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Abstract—Data compression has become a commodity feature
for space efficiency and reliability in flash-based storage systems
by reducing write traffic and space capacity demand. However,
it introduces noticeable processing overheads on the critical I/O
path, which degrades the system performance significantly. Ex-
isting data compression schemes for flash-based storage systems
use fixed compression algorithms for all the incoming write
data, failing to recognize and exploit the significant diversity
in compressibility and access patterns of data and missing
an opportunity to improve the system performance, the space
efficiency or both. To achieve a reasonable trade-off between
these two important design objectives, in this paper we introduce
an Elastic Data Compression scheme, called EDC, which exploits
the data compressibility and access intensity characteristics by
judiciously matching data of different compressibility with differ-
ent compression algorithms while leveraging the access idleness.
Specifically, for compressible data blocks EDC exploits the
compression diversity of the workload, and employs algorithms of
higher compression rate in periods of lower system utilization and
algorithms of lower compression rate in periods of higher system
utilization. For non-compressible (or very lowly compressible)
data blocks, it will write them through to the flash storage
directly without any compression. The experiments conducted
on our lightweight prototype implementation of the EDC system
show that EDC saves storage space by up to 38.7%, with an
average of 33.7%. In addition, it significantly outperforms the
fixed compression schemes in the I/O performance measure by
up to 61.4%, with an average of 36.7%.

Keywords-Elastic Data Compression; Flash-based Storage;
Data Compressibility; I/O Intensity

I. INTRODUCTION

The I/O bottleneck has become an increasingly daunting

challenge for big data analytics, along with the explosive

growth in data volume. Flash-based SSDs have the potential

to replace HDDs and have consequently been extensively

deployed in modern storage systems to satisfy the increasing

demand of storage performance and energy efficiency [1],

[27]. At the same time, inline data compression techniques

have been widely employed in flash-based storage products

from leading companies, such as Nimble Storage [18], Pure

Storage [19], and Tintri [33], for the purpose of enhancing

system performance, reliability and space efficiency.

Two technological trends have propelled data compression

to become a standard commodity feature in flash-based storage

systems and products. The first trend is the need to increase

(a) Accesses of small request sizes (b) Accesses of large request sizes

Fig. 1. The impact of request size on user response time of an Intel SSD
with random accesses.

the storage density of the NAND flash devices by increasing

the number of bits per storage cell from a single bit (SLC) to

two bits (MLC), and to multiple bits (TLC), which leads to

significant deterioration of chip endurance (cell erase limit)

while keeping the latency essentially constant. The second

trend is the continuous improvement in the processing power

of processors, such as GPU and multi-core processors, which

lowers the computation cost noticeably. The combined impact

of these trends makes the data compression technique not only

necessary but also affordable by trading compute overheads for

several important benefits. First, it trades processing power

for the improved space efficiency by storing much more

user data than the physical capacity of a flash-based storage

system [25], [38]. Second, it reduces the number of erase

cycles for the NAND flash cells [24], thus increasing the

lifetime of the flash-based storage systems. Third, it also

reduces the I/O latency by shrinking the individual request

size. Nevertheless, these benefits do come at the expenses of

some system performance and extra system resources, which

may cause the amount of the benefits to vary substantially

depending on the data compressibility and access intensity of

the workloads. Therefore, employing data compression should

be done carefully in order to avoid potential pitfalls for flash-

based storage systems [6], [40].

Previous studies have shown that the data compressibil-

ity distribution is skewed in that the main benefit of data

compression comes from a subset of the data blocks [8],

[10]. For example, based on the file data generated from

15 globally distributed file servers for over 2000 users in a

large multinational corporation, researchers found that 50% of

the data chunks are responsible for 86% of the compression
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savings and roughly 31% of the data chunks do not compress

at all [10]. Our own analysis has been consistent with these

published studies in showing that data blocks from different

file types have different data compressibility characteristics.

In addition, both previous studies and our own evaluations

have demonstrated that different compression algorithms have

different compression ratios and compute overheads [29], [39].

On the one hand, higher compression schemes require higher

compute overheads in the compressing and decompressing

processes, and vice versa, as shown in Section II-B. On the

other hand, the access patterns of real-world workloads exhibit

a significant interspersed idleness and burstiness characteris-

tics [30]: periods of high utilization alternate with periods of

little or no external load, as shown in Section II-C. Most

existing data reduction schemes for flash-based storage sys-

tems use a fixed compression scheme in both high utilization

and low utilization periods for all the incoming data. This

approach has obvious drawbacks in that, for example, it

will degrade the system performance if a scheme with a

high compression ratio is used in high utilization periods,

or diminish the space efficiency if an algorithm with a low

compression ratio is used in low utilization periods. Moreover,

applying data compression on non-compressible (or very lowly

compressible) data chunks will both waste system resources

and degrade the system performance.

To address these problems in current flash-based storage

systems with the commodity data compression feature, we

propose an Elastic Data Compression scheme, or EDC, to

improve the system performance and space efficiency in

such systems. EDC exploits the compression diversity of the

workload characteristics, and for compressible data blocks

employs algorithms with higher compression ratios in periods

with lower system utilization and algorithms with lower com-

pression ratios in periods with higher system utilization. For

non-compressible (or very lowly compressible) data blocks, it

will write them through to the flash storage directly without

any compression. To validate EDC and evaluate its efficiency,

we have conducted extensive trace-driven evaluations on a

lightweight implementation of the EDC prototype. The perfor-

mance results show that EDC achieves a much better trade-off

between the performance and space efficiency than the existing

schemes.

The rest of this paper is organized as follows. Background

and motivation are presented in Section II. We describe

the design details of EDC in Section III. The performance

evaluation is presented in Section IV and the related work is

presented in Section V. We conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first present the necessary background for

the proposed solution, including a discussion on two unique

characteristics of modern flash-based SSDs. Then we analyze

the data compressibility of typical data formats and types

and compression efficiency of representative compression al-

gorithms, followed by a workload behavior characterization

study that motivates our proposed elastic data compression

for flash-based storage systems.

A. Flash-based SSDs

Flash-based SSDs are made of silicon memory chips and

do not have moving parts (i.e., mechanical positioning parts

in HDDs) [26], [36]. In addition to their high energy-efficiency

and high random-read performance advantages, flash-based

SSDs have the following two unique characteristics that dis-

tinguish them from HDDs.

First, flash-based SSDs have asymmetric read-write perfor-

mance, with the write performance lagging the read perfor-

mance by an order of magnitude [12]. Moreover, the required

Garbage Collection (GC) operations in SSD significantly affect

the user I/O performance [15], [35]. That is, in the flash

storage, each 64-128 KB flash block must be erased in advance

before any part of it can be re-written. Due to the sheer size

of a block, an erase operation typically takes milliseconds

to complete. The GC operations are triggered if there are

not sufficient free space available within flash-based SSDs.

Thus, the total data written to the flash-based SSDs has

a direct relationship to the GC frequency and impacts the

system performance. Existing studies have extensively applied

the data compression and data deduplication technologies to

reduce the total written data on the flash-based SSDs [3], [16],

[25].

Second, the response time of a flash-based storage system

tends to increase linearly with the request size. In order to

understand the relationship between the response time and

user request size for SSDs, we use the IOmeter tool to test

an SSD device (Intel X25-E 64GB), under different request

sizes. Figure 1 shows the normalized results, which tracks an

approximately linear correlation between the average response

time and the request size for the SSD. The reason for this cor-

relation is that the read and write operations are implemented

entirely through electronic circuitry for both control and data

signal transmissions, which makes the data transmission time

directly related to the request size and the dominant part of

the user response time.

These two unique characteristics of flash-based SSDs imply

that it is feasible and practical to improve the write perfor-

mance by reducing the write request size with the data com-

pression technique. With data compression, less data is written

to the flash-based SSDs, resulting in better performance and

better endurance. They are also the main reason why in-line

data compression has become a commodity feature in flash-

based storage products [18], [19], [33].

B. Data compressibility and compression efficiency

Lossless data compression techniques have the potential

to reduce the data size effectively. However, certain types

of file formats, such as TIF, JPEG, video and sound files,

etc., are non-compressible in practice because they are already

in compressed formats. Applying data compression on these

non-compressible files not only wastes system processing

resources, but also significantly increases the I/O response time
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(a) Linux source code

(b) Mozilla firefox files

Fig. 2. The compression efficiency of the different compression algorithms
in terms of compression ratio and compression speed on two different data
sets. Note: C Speed denotes the compression speed, D Speed denotes the
decompression speed and C Ratio denotes the compression ratio.

because the compression process sits on the IO critical path.

On the other hand, previous studies also show that different

compression algorithms have different compression ratios and

compression/decompression speeds [8], [20]. To obtain a better

understanding on compression efficiency, we conducted exten-

sive experiments by using different compression algorithms on

different data sets. Figure 2 shows the compression efficiency

of the different compression algorithms on two types of files:

the Linux source files and the Mozilla Firefox files. The

compression ratio is defined to be the size of the original data

volume divided by the size of the compressed data, thus the

higher the ratio the better (i.e., the higher the data reduction

rate).

Clearly, different datasets have different compressibility and

different algorithms achieve different compression ratios at

different compression and decompression speeds. In general,

an algorithm with a higher compression ratio is associated with

a slower compression/decompression speed, and vise verse.

Among the evaluated compression algorithms, the Bzip2 and

Gzip algorithms achieve the best compression ratios but at

the lowest compression/decompression speeds. Lz4 and Lzf

achieve the lower compression ratios but at much higher

compression/decompression speeds than Bzip2 and Gzip. The

observed trade-offs between the compression ratio and speed

among the different compression algorithms are the key to

the design of our proposed elastic data compression for the

flash-based storage systems.

C. Workload characteristics

Researchers have extensively collected and analyzed work-

loads on the storage I/O path, and found that burstiness

(a) Financial1.spc (b) Enterprise workload

Fig. 3. The access patterns of the different applications exhibit clear
burstiness and idleness for two applications: (a) OLTP application and (b)
Enterprise workload.

and idleness are common among many applications [13],

[30]. Figure 3 plots the access patterns of two applications,

i.e., the financial workload obtained from the Storage Per-

formance Council [11] and the enterprise workload obtained

from Microsoft Research Cambridge [31]. The figure shows

that the accesses exhibit a mixed pattern of burstiness and

idleness in terms of I/O intensity. With the help of the upper-

layer optimizing techniques such as DRAM buffer and I/O

scheduling, the I/Os seen at the lower level are usually bursty

and clustered along the time dimension.

While data compression is an effective way to reduce the

data size, thus saving storage space for flash-based storage

systems, this data reduction comes at the expense of additional

compute overheads for compression and decompression. Re-

cent studies have evaluated the data compression technology

in the flash and NVM-based storage systems [6], [24], [25],

[40] for the purpose of performance, space efficiency and

reliability improvement. However, the diversity in compression

algorithms and data compressibility associated with the bursty

and clustering characteristics of the I/O workloads, while a

potential opportunity for optimization of compression-based

systems, has not been explored in previous studies and thus

inspires us to rethink about the design of the compression-

based flash storage systems. Applying data compression on

non-compressible (or lowly compressible) data will directly

degrade system performance, particularly in any bursty period

when performance should be considered a first-priority design

factor. In other words, instead of using algorithms with higher

compression ratios for all the requests all the time as is the

case in existing compression-based flash storage products,

including bursty periods where the I/O queue length will be

increased to degrade the system performance, such algorithms

are desirable only during an idle period to achieve higher space

savings without noticeably affecting the performance. Based

on these above observations, an adaptive data compression

scheme is preferred for flash-based storage systems to achieve

a good balance between the performance and space efficiency,

which motivates us to propose the elastic data compression

scheme.

III. ELASTIC DATA COMPRESSION

In this section, we first outline the main design objectives of

the EDC system. Then we present the architecture and design

details of EDC.
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Fig. 4. Architecture overview of EDC.

A. The design objectives of EDC

The design of EDC aims to achieve the following three

objectives.

• Improving the system performance - During the system’s

bursty periods, EDC will utilize data compression al-

gorithms with lower overhead to reduce the I/O queue

length. Moreover, for non-compressible data blocks, it

will write them through to the flash storage directly

without any compression, thus improving the system

performance without noticeably sacrificing the space ef-

ficiency.

• Improving the space efficiency - By using data compres-

sion algorithms with higher compression ratios during

the system’s idle periods, the overall space efficiency is

improved without degrading the system performance.

• Improving the system reliability - The write traffic to

and the amount of stored data on the flash-based storage

system are significantly reduced by data compression.

This leads to the number of block erase cycles to be sig-

nificantly reduced, which improves the system reliability

accordingly.

B. EDC architecture

Figure 4 shows an architectural overview of our proposed

EDC within the storage subsystem and on the I/O path.

EDC is located at the block device level that sits directly

below the file system. This makes it possible for EDC to be

incorporated into any existing file systems, such as Ext4 and

F2FS [21]. Moreover, it directly controls the underlying flash-

based storage system that can be either a single SSD, an SSD-

based disk array or a set of pure flash chips.

As shown in Figure 4, EDC has three main functional mod-

ules: Workload Monitor, Data Compression & Decompression

Engine, and Request Distributer. The Workload Monitor mod-

ule is responsible for monitoring the I/O accesses of appli-

Fig. 5. Data layout for a compressed data block in EDC.

cations, identifying the request type and data compressibility,

and computing the I/O intensity. The value of I/O intensity is

measured by the I/Os accessed Per Second (IOPS). The Data
Compression & Decompression Engine module is responsible

for compressing the incoming write data and decompressing

the outgoing read data. Based on the I/O intensity value and

the type of data determined by the Workload Monitor module,

the Data Compression & Decompression Engine module will

adaptively select the appropriate data compression algorithm

or decide not to compress the data. The Request Distributer
module is responsible for issuing the processed data to or

fetching the requested data from the flash-based storage

subsystem, from or to the upper compression/decompression

engine layer.

C. Data structure

EDC is a block-level compression scheme that operates on

fixed-size input data blocks from the upper layer applications.

However, compression shrinks these data blocks variably due

to the diversity in compressibility, generating data blocks of

variable sizes. Therefore, there is a need to track the placement

of the post-compression data blocks and the mapping between

pre- and post-compression data blocks. Figure 5 shows the

data structure for the tracking mechanism. Since the flash

translation layer (FTL) [1], at the heart of flash-based SSD

control, uses an out-of-place update scheme, an overwrite or

update request will only invalidate the old data block and the

updated data is written to a new flash block, which further

complicates things. For example, a 4096-Byte block is first

compressed into a 1562-Byte block and written to the flash

storage. After an update to this block, which entails a write

to the uncompressed data block, the updated 4096-Byte block

being compressed into a 2008-Byte block before writing to the

flash, which means that the previously allocated space for this

block is no longer sufficient to store the newly compressed

data. To overcome this problem, EDC allocates spaces to the

compressed data blocks that are 75%, 50% or 25% of their

uncompressed (original) size, according to their compression

ratios. If the compressed block is more than 75% of its original

size, the data block is considered to be non-compressible and

kept in its uncompressed form. Thus, the space can be well

utilized and unnecessary fragmentations can be avoided [4].
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Fig. 6. The feedback mechanism in EDC for the selection of the appropriate
compression algorithm.

The mapping information records how the compressed data

and metadata is stored within a data block. It includes three

important fields: LBA, Size, and Tag. The Tag field contains

3 bits that record the corresponding compression algorithm

used for the given data block, where “000” indicates no

compression is applied. The LBA field contains the logical

block address of the beginning of the compressed data block

and the Size field indicates the compressed data size.

D. Workload monitor

Knowing the workload is important for storage system

design. The design of EDC is highly dependent on workload

characteristics, especially the I/O intensity and the data com-

pressibility. The I/O intensity measurement is an important fac-

tor for EDC in deciding the appropriate compression algorithm

to use, as shown in Figure 6. Besides the “raw” I/O request

rate (raw IOPS) issued to the storage subsystem, the request

size is also measured in the monitoring scheme because it is

the combination of IOPS and request size that determines the

I/O intensity (I/O bandwidth requirement) for the flash-based

storage system. In EDC, we quantify the I/O intensity by the

number of 4KB requests issued to the flash-based system per

second, which we call calculated IOPS, where 4KB is the

default page size in Linux. In other words, when calculating

the I/O intensity, EDC will convert a large request (of size

greater than 4KB) into multiple 4KB requests. For example,

one 8KB request is traded as two 4KB requests. By using the

calculated IOPS, the latency involved in the data compression

is also considered in the feedback mechanism.

Based on the calculated IOPS, EDC selects the most

appropriate compression algorithm or does not apply data

compression. It will set several calculated-IOPS thresholds

for different compression algorithms. If the user workload I/O

intensity falls in a specific I/O intensity range (i.e., between

two neighboring thresholds), exceeds or is less than the spe-

cific calculated-IOPS threshold, the corresponding pre-selected

compression algorithm will be applied to the incoming data

blocks. Moreover, if the I/O intensity exceeds the highest

calculated-IOPS threshold, EDC will skip the compression

function to achieve the best performance.

On the other hand, data compressibility is also an important

factor that affects the selection of data compression algorithms.

In our current design, EDC only exploits the data compress-

ibility in a simple way. EDC checks the data compressibility

with a sampling technique [14], [37]. If the data stream is

compressible, EDC will apply data compression on it. The

selection of compression algorithms is dependent on the I/O

intensity characteristics. Otherwise, EDC will write it through

to the flash storage directly, skipping any compression. In other

words, the data compressibility will determine whether or not

EDC applies data compression on the data.

E. Data compression and decompression

Data compression works on the write path. Upon receiving

a write steam, data compressibility of the data stream will be

checked. If the compressibility is below a threshold, the data

stream will be written without data compression. Otherwise,

the written data will be stored in a compressed format. Based

on the I/O intensity, data blocks may be compressed with

different data compression algorithms. EDC uses the 3-bit Tag

information to record the specific compression algorithm for

the corresponding data blocks, as shown in Figure 5. Previous

studies have shown that the larger the data block, the higher

the compression ratio can be achieved. Moreover, for the same

total amount of data, a smaller number of larger data blocks

are usually decompressed much faster than a larger number

of smaller data blocks [8], [25]. Based on these studies and

findings, EDC combines multiple sequential write data blocks

into a single large block to improve the system compression

efficiency.

Write requests rarely arrive sparsely, but in bursts most of

the time, which is very common in real-world workloads [13],

[30]. If a write data block is compressed immediately when

it is written into the flash-based storage system, it is likely

to miss the opportunity to combine with the subsequent,

contiguous blocks into a larger block, resulting in reduced I/O

efficiency. For example, suppose that the write requests arrive

in the following order: A1, A2, A3, B1, B2, C1, and D1. A1,

A2 and A3 are physically sequential, so they can be combined

into a larger block, namely, A1−3. If data is compressed before

combining, the sequential data will not be combined, thus

losing the opportunity of finding the same patterns for further

compression among contiguous data blocks [8], as shown in

Figure 7(a).

To solve this problem, EDC uses a Sequentiality Detector
(SD) to detect the sequential user accesses. The key here

is to detect and merge as many contiguous write requests

as possible to form a single larger one before compressing

it. This write data contiguity (write sequentiality) is broken

when a read request or non-contiguous write request arrives,

at which point the currently detected and merged contiguous

write requests are compressed in a single block. More specif-

ically,when a request arrives, SD first checks whether it is a

read request. If yes, its preceding write requests detected to

be contiguous and merged are compressed in a single merged

block. If it is a write request, SD checkswhether it is sequential

with its preceding write requests still waiting for more con-

tiguous write requests to merge. If not, these preceding write

requests are compressed in a single block. Otherwise, it is

contiguous with these preceding write requests, and SD merges

them together and continues to seek opportunity to merge with

the subsequent requests. The data block compressing flow with
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(a) Data compressing without SD (b) Data compressing with SD

Fig. 7. Data block compressing flow. Data blocks are described as follows: A1 denotes the data block in the uncompressed form, A1’ denotes the data block
in the compressed form.

SD is illustrated in Figure 7(b). Thus, with SD, as illustrated in

Figure 7(b), all sequential write requests are combined before

they are compressed.

Data decompression works on the read path. Upon receiving

a read request, when the fetched data is read from the

flash to the host memory, the data will be decompressed

according to the Tag value. After the data is decompressed,

it will be returned to the upper layer applications. For the

uncompressed data blocks, they will be returned directly.

Although the data decompression process will introduce extra

computing overhead on the read path, the overall response

time is not increased. The reason is that the stored data size

is reduced by data compression, compared with the system

without data compression. Thus the time spend on reading

the data from the flash to the memory is reduced, which is

elaborated in section II-A. Furthermore, the decompression

speed is significantly faster than the compression speed, as

shown by our experimental results in Section II-B and the

previous studies [6], [25]. The reduced read response time can

offset the increased decompression overhead. Thus the overall

read response times are not affected. It is also validated by

our experimental results in Section IV.

IV. PERFORMANCE EVALUATION

In this section, we first describe the evaluation setup and

methodology. Then we evaluate the performance of the EDC

prototype through trace-driven experiments.

A. Evaluation setup and methodology

Experimental platform: We have implemented an EDC pro-

totype on top of the Linux operating system. The performance

evaluation is conducted on a server with an Intel Xeon X5680

processor (3.33GHz), 8GB DDR memory and an attached SSD

array. The array is composed of five SSDs of the Intel X25-E

Extreme SATA SSD 64GB (abbreviated as Intel X25-E SSD).

A separate HDD is used to house the operating system (Red

Hat Enterprise Linux Server release 6.2) and other software.

The experimental setup is outlined in Table I.

Evaluation baselines: In the experiments, we compare EDC

with a system without any data compression, labeled Native,

and a system with fixed compression algorithms, including

Lzf, Gzip, and Bzip2, labeled Lzf, Gzip and Bzip2, that

represent the latest flash-based storage products with always-

on inline compression for all workloads [18], [19], [33]. For

TABLE I
EXPERIMENTAL SETUP

Machine Intel Xeon X5680, 8GB RAM
OS Red Hat Enterprise Linux Server 6.2

Device adapter PERC H710 SATA controller
Disk driver Intel X25-E 64GB SATA SSD

Traces OLTP [11]
MSR Traces [31]

Trace generation SDGen [14]

Compression algorithms Lzf, Gzip, Bzip2

example, storage companies such as Nimble Storage and Pure

Storage use the Lempel-Ziv style (LZ*) data compression

algorithms [18], [19]. In the evaluations, we measure the space

efficiency in terms of the compression ratio and measure the

performance in terms of the average response time. Moreover,

since EDC aims to achieve a balance between the space

saving and the performance, we also use a composite metric

of compression-ratio divided by response-time to quantify the

overall benefit of EDC. Clearly, this metric attempts to assess

a combined benefit of a scheme in terms of both compression

ratio and performance, where the higher the value of this

metric, the more beneficial this scheme is.

Workload and compression characteristics: The traces used

in our experiments are obtained from the Storage Performance

Council [11] and Microsoft Research Cambridge [31]. The two

financial traces (Fin1 and Fin2) were collected from OLTP

applications running at a large financial institution. The other

two traces (Usr 0 and Prxy 0) were collected from storage

volumes in an enterprise environment in Microsoft Research

Cambridge. These traces represent different access patterns

in terms of read/write ratio, raw IOPS and average request

size, with their main workload parameters being summarized

in Table II. Since no real content is included in the traces, we

use the SDGen scheme [14] to collect the data samples from

real applications to emulate the compression characteristics.

SDGen not only creates data with variable compression ratio,

but also mimics the other properties and behaviors of data

compression such as compression time and heterogeneity that

are critical to system performance evaluation. More details

about SDGen can be found in [14] and the GitHub website [7].

1114



TABLE II
THE KEY CHARACTERISTICS OF EVALUATION WORKLOADS

Traces Read Ratio IOPS Average Request Size (KB)

Fin1 32.8% 52 11.9
Fin2 82.4% 127 6.2

Usr 0 41.6% 4 20.9
Prxy 0 2.7% 19 2.5

Fig. 8. A comparison of compression ratio, normalized to that of the Native
scheme (without any compression), among different schemes under various
workloads.

B. Performance results

Figure 8 shows the data compression ratios of different

schemes normalized to that of the Native system (i.e., without

any compression). The Bzip2 compression algorithm achieves

the best data compression ratio, followed by the Gzip com-

pression algorithm. The Lzf compression algorithm achieves

the lowest data compression ratio. In contrast, EDC has an

average compression ratio of 1.5, which is better than that of

the Lzf algorithm and lower than that of both the Bzip2 and

Gzip algorithms. The reason is that EDC uses both the Gzip

and Lzf compression algorithms during different periods of

workload intensity to achieve a balanced space saving between

them. The data compression ratio is directly related to the

space saving for the flash-based storage systems, the higher

the better. However, algorithm with higher compression ratio

is associated with higher compression/decompression latency,

especially during the I/O-intensive periods. Moreover, the

space efficiency is not the sole objective for compression-

based storage systems. As we will see from the following

results, high compression ratio usually comes at the cost of

high access latency.

Figure 9 shows the space-performance results in terms of a

composite metric of compression-ratio divided by response-

time, whose value is the larger the value. We can see

that, when combining the two design objectives together, the

fixed compression schemes are less beneficialthan the Native

system, especially for Fin1 and Fin2 traces. The reason is

that these fixed compression schemes usually only consider

one design objective of compression ratio while ignoring the

other design objective of performance, resulting in an overall

reduced composite measure. In contrast, EDC performs the

best among all the compression schemes and even better than

the Native system, except for the Fin2 trace. The reason is that

the design objectives of EDC consider both the performance

Fig. 9. A comparison of the Ratio/Time results, normalized to that of the
Native scheme (without any compression), among different schemes under
various workloads.

and the compression ratio, achieving a good balance between

them.

Figure 10 compares the response time, normalized to that of

the Native scheme, on a single SSD among different schemes,

driven by the four traces. As expected, the Bzip2 compression

algorithm has the highest access latency, by up to 9.8 times

more than the Native system, whichis clearly unacceptable

for the end users. The reason is that the compression and

decompression speeds of Bzip2 are much lower than the

bandwidth of the flash-based SSD, as shown in Figure 2.

Many user requests will be waiting in the I/O queue, which

significantly degrades the system performance. The Gzip com-

pression algorithm shows a similar trend to that of the Bzip2

compression algorithm. In contrast, Lzf is shown to achieve

much better average response time, even better than that of

the Native system for the Usr 0 trace. The reason is that

data compression technique reduces the request size, which

in turn reduces the time spent on reading the data from the

flash accordingly.

Fig. 10. A comparison of response time, normalized to that of the Native
scheme, on a single SSD among different schemes under various workloads.

It is noteworthy that EDC outperforms all the other com-

pression schemes in the response time measure. For example,

compared with the Lzf scheme, it reduces the average response

time by up to 61.4% for the Fin1 trace, with an average

of 36.7%. Compared with the Gzip and Bzip2 compression

algorithms, EDC reduces the response time by an average of

2.1× and 4.9×, respectively. The reasons are two-fold. First,

EDC does not apply data compression during periods when the
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Fig. 11. A comparison of response time, normalized to that of the Native
scheme, on a RAIS5 system consisting of five SSDs for different schemes,
driven by the 4 traces.

I/O intensity is very high, which helps achieve the best system

responsiveness. Even during the system idle periods, it does

not apply data compression on non-compressible data blocks,

which further eliminates the unnecessary computing overhead.

Second, EDC exploits the I/O intensity characteristics to

choose the most appropriate compression algorithm between

Lzf and Gzip for the compressible data blocks. It reduces the

average response time by reducing the long queuing latency

during the I/O-intensive periods and achieves comparable

space efficiency during the system idle periods. Thus EDC

achieves a better balance between the system performance and

the space efficiency than the other data compression schemes.

A single SSD cannot satisfy the performance, capacity

and reliability requirements in enterprise storage systems.

Thus, applying the RAID (Redundant Array of Independent

Disks) [5] algorithm to SSDs is a promising approach to build-

ing large-scale high performance and highly reliable SSD-

based storage systems [26]. In this paper, Redundant Array

of Independent SSDs is abbreviated as RAIS. The different

levels of RAIS are also abbreviated as RAIS0, RAIS5 and so

on. To evaluate EDC’s efficiency on multiple SSDs, we also

build a software RAIS5 system consisting of five Intel X25-

E SSDs. Figure 11 shows the access latency, normalized to

that of the Native scheme, on the RAIS5 system for different

schemes. It shows a similar trend to that of a single SSD for

the different schemes driven by the four traces. The results also

validate EDC’s applicability to and effectiveness for different

flash-based storage systems. This also motivates us to consider

conducting more experiments on HDD-based and NVM-based

storage systems as a direction for our future work.

One important design factor in EDC is the IOPS threshold

that determines the selection of the most appropriate data

compression algorithm for a given I/O intensity and compress-

ibility. Since we use the percentage of the calculated IOPS

(see Section III-D) as a metric for the I/O intensity threshold,

we conduct sensitivity experiments on different threshold

values (percentages). Moreover, we set the non-compression

percentage unchanged and only change the calculated IOPS

between the Lzf and Gzip compression algorithms. Figure 12

shows the sensitivity study results driven by the Fin2 trace

on a single SSD as an example. We can see that as the per-

Fig. 12. The sensitivity of EDC’s performance and compression ratio to the
IOPS threshold,under the Fin2 trace.

centage of requests that use the Gzip compression algorithm

increases, the data compression ratio is increased. However,

the overall system response time is also increased significantly

and rapidly. The reason is that as the requests compressed

with the Gzip algorithm increase, the overall compression

ratio and the system response times are both increased. Thus

the appropriate percentage for the Gzip algorithm is 20% for

a better balance between performance and space saving in

our experiments. However, the parameter is configurable to

allow system administrators to achieve a much better balance

between the performance and the space efficiency.

V. RELATED WORK

Data compression and its effect on computer systems have

been well studied in the literature. Recently, the data com-

pression technology has been evaluated for its use in the flash

and NVM-based storage systems [6], [17], [24], [25], [28],

[40] for the purpose of performance, space efficiency and

reliability improvement. Some studies have demonstrated how

compression can be integrated into the FTL [28]. Their results

show that data compression can reduce the write traffic to the

storage medium and alleviate write amplification. However,

applying data compression within the FTL will consume

computing and memory resources in SSDs. To address this

problem, Lee et. al [23] propose to use hardware assisted data

compression to reduce the computing overhead. On the other

hand, NVM-Compression [6] is designed to combine the best

of application level compression and flash-aware integration

by extending FTL capabilities.

Besides the studies on data compression integrated into

SSDs, there are studies on the host-level data compression

for SSD-based storage systems. Makatoset. al [25] propose to

apply data compression to SSD to enlarge SSD-based cache

for disk-based storage systems. Li et. al [24] propose and

investigate an implicit data compression strategy to reduce

cycling-induced flash memory cell physical damage and hence

improve storage device lifetime. However, all these schemes

use fixed compression algorithms for flash-based storage sys-

tems and ignore the performance and space impact of the

user access intensity and data compressibility characteristics.

Our proposed EDC scheme is orthogonal and complementary

to these schemes and can be easily incorporated into these
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schemes to further improve system performance and space

efficiency.

Data deduplication, another lossless data reduction technol-

ogy, has been widely adopted for flash-based storage systems

to improve their performance, reliability and space efficiency.

CA-FTL [3] and CA-SSD [16] are two representative studies

that apply the data deduplication technology to reduce write

traffic to flash chips within SSDs. Delta-FTL [34] reduces

write traffic to flash chips through extensive write buffering

that is coupled with selective storing of compressed deltas for

a small portion of the data. Flash-based storage companies,

such as Nimble Storage [18] and Pure Storage [19], have

incorporated both data compression and data deduplication in

their products to improve the system performance and storage

efficiency.

While some adaptive data compression approaches have

been proposed for network transmission on different types of

data [29], [39], none of these studies has focused on flash-

based storage systems. Our EDC study is inspired by these

previous studies in the aspect of reducing write traffic to

flash chips to improve system performance and reliability.

However, EDC is different from the above studies in that it

not only leverages data compression to reduce the write traffic,

but also exploits workload characteristics and the diversity of

compression algorithms to improve the system performance

and reliability.

In addition to storage systems, memory/cache and network

systems have also been targeted for performance, energy

and space efficiency improvement by applying compression

techniques [2], [9], [22], [32]. Alameldeen and Wood [2]

propose to take advantage of small values to create a com-

pression algorithm called Frequent Pattern Compression (FPC)

to effectively increase CPU L2 cache capacity for program

performance improvement. Ekman and Stenstrom [9] propose

a main-memory compression scheme to practically eliminate

performance losses by a highly-efficient structure for locating

a compressed block in memory, and a hierarchical memory

layout that allows compressibility of blocks to vary with a

low fragmentation overhead. Tuduce and Gross [32] present

an adaptive main memory compression system to improve the

application performance when the main memory does not have

sufficient capacity to satisfy the application’s requirement.

All these studies demonstrate that the application data are

compressible and both the system performance and space effi-

ciency can be improved by the data compression technology,

which further validates the viability and feasibility of our EDC

scheme for flash-based storage systems.

VI. CONCLUSION

Data compression is an important technique to improve

the performance and space efficiency for flash-based storage

systems. However, employing fixed compression algorithms,

as in most current flash-based storage products that incorporate

data compression, fails to recognize and exploit the significant

diversity in compressibility and access patterns of data and

misses the opportunity to improve system performance, space

efficiency or both. EDC is proposed in this paper to exploit

the compression diversity of the workload characteristics.

More specifically, for compressible data blocks EDC employs

algorithms with higher compression ratios in time periods with

lower system utilization and algorithms with lower compres-

sion ratios in time periods with higher system utilization. For

non-compressible (or very lowly compressible) data blocks, it

will write them through to the flash storage directly without

any compression. Our extensive trace-driven evaluations on a

lightweight implementation of the EDC prototype show that

EDC achieves a much better trade-off between performance

and space efficiency than the state-of-the-art schemes with

fixed algorithms.

EDC is an ongoing research project that offers several

directions for future research. First, we will further examine

the data compressibility characteristic of data under different

compression algorithms by exploiting semantic information

about application and file type. For instance, the file type

information can be incorporated into the EDC design, so that

different compression algorithms are responsible for different

data content in different file types. Second, we will conduct

more experiments on other storage devices, such as HDD-

based and NVM-based storage systems, to evaluate the effi-

ciency of the EDC prototype. Third, we will investigate EDC’s

impact on system energy consumption, given its dichotomy

of compression/decompression that consumes additional en-

ergy and data reduction that decreases data movement and

thus energy consumption. Finally, we will conduct additional

experiments to evaluate the EDC’s efficiency on the reliability

of the flash-based storage systems. Since data compression

will reduce the request size and improve the space efficiency,

it will also improve the endurance of the flash-based storage

systems.
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