designed to be a stor-

age node that can be integrated into datacenters with inline

data accessibility. In this section, we detail the system archi-

tecture, mechanical and hardware designs of ROS.

3.1 System Architecture
The system architecture of ROS is shown in Figure 1. The

mechanical structure is comprised of one or two rollers each

built with physical frame, robotic arms, a serial of motors

and sensors. A roller with a height of 1.67m is a rotatable

cylinder with the diameter of 433mm and contains up to

6120 discs. The hardware units include a server-level con-

troller, Programmable Logic Controller(PLC), a set of hard

disks and SSDs, a set of optical drives. The controller is a

powerful server connecting all SSDs, hard disks and optical

drives via a set of SATA interfaces extended by PCIe3.0. The

SSD and hard disk are referred indistinguishably as disks

hereafter unless noted otherwise. PLC controls the rollers,

robotic arms, motors and sensors to move discs between

optical drives and specific slots in the frame automatically

and precisely. PLC can communicate with the controller via

TCP/IP to perform mechanical operations. Besides, an opti-

cal library management system which will be detailed in the

next section, is running on the controller to manage ROS and

serve user requests effectively.

Figure 1. A conceptual view of the ROS architecture. The

mechanical structure contains rollers and robot arms. Hard-

ware consit of a powerful server with multiple hard disks,

SSDs and optical drives.

3.2 Mechanical Subsystem
ROS is housed in a 42U standard rack containing up to

12240 discs. The rack can deploy 1 or 2 rollers each con-

taining 6120 discs in 510 trays (12 discs/tray) organized in

85 layers. There are 6 trays in each layer arranged in a lo-

tus like shape. 12 discs placed in each one tray are referred

indistinguishably as a disc array hereafter unless noted oth-

erwise. Figure 2 shows a schematic representation of the me-

chanical structure of a roller, with a cylinder containing 6 x

85 (depth) x 12 (height) discs. The roller can rotate back and

165

forth. A robotic arm can move vertically, fetching and sep-

arating a disc array. Further, ROS is able to deploy 1-4 sets

of optical drives with each set containing 12 optical drives.

These drives can burn data into discs or read data from discs

in parallel.

Figure 2. A schematic view of the ROS mechanical organi-

zation. The roller rotates and the robot arm moves vertically.

These two simple movements combine to load/unload disc

arrays.

All discs are placed in trays in the roller and can be au-

tomatically loaded into drives on demand. Each tray can fan

out/in independently. During the process of tray fanning out,

an outer side hook of this tray is locked by the robotic arm

and an inner side connector of this tray rotates with the roller

to a specific angle. Once the tray is fanned out, the robotic

arm can fetch all 12 discs in this tray and quickly lift them

up to a position atop all optical drives. Then, the robotic

arm releases the lock of the tray, the roller reversely rotates

the same angle and the opened tray can fan back into the

roller. Afterwards, these 12 optical drives are simultaneously

opened, and the robotic arm begins to separate the bottom

disc of the disc array, places this bottom disc on the upper-

most drive. Subsequently, this drive withdraws its tray and

starts to access data on the disc. This disc-separating opera-

tion is performed one by one from top to bottom until these

12 discs are all placed into the 12 drives. When a disc ar-

ray needs to be unloaded from drives to tray in the roller, the

robotic arm fetches the discs on the ejected tray of the upper-

most drive one by one from top to bottom. Afterwards, this

disc array is placed into the specific tray in the roller. Finally,

the opened tray is closed with the roller rotating reversely.

The ROS design attempts to simplify both the mechani-

cal and tray structure. Traditional optical libraries and tape

libraries, such as Panasonic Data Archiver LB-DH8 series,

have a delicate magazine to contain storage media and place

all magazines in fixed slots. To carry a magazine between

drives and specific slots, the magazine must be rejected from

the slot as whole, followed the robotic arm needs to moving

the magazines in three dimensions, before a set of discs on

the magazine are precisely separated and placed into a set of

drives. The magazine based structure not only increases the

mechanical complexity and but also reduces the disc place-

ment density. The three-dimension movement of the robotic

arm also needs more precise control from motors and has

longer executing time. In contrast, ROS spins the roller and

moves the robotic arm only in the vertical direction, thus re-

ducing mechanical movement. Additionally, the robotic arm

only carries a single disc array rather than a magazine, elim-

inating a complex magazine structure. Therefore, these de-

sign choices of ROS reduce the mechanical complexity of

both the robotic arms and trays, improving mechanical re-

liability and disc physical placement density. One concern

is that this integral-rotation of the roller might draw more

power than the traditional systems. In fact, rotating the en-

tire roller consumes less than 50 watts and is not frequently

performed.

Our mechanical design also attempts to reduce the me-

chanical delay. The mechanical operations with the longest

delays are to separate or collect a disc array one by one

into drives, both of which take almost 70 seconds. Precisely

scheduling movements of the roller and robotic arm in par-

allel can further reduce the delay of conveying discs, which

can save up to almost 10 seconds. However, more complex

design and scheduling policies seem to only slightly reduce

this delay. In order to hide the delay of these mechanical

operations, ROS introduces a tiered storage architecture by

utilizing disks as a fast access tier to absorb as many I/O

requests as possible.

3.3 Electronic Subsystem
The key components of ROS electronic subsystem are two

controllers, the PLC (Programmable logic Controller) con-

troller and the system controller (SC). The former defines an

instruction set to execute basic mechanical operations, while

the latter orchestrates all operations of PLC via an internal

TCP/IP network, both hardware and software, to complete

data access operations, as well as to manage the overall li-

brary and data. All the software modules run on the SC.

More specifically, PLC manages all motors and monitors

all sensors in real time. All mechanical operations can be

executed correctly by precise feedback control. ROS has

three kinds of motors: motors that to rotate the roller, motors

that to move robotic arms up and down, tiny motors on the

robotic arm to separate discs. ROS monitors all the sensors

to continuously track the current mechanical states and to

calibrate the current operations. For instance, ROS partitions

discs into drives at the 0.05mm precision using a set of range

sensors.

SC is a server-level controller with two Xeon processors,

64GB DDR4 memory, two 10Gbps NICs, 4 PCIe3.0*4 slots

and 4 PCIe3.0 HBA cards connecting hard disks and optical

drives (24 per rack by default). ROS also supports infini-

band and Fibre channel (FC) networks that are commonly

used in storage area network (SAN) scenarios. ROS can uti-

lizes 10Gbps networks to connect clients in a shared network

attached server (NAS) mode, providing more than 1GB/s ex-

ternal throughput, which is suitable for datacenter environ-

166

ments. All optical drives with SATA interfaces can be ul-

timately aggregated into the internal PCIe 3.0 HBAs. Actu-

ally, ROS can deploy more optical drives and disks. All disks

can be further configured as multiple RAID volumes to im-

prove overall throughput and reliability. All optical drives

are grouped into sets of 12 drives each. All optical drives are

off-the-shelf half-height drives with far lower cost than DH8

with dedicated slim drives and Everspan with customized

multiple-heads drives. Since all drives can read/write data

on discs in parallel, ROS relies on deploying more drives to

increase its overall bandwidth of accessing discs.

In ROS, both disc burning and disc load/unload opera-

tions have long delays at the minute level. The current stan-

dard write speed of a drive for 100GB discs is 4X, or about

20MB/s. It takes more than an hour for a drive to complete

burning a 100GB disc at up to 6X speed. For 25GB discs and

50GB discs, the empirical write speed under a pair of well-

matched drive and disc can reach 10X, or 45MB/s. It takes

more than 10 minutes to burn a 25GB disc. Additionally,

the time spent on loading requested discs into free drives is

about 70 seconds. When all drives are not free, it will take

another 70 seconds to unload discs from drives. These time-

consuming burning and mechanical operations cannot be in

the critical I/O path of the foreground applications. Tradi-

tional optical and tape libraries use dedicated backup sys-

tems to hide these long delay time, which also renders appli-

cations unable to access data directly on the libraries.

ROS uses a number of disks as the write buffer and read

cache for optical discs, constituting a two-level tiered stor-

age structure. ROS deploys at least two SSDs configured as

the RAID-1 mode to serve as a metadata volume. The rest of

the disks are configured into multiple RAID-5 arrays. Data

transferred to ROS are first written to these arrays, and then

reorganized and burned to discs asynchronously. These ar-

rays also act as read cache to absorb data read requests. Since

each hard disk has almost 150MB/s read/write sequential

throughput, each RAID-5 can not only tolerate single disk

failure but also offer more than 1GB/s throughput. In fact,

ROS can deploy more disks according to requirement. Two

or more independent RAIDs can effectively support multi-

ple I/O streams such as writing data from clients onto the

disk buffer and burning data from the disk buffer to discs,

avoiding potential performance degradation caused by the

interference between these concurrent I/O streams.

4. Optical Library File System
4.1 OLFS Overview
Based on the mechanical and electronic platforms, we fur-

ther design and implement an optical library file system,

OLFS for short, as a global virtualized file system on the

tiered storage architecture. OLFS is able to orchestrate all

electronic and mechanical resources effectively to serve

user’s I/O requests, as well as hide the internal tiered storage

and complicated electromechanical behaviors sufficiently.

To this end, OLFS presents several novel techniques: meta-

data and data decoupled storage, preliminary bucket writing,

unique file path, regenerating update, and delayed parity

generation.

Mainten
ance

Interface
ModuleDisc Burning

Module

Discs

POSIX Interface

Writing Bucket
Management

Data
Flow

Control
Flow

Mechanical
Controller

GNV Disk
Buffer Disc Image Management

Burning Task
ManagementDrives

Fetching Task
Management

Read
Cache

Adminstrator

Applications &
Users

HDDs/
SSDs

Figure 3. OLFS modules and data flow in ROS. OLFS

provides a POSIX file system interface and hides the internal

disc and mechanical operations.

OLFS is comprised of nine software modules as shown in

Figure 3. OLFS provides a POSIX Interface module (PI) as a

uniform file/directory external view for users in the network-

attached storage (NAS) mode. The fact that this NAS mode

has been the most widely used in storage services makes

ROS easily deployable in most storage systems. OLFS stores

all files’ mapping information in a small and fast volume,

referred to as Metadata Volume (MV). OLFS first generates

the global metadata of all incoming files in MV, and then

writes their actual data into a couple of updatable buckets

formatted in UDF (universal disc format) in the disk write

buffer. A fully filled and closed bucket is transformed into a

data disc image that is a basic switchable data unit between

the write buffer and discs. The Writing Bucket Management
module (WBM) creates, uses and deletes buckets. The Disc
Image Management module (DIM) generates parity disc im-

ages from a set of disc images according to predefined re-

dundant strategies. The Burning Task Management module

(BTM) creates a new disc burning task when a set of unwrit-

ten disc images are ready. A new disc burning task cannot

perform immediately until its requested hardware resources

are free. When these resources are available, the disc burn-

ing task further invokes the Mechanical Controller module

(MC) to perform the relevant mechanical operations to load

empty discs into drives. Then the Disc Burning module (DB)

burns images onto the discs. Hence, the file writing process

and disc burning process can perform asynchronously.

OLFS considers a disc image as a basic container to ac-

commodate files. Each disc image has the same capacity as

the disc and has an internal UDF file system. Therefore, disc

images as a whole can swap between discs and disks. Each

disc image has a universal unique identifier. After being di-

rectly mounted to a OLFS internal directory, disc images can

be accessed by VFS (virtual file system). OLFS defines a

disc array index DAindex to maintain the state of each disc

167

array in one of the three states, ”Empty”, ”Used”, ”Failed”.

Initially, all entries in DAindex are marked as Empty. Then

DAindexi will be modified to ”Used” when disc array i is

used. When the disc burning task for disc group j has failed,

DAindexj will be set to ”Failed”. OLFS also uses a disc im-

age location index DILindex to record each disc image iden-

tifier and its own physical location.

For a file read request, OLFS looks up its index file in

MV to determine its image identifier. This image can be

stored in buckets, disc images in the disk buffer, or discs

in drives or in the roller. In the last case, OLFS has to invoke

mechanical operations to fetch the requested discs. Once the

requested disc image is ready, it is mounted and accessed

to read the requested file. Considering that recently and

frequently read data are likely to be used again according to

data life cycles, Read Cache (RC) retains some recently used

disc images according to a LRU algorithms. Once requested

data miss in RC and buffered disc images, the Fetching
Task Management module (FTM) generates a new fetching

task to capture the relevant discs into drives. The current

design of OLFS only considers a disc image as a cache

unit, sufficiently exploiting spatial locality. Considering that

the size of the disk buffer is more than 50TB, its capacity

miss rate is relatively low. Certainly, the read cache also can

use in finer grain as files or prefetch some files according

to specific access patterns[10]. A specific cache algorithm

should sufficiently exploit the potentials of such large buffer

and access patterns. We leave these works to the further

combining empirical use cases.

Note that MC not only communicates with PLC, but also

schedules disk burning and fetching tasks to optimize the

usage of mechanical resources. Finally, OLFS also offers a

Maintenance Interface module (MI) to configure and main-

tain the system by an interactive interface for administrators.

4.2 Global Namespace Mapping
Different from current tape and optical libraries, OLFS pro-

vides a shared global logical namespace for all users based

on the standard POSIX interface. This means that clients can

use the absolute path of a file in the global namespace to ef-

fectively locate its actual data in ROS. This mapping process

is illustrated in Figure 4.

OLFS uses MV to maintain updatable maps between mil-

lions of files and thousands of discs. When a file write op-

eration comes, its global metadata is created and updated in

the MV. Meanwhile its data is written into buckets on the

disk write buffer. Traditional local file systems such as Ext4

use file inodes to record their metadata such as data block

addresses and attributes, as well as employ directory in-

odes to maintain a hierarchy namespace. In these scenarios,

both inode blocks and data blocks are in the same block ad-

dress space. In contrast, ROS files are physically distributed

among thousands of disc images on disk write buffer or discs

while their global medadata are stored in MV. This means

that metadata and data storage can be physically decoupled,

Disk
Buffer

Global
Namespace

Volume
…… Parity

image

………

DA DA DA DA DA DA DA DA DA DA DA DA

Disc
Image
Array

Disc Image

Disc
Array

Ver. No Vol_noB/I/D

1 B_vol_noB

Others

…

2 I_vol_noI …

3 D_vol_noD …

Figure 4. Mapping from the global namespace to discs. The

global namespace and all index files are stored in MV. Each

data image contains a part of the global namespace.

avoiding that the high performance of accessing small meta-

data files is hampered by the data storage with long I/O la-

tency.

Any entry in the global namespace, including file and

directory, has its corresponding index file with the same file

name in MV. However, MV index files do not have actual

file data, but only record the locations of their data files in

the form of bucketID, image ID, or disc ID. This design

sufficiently leverages the maturity and advantages of ext4

and UDF, reducing the development complexity.

The index file is organized in the Json standard format

for its ease of processing and translation[5]. Its typical size

is 388 bytes. In addition to the Json tag, the location infor-

mation is 128 bytes. This index file structure can ensure plat-

form independence and interchangeability. In order to sup-

port file appending-update operations, multiple file version

entries for a file can be recorded into the index file. Each en-

try takes 40 bytes. To reduce storage wastage, the block size

of MV can be set to 1KB offering about 15 historic entries.

Meanwhile the inode size in MV is set to the smallest 128

bytes. MV with 1 billion files and 1 billion directories only

needs about 2.3 TB, which is only 0.23% of the overall 1PB

data capacity.

MV files and directories are relatively small, frequently

accessed and updated. To accelerate the metadata access,

MV is built on a small RAID-1 formatted as ext4 file sys-

tem. The small RAID-1 can further be configured upon a

pair of SSDs. Furthermore, the well optimized ext4 file sys-

tem adopts buffer cache, dentry cache, and journaling mech-

anisms, to ensure the performance of small files and direc-

tory operations on MV[7].

Besides index files, all system running states and main-

tenance information are also stored in MV in the Json for-

mat. Once ROS crashes, OLFS can recover from its previous

checkpoint state with all state information stored in MV.

OLFS must ensure the durability and consistency of its

global file namespace since the file-directory structure is

critical for looking up their actual storage locations. More

importantly, the global file namespace also embodies the se-

mantic relationship among files. For WORM discs, OLFS is

168

actually a traceable file system and records the creating and

updating tracks of files. This information of files is helpful

in analyzing data evolution. Therefore, MV is periodically

burned into discs. Once MV fails, the entire global names-

pace can be recovered from discs. This mechanism is very

essential for long-term data perseveration. As an experiment,

ROS took half an hour to recover MV from 120 discs.

This namespace mapping mechanism can also be ex-

tended to support other mainstream access interfaces such

as key-value, objected storage, and REST. OLFS can also

provide a block-level interface via the iSCSI protocol. Cer-

tainly, in the future, if required, we can design dedicated

mechanisms to simplify the mapping between these specific

interfaces and discs.

4.3 Preliminary Bucket Writing
In order to effectively eliminate long disc burning delay and

file format transformation for file writes from clients, ROS

introduces a preliminary bucket writing (PBW) mechanism.

The actual data of an incoming file is written into an up-

datable UDF bucket on the disk write buffer, its index file

is simultaneously created in MV to record the bucket image

ID. As soon as the file data have been completely written,

OLFS immediately acknowledges the completion of the file

write.

OLFS initially generates a series of empty buckets, each

of which is a Linux loop device formatted as an updatable

UDF volume. When an empty bucket begins to receive data,

OLFS allocates an image ID to it. After the bucket is filled

up, it will transit into a disc image with the same image

ID. The bucket can be recycled by clearing all data in it.

The unburned disc images should be stored in the disk write

buffer before they are burned into discs according to certain

pre-defined burning policies. The tiered writing process is

illustrated in Figure 5.

PBW is very suitable to the features of WORM discs. The

buckets can not only absorb all write and partially updated

data, but also reorganize these data in the UDF format de-

signed for discs. PBW supports the write-all-once mode that

can achieve the highest performance and reliability since se-

quentially burning discs can reduce seek operations of opti-

cal head and improve burning quality.

4.4 Unique File Path
A file in OLFS has two file paths, a logical path in the global

namespace and a physical path in the UDF file system on

disc images. In order to avoid transformation between these

two paths, OLFS uses the global file path of a file as its

internal file path in disc images, referred to as unique file

path. For a file, its ancestor directories up to the root in the

global namespace should be generated as UDF directories in

the disc image. As a result, each image has a root directory

and a relevant directory subtree of an entire global directory

tree.

P

……

……...
….

……

……...
….

Disc
Array

Disc
Image
Array

Opened
Buckets

Filled
Buckets

Burning
Images

Recycling
Buckets

Free
Buckets

Writing
files

Generating
Parity Image

Figure 5. File writing process on the tiered storage. Data are

first written to empty buckets. The full buckets are closed

and become disc images, then parity image is generated

asynchronously. Finally, these disc images are burned to a

free disc array.

We argue that the unique file path approach based on

redundant directory is worthwhile. Although it slightly in-

creases directory data in images, this approach simplifies the

content of the index file and the process of accessing files.

The index file only needs to record its image ID, reducing

the capacity requirement for MV. OLFS can use the unique

path to locate a file in both MV and images. Once the im-

age is mounted, the requested file can be located by execut-

ing lookup operations of the UDF file system. Additionally,

this approach allows discs to preserve the semantic informa-

tion as the relationship among files by copying subtree from

the global namespace. Even if all electronic and mechanical

components failed, all or partial data can be reconstructed by

scanning all survived discs. This is very essential for long-

term data preservation.

4.5 Partitioning Files into Buckets
OLFS should automatically partition datasets into a series

of separated images. The default policy is first come first

service. This means that all incoming files are sequentially

written into an opened and not-full bucket. In order to cre-

ate the unique file path of a writing file, its ancestor direc-

tories should be created or updated. Since unclosed buckets

are updatable, the write process modifies the corresponding

directory information dynamically. In the UDF file system

the basic block size is 2 KB and cannot be changed. Hence,

each file entry size is allocated at a minimum of 2KB. In the

worst case scenario where all files are less than 2KB plus

extra corresponding 2KB file entry, the actual space to store

data is only half of the bucket. Note that before the bucket is

closed, its UDF metadata can be update-in-place in disks and

its defined metadata zone is not fixed. Once the free space of

a bucket is insufficient to accommodate both a new file and

169

its directory, the bucket is marked as full and closed, guaran-

teeing that the image size does not exceed the disc capacity.

Note that OLFS does not know the actual size of an in-

coming file ahead of time under the POSIX write seman-

tics. When an incoming file data exceeds the free space of

the current bucket, the writing process has to choose another

empty bucket to sequentially write the rest of this file, caus-

ing the file to be divided into two subfiles and written into

two consecutive images. Therefore, its corresponding index

file needs two relevant entries to record the subfile locations.

To correctly ensure the reconstruction of the global names-

pace without VM, OLFS also creates a link file on the second

subfile image to point to the first subfile.

4.6 Updating Mechanism
OLFS based on WORM discs can still implement file update

in its global file view. If an updating file is still in an opened

bucket with sufficient free space, the file can be simply

updated. Otherwise, instead of update-in-place, OLFS has

to create a new file replacing its old file. When this modified

file is generated in another bucket, its index file also adds an

entry to record the new location with an increasing version

number. As mentioned above, an index file with 2 KB can

store up to 15 entries. When all 15 entries have been used up,

the first entry will be overwritten. After burning current MV

into discs, all index files will only store the recent entries.

Note that an old file in images is not actually removed,

since OLFS can obtain any of its foregoing versions by

searching the old entry in the current index file or old index

file in MV images. Hence, OLFS can conveniently imple-

ment data provenance and data audit.

4.7 Redundancy Mechanism
The sector error rate of archive Blu-ray discs is generally

10−16. A disc array of OLFS typically consists of 12 discs

with 11 data discs and 1 party disc organized in a RAID-

5 schema. In this case, the whole error rate of a disc array

is about 10−23, which can satisfy the reliability demand

for enterprise storage. In order to obtain lower error rate

under some rigid circumstances, OLFS can further configure

higher redundancy with 10 data discs and 2 parity discs

organized in a RAID-6 schema to obtain about 10−40 system

error rate.

OLFS employs this system-level redundancy mecha-

nism instead of forced write-and-check approach that almost

halves the actual write throughput. Actually, ROS attempts

to effectively tradeoff among reliability, storage resources

and actual write throughput.

Additionally, OLFS does not generate parity data syn-

chronously when data are written into images. On the con-

trary, parity disc images are generated only when all data

disc images in the same disc array have been prepared. In

this case, the parity strips can be created according to the

corresponding data strips and written into a parity image

sequentially. Note that the parity image is not a UDF vol-

ume. Only after a set of data and parity disc images being

prepared, OLFS sequentially burn all images in the array

into discs concurrently. On the other hand, disc sector-error

checking can be scheduled at idle times and can periodi-

cally scan all the burned disc arrays to check sector errors.

When sector errors occur, data on the failed sectors can be

recovered from their parity discs and the corresponding data

discs in the same disc array under the given tolerance degree.

The recovered data can be written to new buckets and finally

burned into free disc arrays.

OLFS generates parity disc images asynchronously. How-

ever, the parity generating process is I/O intensive. It re-

quires reading all stripes in its corresponding 10 or 11 data

disc images from disks, and then creating the parity stripe

and writing it into the parity disc image on disks, which pro-

duces intensive read and write streams concurrently. There-

fore, there exists four kinds of concurrent intensive data

flows on disks: (1) User writes data to disks, (2) the parity

maker reads data from disks, (3) the parity maker writes par-

ity data back to disks, (4) optical drives read images from

disks to burn discs. These four I/O streams might inter-

fere each other to worsen overall performance. To avoid this

problem, ROS can configure disks into multiple volumes of

independent RAIDs and further schedule these I/O streams

to different volumes at same time.

4.8 Implementation
To accelerate the development of ROS and to ensure sys-

tem maturity, the current OLFS is implemented based on

FUSE[21] to customize file operations effectively under the

POSIX interface. Additionally, the FUSE framework is a

user-space file system implementation that allows us to de-

bug and test OLFS in much easier way than kernel devel-

opment. However, FUSE introduces substantial kernel-user

mode switching overhead since its file system operation is

implemented in the user space.

By default, FUSE flushes 4KB data from the user space

to the kernel space each time, resulting in frequent kernel-

user mode switches and significant overheads. OLFS sets the

mount option big writes to flush 128 KB data each time, thus

improving the write performance.

In order to further eliminate FUSE performance penalty

in some performance-critical scenarios, we provide a direct-

writing mode where incoming files are directly transferred

to the SSD tier at full external bandwidth through CIFS[13]

or NFS, then asynchronously delivered into OLFS.

For all file writes and file reads that hit on disks, the over-

all performance is primarily affected by OLFS, FUSE, UDF,

ext4, and the underlying storage because the burning of discs

and mechanical fetching are executed asynchronously with-

out involving the critical I/O path. But for file reads that

miss on disks, their response times can increase by orders

of magnitude depending on their stored locations: (1) a disc

in drive; (2) a slot with free drives; (3) a slot while all drives

are just occupied; (4) a slot while all drives are being burned.

170

In the fourth case, there are two policies. One is waiting for

the burning task to complete, where the residual recording

might take from several minutes to more than an hour. The

other is immediately interrupting the current disc array burn-

ing process and switching this array out of the drives with the

appending-burn mode. After the requested files are read into

disks, the interrupted disc array is re-loaded into the drives

and continued to be burned. This policy needs to format the

reserved metadata zone on discs ahead of time.

For file reads that miss in both disks and drives, the long

mechanical delay might lead to read timeout. We also design

a forepart-data-stored mechanism to store the forepart (eg.

256KB) of data files in their corresponding index file in MV.

It ensures that the first word of the file can quickly respond

within 2 ms. After that, OLFS sends the forepart data con-

tinuously at a slow but controllable rate until the requested

disc is fetched into drives. This approach avoids read time-

out continuously but introduces extra storage overhead. We

will leave further designs to our future work, optimizing for

empirical workloads.

5. Evaluations
In this section we will evaluate and analyze the performance

of ROS.

5.1 Experimental Setup
Our ROS prototype deploys two rollers with 6120 100GB

optical discs each, a server controller, 24 optical drives,

14 hard disks and 2 SSDs. Thus, the ROS prototype has

a total capacity of 1.16 PB. SC runs Ubuntu Server 14.04

and has two Xeon processors, 64GB DDR4 memory, two

10Gbps NICs, 4 PCIe3.0*4 slots and 4 PCIe3.0 HBA cards

connecting SSDs, hard disks and optical drives. The idle

and peak powers of ROS are 185W and 652W respectively.

The two 240GB SSDs and fourteen 4TB hard disks are

configured into 3 RAID sets, respectively consisting of 2

SSDs, 7 HDDs, and 7 HDDs. The 2 SSDs are configured

as a RAID-1 to store system metadata as MV. The two

sets of HDDs are each configured as a RAID-5. The 24

optical drives are the Pioneer BDR-S09XLB with SATA

interface and supporting up to 128GB BDXL disc each with

peak power 8W. Clients are connected to ROS via a 10GbE

network.

5.2 Evaluation Methodology
As ROS is a tiered storage system, file write operations can

be fully absorbed by the disk tier, making ROS file write la-

tency equal to that of disk access via file system. However,

file read operations in ROS may have latency ranging from

several milliseconds to minutes as shown in Table 1. To fur-

ther analyse the latency, all ROS operations can be divided

into three types, namely, disk operations involving file writes

and reads that hit on disks, disc operations involving disc

writes (i.e., burning) and reads, and mechanical operations

involving fetching discs mechanically. These three types of

operations are relatively independent and exhibit large de-

lay discrepancies. In fact, the latency for file read/write can

be primarily determined by these three types operations and

their combinations based on the requested file location.

File location Read Latency(s)

Disk bucket 0.001

Disc image 0.002

Disc in optical drive 0.223

Disc array

in the roller with free drives
70.553

Disc array

in the roller and drives are not working
155.037

Disc array

in the roller and all drives are busy
minutes

Table 1. Read latency from different file locations.

In order to evaluate the performance overhead of OLFS,

we use filebench[8] with the singlestream workload(default

1 MB I/O size) to compare the throughput under five con-

figurations, namely, ext4+FUSE - FUSE based on ext4

with the requests routed through an empty FUSE module,

ext4+OLFS - OLFS based on ext4, samba - samba on ext4,

samba+FUSE - FUSE via samba, and samba+OLFS - OLFS

via samba. The baseline throughput is ext4 on one of the

RAID-5 volume.

To accurately measure the I/O latency caused by OLFS

precisely, we add timestamps in OLFS code to trace the

internal OLFS operation when file I/Os takes place on

ext4+OLFS and file I/Os take place on samba+OLFS. We

write and read a file with 1 KB data through OLFS 50 times

to measure the average execution time of each OLFS internal

operations. To ensure consistency of index file and data, the

current OLFS uses direct I/O without cache. It means that

each OLFS operation leads to an actual I/O of underlying

storage. We choose to write and read file with 1 KB size to

eliminate effect of the data transfer time of file, thus get the

accurate latency brought by index file.

The current reference recording speeds for 25GB and

100GB discs are respectively 6.0X and 4.0X. The record-

ing speed is strictly limited to ensure the recording qual-

ity at high storage density. In ROS, we make drives work

at their peak throughput regardless of recording quality be-

cause OLFS introduces the inter-disc redundancy and de-

layed check mechanisms to enhance the overall reliability.

We measure the recording speed of single disc and disc ar-

ray with 25GB and 100GB disc respectively.

To quantitatively assess the performance impact of the

mechanical operations, we test the latencies of critical me-

chanical operations: loading and unloading disc arrays be-

tween the drives and trays in the roller. As the start posi-

tion of the robot arm is near the uppermost layer, we choose

to measure the average operation time of loading/unloading

171

trays in the uppermost layer which takes the shortest opera-

tion time and lowest layer which takes the longest operation

time.

In section5.3, we evaluates the OLFS performance of file

writes and reads that hit in disks. Then, the disc burning and

read performances are discussed in Section 5.4. Finally, the

mechanical delays is presented in Section 5.5.

5.3 File Writes and Reads in Disks
Note that ROS has a large disk capacity used as write buffer

and read cache with more than one hundred TB. As a de-

sign objective, OLFS aims to buffer all file writes and most

file reads on disks. Therefore, in most cases, the overall per-

formance of ROS is mainly determined by disk operations

when file writes and reads hit in disks. In this case, as the cur-

rent OLFS implementation is stacked on the ext4 file system

via the FUSE and UDF file systems, the latency of file access

is heavily affected by three primary factors: (1) the underly-

ing storage; (2) the overhead introduced by FUSE and UDF;

(3) the OLFS-specific processes. OLFS can directly benefit

from the performance improvement of the underlying stor-

age, FUSE and UDF without any modification.

0

0.2

0.4

0.6

0.8

Read Write

No
rm

al
ize

d
Th

ro
ug

hp
ut

Normalized throughput under the five configurations
ext4+FUSE
ext4+OLFS
samba
samba+FUSE
samba+OLFS

Figure 6. Throughput under the five configurations, nor-

malized to that of ext4.Filebench uses the singlestreamread

and singlestreamwrite workloads. The average I/O size is 1

MB.

The throughput of ext4 on the underlying RAID-5 vol-

ume is 1.2GB/s for read and 1.0GB/s for write. The through-

put results of the five configurations, normalized to through-

put of ext4, are shown in Figure 6. The results indicate that

ext4+FUSE underperforms ext4 in throughput by 24.1% for

read and 51.8% for write due to kernel-user mode switches.

Ext4+OLFS further causes 28.9% read and 10.1% write

performance loss compared to ext4+FUSE. In NAS mode,

samba leads to about 68.9% read and 68.0% write through-

put degradation of ext4. We can see that samba and FUSE in-

troduces most of the performance loss which can be further

optimized. For the most common user case samba+OLFS,

OLFS can provide throughput of 236.1 MB/s for read and

323.6MB/s for write, which is acceptable for long-term stor-

age system[2].

Figure7 illustrates the breakdown and execution order of

the internal OLFS calls corresponding to four OLFS opera-

tions. File write operation of ext4+OLFS can be divided into

five consecutive OLFS internal operations: (1) stating index

file; (2) no file found, creating a new index and data file;

(3) stating file again; (4) writing to data file on UDF; (5) re-

leasing and closing the files. Likewise, the OLFS file read

operation can also be broken into three sequential internal

steps: (1) stating index and data file; (2) reading data file;

(3) releasing and closing the files. Each internal operation

in OLFS takes almost 2.5ms in average and there are kernel-

user mode switch time between each two internal operations.

As a result, the latency of file read and write for OLFS are

9ms and 16ms respectively. In the case of samba+OLFS,

writing new file increases extra 7 stat operations. The av-

erage latencies of file write and read increase to 53ms and

15ms accordingly.

closestat

mknod

stat

close

read

stat

close

write
stat*2

mknod

stat*6

close

read

stat

OLFS
write

OLFS
read

samba+OLFS
write

samba+OLFS
read

write

Figure 7. Four OLFS operations and their respective inter-

nal OLFS operations. File I/O through OLFS invokes multi-

ple internal OLFS operations, resulting in long latency.

Although OLFS causes performance loss of the under-

lying storage due to currently used FUSE implementation,

the latency for accessing a file is lower than 60ms regardless

of file size, which is far better than conventional archival

system which has minutes-level latency[20]. In fact, OLFS

still has sufficient design space to further optimize its perfor-

mance.

5.4 Optical Drive Performance
When a file read misses on disks and hits on discs in drives,

the disc read is in the critical I/O path. The delay of reading

file on discs is further broke down into three parts as drive

mounting disc with about 2 seconds delay, mounting disc

into local VFS with about 220ms delay, and seeking files on

discs with about 100ms delay. The first two procedures occur

only when the drive is in the sleep state.

Disc capacity

(GB)

Single drive speed

for reading

(MB/s)

Aggregate drive

speed for reading

(MB/s)

25 24.1 282.5

100 18.0 210.2

Table 2. Optical drive read speeds for 25GB and 100GB

discs. Although each drive works independently, the aggre-

gate read speed is close to 12X of the single drive read speed.

In general, with the exception of the above case, drives

only need to read and burn discs in an asynchronous and

172

batched manner, which is not in the critical I/O path. Its per-

formance is determined by actual drive access throughput.

The recording speed of single drive and 12 drives of 25GB

optical disc are respectively shown in Figure 8 and Figure 9.

Note that not all drives start to burn data at the same time.

When burning 25GB optical discs, the default burning

quantity detection mechanism of the writing-and-checking

mode is turned off to achieve high recording speed. The sin-

gle drive recording speed is gradually increased from 1.6X

in the inner tracks to 12.0X in the outer tracks. The average

recording speed is 8.2X. All 12 drives concurrently work to

reach the peak recording speed of about 380MB/s. But this

peak speed is maintained for only a short period of time. The

average recording speed for 25GB disc array is 268MB/s.

Since these drives are not completely synchronized, the av-

erage recording time for a single 25GB disc is 675 seconds,

but finishing recording a disc array needs 1146 seconds.

0
2
4
6
8

10
12

0.0% 9.8% 23.0% 38.2% 55.5% 74.9% 96.4%

Re
co

rd
in

g
sp

ee
d

Recording progress

Total Time:675 seconds

Figure 8. Single drive recording process for 25GB disc. The

burning speed is increasing from 4X to alomost 12X.

0

100

200

300

400

500

Re
co

rd
in

g
Sp

ee
d(

M
B/

s)

Time Total time : 1146 seconds

Figure 9. Aggregated throughput of 12 drives burning

25GB discs.

A regular drive burns 100GB discs at 4.0X. While we use

a dedicated Pioneer BDR-PR1AME drive to burn 100GB

optical disc at 6.0X. Compared with the 25GB discs, the

recording speed for 100GB discs is almost constant. The re-

sult is shown in Figure 10. The drives have automatic speed

deceleration during recording for fail-safe purposes. This

fail-safe function is operated by detecting the disturbance of

the servo signal of recording beam. If the disturbance is de-

tected, drive will reduce the speed from 6.0X to 4.0X. With-

out disturbance, drive will restore the speed to 6.0X. The av-

erage recording speed is 5.9X. The recording time for single

100GB disc is 3757 seconds. When 12 drives burn together,

all drives can reach the 6.0X speed simultaneously.

0.0

2.0

4.0

6.0

8.0

0.0% 18.8%32.8%47.1%62.8%78.8%95.4%

Re
co

rd
in

g
Sp

ee
d

Recording progress

Zoomed in

(a) Single drive recording process for 100GB disc

0.0

2.0

4.0

6.0

8.0

11.3% 18.6% 25.6%

Re
co

rd
in

g
Sp

ee
d

Recording progress

(b) Part of the recording process for 100GB disc

Figure 10. the single drive recording process for 100GB

disc.

The read speed of optical disc are shown in Table 2. Each

drive is working independently so the aggregated read speed

of 12 drive is about 12X of single drive read speed.

5.5 Performance Impact of Mechanical Operations
In very rare cases when the requested files are located only

on disc array in the rollers, mechanical operations must be

invoked and they are in the critical I/O path, worsening

the response time of external file read requests. Otherwise,

the mechanical delay can be sufficiently hidden from the

foreground applications. The average loading and unloading

time of disc arrays are shown in Table 3. The roller rotation

time is less than 2 seconds and takes up to 5 seconds to

move the robotic arm vertically between bottom and top

layer, separating 12 discs into 12 drives takes almost 61

seconds, fetching discs one by one from drives takes 74

seconds. Because the starting position of robotic arm is at the

uppermost layer of the roller, it has to move down to bottom

before loading or unloading a disc array in the lowest layer,

so operation of the lowest layer takes about 5 more seconds

than that of the uppermost layer.

The mechanical operations have very long delays that

by themselves are difficult to be drastically reduced. The

results clearly demonstrate how essential a tiered storage

like ROS is to drastically reduce the performance impact

of mechanical operations by fully hiding it to provide an

illusion of inline accessibility.

6. Related work
There are several previous studies using disks, tapes and

optical discs to build systems for long-term data storage.

173

Slot location
Disc array

loading time(s)

Disc array

unloading time(s)

Uppermost layer 68.7 81.7

Lowest layer 73.2 86.5

Table 3. Mechanical latency

IBM LTFS[20] provides a POSIX file system interface, thus

makes linear tape an random access media. But LTFS is built

on a single tape and its performance is limited by linear seek

latency of the tape media. In contrast ROS provides a global

file system view on all discs and uses tiered storage to hide

the performance impact of the low disc throughput.

Facebook cold storage system[16] used Blu-ray disc. Its

storage rack is packed with thousands of discs and provides

a storage volume of petabytes. But Facebook has never pro-

vided any software and hardware design details in the public

domain, making it impossible to evaluate and compare its

performance.

Pelican cloud cold storage system[2] is designed to of-

fer a thin-provisioned solution for cloud cold data. Its basic

unit is rack too. In Pelican, all resources are carefully provi-

sioned to reduce total cost of ownership with performance to

support cold data workload. But its hard disk based design

is not for long-term data preservation and still needs data

migration towards the end of a hard disk’s life cycle, which

will bring extra complexity and cost. In addtion, foreground

applications needs the dedicated interface to access Pelican.

SONY developed a massive media optical storage system

with Blu-ray disc[25]. However it didn’t provide a common

file system interface thus requiring users to install extra soft-

ware to manage the storage volume. Moreover, user needs to

maintain namespace in each disc using file system specified

software. This property makes it very difficult for the optical

storage system to be transplanted in different file systems.

ROS uses FUSE to trade performance for portability.

Panasonic Data Archiver[4] is a scalable optical disc li-

brary system. The basic storage module is a disc magazine

with 12 discs. It uses 100GB optical discs so each magazine

can store 1.2TB of data. In one 42U rack it can install 6500

disc which is half the capacity of our design. The library can

be accessed by the Data Archiver Manager and CIFS net-

work protocol. The basic unit has 12 drives and provides a

216MB/s data transfer rate. These optical libraries tend to be

used like tape library, in contrast, ROS attempts to provide

inline accessibility.

Optical storage arrays are introduced in [11]. This re-

search only presents an assumption of using ultra high den-

sity optical discs to build a long-term storage system and

discussed the advantage in theory without design details.

7. Conclusions
ROS is designed to store data in the long term by using

optical discs. ROS provides a solution to hide the perfor-

mance impact of individual optical disc’s limitations on per-

formance, capacity and specific operations. In this paper we

have presented how the mechanical, hardware and software

of ROS are co-designed to provide inline accessible data

storage for long-term data preservation.

Acknowledgments
We sincerely thank EuroSys reviewers and Dr. Ant Row-

stron for their constructive and insightful comments and

advices that helped improve the paper. This work is sup-

ported in part by the National Basic Research Program

of China (973 Program) under Grant No.2011CB302303,

Wuhan National Laboratory for Optoelectronics Fund under

Grant No.0106187015 and No.0106187027 , US NSF un-

der Grant No.CCF-1629625 and the Amethystum Storage

Technology Co., Ltd.

References
[1] O. S. T. Association. Universal disk format specification.

www.osta.org/specs/pdf/udf250.pdf, 2003.

[2] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass,

D. Harper, S. Legtchenko, A. Ogus, E. Peterson, and A. Row-

stron. Pelican: A building block for exascale cold data stor-

age. In 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14), pages 351–365, 2014.

[3] S. Boyd, A. Horvath, and D. Dornfeld. Life-cycle assessment

of nand flash memory. Semiconductor Manufacturing, IEEE
Transactions on, 24(1):117–124, 2011.

[4] P. Corp. Data archiver lb-dh8 series. Technical report, 2016.

[5] D. Crockford. Javascript object notation. http://www.

json.org/, 2016.

[6] G. Deepika. Holographic versatile disc. In Innovations in
Emerging Technology (NCOIET), 2011 National Conference
on, pages 145–146. IEEE, 2011.

[7] G. R. Ganger and M. F. Kaashoek. Embedded inodes and

explicit grouping: Exploiting disk bandwidth for small files.

In USENIX Annual Technical Conference, pages 1–17, 1997.

[8] V. T. George Amvrosiadis. filebench. https://github.

com/filebench/filebench/wiki, 2016.

[9] B. Godard, J. Schmidtke, J.-J. Cassiman, and S. Aymé. Data

storage and dna banking for biomedical research: informed

consent, confidentiality, quality issues, ownership, return of

benefits. a professional perspective. European Journal of
Human Genetics, 11:S88–S122, 2003.

[10] M. Grawinkel, L. Nagel, M. Mäsker, F. Padua, A. Brinkmann,

and L. Sorth. Analysis of the ecmwf storage landscape. In

13th USENIX Conference on File and Storage Technologies
(FAST 15), pages 15–27, 2015.

[11] M. Gu, X. Li, and Y. Cao. Optical storage arrays: a perspective

for future big data storage. Light: Science & Applications, 3

(5):e177, 2014.

[12] P. Gupta, A. Wildani, E. L. Miller, D. S. H. Rosenthal, and

D. D. E. Long. Effects of prolonged media usage and long-

term planning on archival systems. In International Confer-
ence on Massive Storage Systems and Technologies, 2016.

174

[13] C. R. Hertel. Implementing CIFS: The Common Internet File
System. Prentice Hall Professional, 2004.

[14] N. Kishore and S. Sharma. Secured data migration from en-

terprise to cloud storage–analytical survey. BVICAM’s Inter-
national Journal of Information Technology, 8(1), 2016.

[15] S. Kumar and T. R. McCaffrey. Engineering economics at a

hard disk drive manufacturer. Technovation, 23(9):749–755,

2003.

[16] R. Miller. Inside facebook’s blu-ray cold storage

data center. http://datacenterfrontier.com/

inside-facebooks-blu-ray-cold-storage-data-center/,

2014.

[17] H. Minemura, K. Watanabe, K. Adachi, and R. Tamura. High-

speed write/read techniques for blu-ray write-once discs.

Japanese journal of applied physics, 45(2S):1213, 2006.

[18] B. Nikoobakht and M. A. El-Sayed. Preparation and growth

mechanism of gold nanorods (nrs) using seed-mediated

growth method. Chemistry of Materials, 15(10):1957–1962,

2003.

[19] Y. Okazaki, K. Hara, T. Kawashima, A. Sato, and T. Hirano.

Estimating the archival life of metal particulate tape. Magnet-
ics, IEEE Transactions on, 28(5):2365–2367, 1992.

[20] D. Pease, A. Amir, L. V. Real, B. Biskeborn, M. Richmond,

and A. Abe. The linear tape file system. In Mass Storage Sys-
tems and Technologies (MSST), 2010 IEEE 26th Symposium
on, pages 1–8. IEEE, 2010.

[21] A. Rajgarhia and A. Gehani. Performance and extension of

user space file systems. In Proceedings of the 2010 ACM
Symposium on Applied Computing, pages 206–213. ACM,

2010.

[22] P. Rattan et al. Disaster management and electronic storage

media: An overview. International Journal of Information
Dissemination and Technology, 2(1):1, 2012.

[23] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester,

and P. Reynolds. Cloud computing: a new business paradigm

for biomedical information sharing. Journal of biomedical
informatics, 43(2):342–353, 2010.

[24] Sony. Sony everspan. Technical report, 2016.

[25] C. Thompson. Optical disc system for long term archiving

of multi-media content. In Systems, Signals and Image Pro-
cessing (IWSSIP), 2014 International Conference on, pages

11–14. IEEE, 2014.

[26] W. Wamsteker, I. Skillen, J. Ponz, A. De La Fuente, M. Bary-

lak, and I. Yurrita. Ines: astronomy data distribution for the

future. Astrophysics and Space Science, 273(1-4):155–161,

2000.

[27] A. Watanabe. Optical library system for long-term preser-

vation with extended error correction coding. In 29th IEEE
conference on massive data storage, 2013.

[28] N. Yamamoto, O. Tatebe, and S. Sekiguchi. Parallel and

distributed astronomical data analysis on grid datafarm. In

Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Inter-
national Workshop on, pages 461–466. IEEE, 2004.

[29] P. Zijlstra, J. W. Chon, and M. Gu. Five-dimensional optical

recording mediated by surface plasmons in gold nanorods.

Nature, 459(7245):410–413, 2009.

